323 (number)
Appearance
323 (three hundred [and] twenty-three) is the natural number following 322 and preceding 324.
| ||||
---|---|---|---|---|
Cardinal | three hundred twenty three | |||
Ordinal | 323d (three hundred twenty-third) | |||
Factorization | 17 × 19 | |||
Divisors | 1, 17, 19, 323 | |||
Greek numeral | ΤΚΓ´ | |||
Roman numeral | CCCXXIII | |||
Binary | 1010000112 | |||
Ternary | 1022223 | |||
Senary | 12556 | |||
Octal | 5038 | |||
Duodecimal | 22B12 | |||
Hexadecimal | 14316 |
In mathematics
[edit]- 323 is a semiprime, and the product of two consecutive prime numbers (17 × 19).
- 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53) and the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47)
- 323 is the eighth Motzkin number, , meaning there are 323 ways to draw non-intersecting chords between eight points on a circle.[1]
- 323 is the first Lucas pseudoprime with parameters (P, Q) defined by Selfridge's method.[2][3]
- 323 is the first Fibonacci pseudoprime (Lucas pseudoprime with P = 1 and Q = -1).[4]
References
[edit]- ^ Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A217120 (Lucas pseudoprimes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Baillie, Robert; Wagstaff, Samuel S. (1980). "Lucas pseudoprimes". Mathematics of Computation. 35 (152): 1391–1417. doi:10.1090/S0025-5718-1980-0583518-6. ISSN 0025-5718.
- ^ Sloane, N. J. A. (ed.). "Sequence A081264 (Odd Fibonacci pseudoprimes: odd composite numbers k such that either (1) k divides Fibonacci(k-1) if k == +-1 (mod 5) or (2) k divides Fibonacci(k+1) if k == +-2 (mod 5).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.