95-48-7Relevant articles and documents
Imidazolium-urea low transition temperature mixtures for the UHP-promoted oxidation of boron compounds
Martos, Mario,Pastor, Isidro M.
, (2022/01/03)
Different carboxy-functionalized imidazolium salts have been considered as components of low transition temperature mixtures (LTTMs) in combination with urea. Among them, a novel LTTM based on 1-(methoxycarbonyl)methyl-3-methylimidazolium chloride and urea has been prepared and characterized by differential scanning calorimetry throughout its entire composition range. This LTTM has been employed for the oxidation of boron reagents using urea-hydrogen peroxide adduct (UHP) as the oxidizer, thus avoiding the use of aqueous H2O2, which is dangerous to handle. This metal-free protocol affords the corresponding alcohols in good to quantitative yields in up to 5 mmol scale without the need of further purification. The broad composition range of the LTTM allows for the reaction to be carried out up to three consecutive times with a single imidazolium salt loading offering remarkable sustainability with an E-factor of 7.9, which can be reduced to 3.2 by the threefold reuse of the system.
Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation
Ali, Hadi,Kansal, Sushil Kumar,Lauwaert, Jeroen,Saravanamurugan, Shunmugavel,Thybaut, Joris W.,Vandevyvere, Tom
, (2022/03/02)
The hydrodeoxygenation (HDO) activity of anisole has been investigated over Ni catalysts on mixed metal oxide supports containing Nb–Zr and Ti–Zr in 1:1 and 1:4 ratios. XRD patterns indicate the incorporation of Ti (or Nb) into the ZrO2 framewo
Catalytic Activation of Unstrained C(Aryl)-C(Alkyl) Bonds in 2,2′-Methylenediphenols
Dong, Guangbin,Ratchford, Benjamin L.,Xue, Yibin,Zhang, Rui,Zhu, Jun
supporting information, p. 3242 - 3249 (2022/02/23)
Catalytic activation of unstrained and nonpolar C-C bonds remains a largely unmet challenge. Here, we describe our detailed efforts in developing a rhodium-catalyzed hydrogenolysis of unstrained C(aryl)-C(alkyl) bonds in 2,2′-methylenediphenols aided by removable directing groups. Good yields of the monophenol products are obtained with tolerating a wide range of functional groups. In addition, the reaction is scalable, and the catalyst loading can be reduced to as low as 0.5 mol %. Moreover, this method proves to be effective to cleave C(aryl)-C(alkyl) linkages in both models of phenolic resins and commercial novolacs resins. Finally, detailed experimental and computational mechanistic studies show that with C-H activation being a competitive but reversible off-cycle reaction, this transformation goes through a directed C(aryl)-C(alkyl) oxidative addition pathway.
Metal-Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Manna, Kuntal
supporting information, p. 9029 - 9039 (2021/06/28)
Chemoselective deoxygenation of carbonyls and alcohols using hydrogen by heterogeneous base-metal catalysts is crucial for the sustainable production of fine chemicals and biofuels. We report an aluminum metal-organic framework (DUT-5) node support cobalt(II) hydride, which is a highly chemoselective and recyclable heterogeneous catalyst for deoxygenation of a range of aromatic and aliphatic ketones, aldehydes, and primary and secondary alcohols, including biomass-derived substrates under 1 bar H2. The single-site cobalt catalyst (DUT-5-CoH) was easily prepared by postsynthetic metalation of the secondary building units (SBUs) of DUT-5 with CoCl2 followed by the reaction of NaEt3BH. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy (XANES) indicated the presence of CoII and AlIII centers in DUT-5-CoH and DUT-5-Co after catalysis. The coordination environment of the cobalt center of DUT-5-Co before and after catalysis was established by extended X-ray fine structure spectroscopy (EXAFS) and density functional theory. The kinetic and computational data suggest reversible carbonyl coordination to cobalt preceding the turnover-limiting step, which involves 1,2-insertion of the coordinated carbonyl into the cobalt-hydride bond. The unique coordination environment of the cobalt ion ligated by oxo-nodes within the porous framework and the rate independency on the pressure of H2 allow the deoxygenation reactions chemoselectively under ambient hydrogen pressure.
Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions
Chen, Yuzhuo,Chen, Zhirong,Gong, Yutong,Mao, Shanjun,Ning, Honghui,Wang, Yong,Wang, Zhenzhen
, p. 3069 - 3084 (2021/11/16)
Upgrading biomass-derived phenolic compounds provides a valuable approach for the production of higher-value-added fuels and chemicals. However, most established catalytic systems display low hydrodeoxygenation (HDO) activities even under harsh reaction conditions. Here, we found that Pd supported on –NH2-modified hierarchically porous carbon (Pd/HPC–NH2) with formic acid (FA) as hydrogen source exhibits unprecedented performance for the selective HDO of benzylic ketones from crude lignin-derived oxygenates. Designed experiments and theoretical calculations reveal that the H+/H? species generated from FA decomposition accelerates nucleophilic attack on carbonyl carbon in benzylic ketones and the formate species formed via the esterification of intermediate alcohol with FA expedites the cleavage of C–O bonds, achieving a TOF of 152.5 h?1 at 30°C for vanillin upgrading, 15 times higher than that in traditional HDO processes (~10 h?1, 100°C–300°C). This work provides an intriguing green route to produce transportation fuels or valuable chemicals from only biomass under mild conditions.
A mild desilylation of phenolic tert-butyldimethylsilyl ethers using in situ generated tetraethylammonium superoxide
Pandey, Surabhi,Shukla, Ajay K.,Raghuvanshi, Raghvendra S.
, p. 809 - 811 (2021/07/16)
Desilylation of phenolic tert-butyldimethylsilyl ethers has been achieved under the mild reaction conditions of in situ generated tetraethylammonium superoxide, at room temperature. (Figure presented.).
Visible light-induced photodeoxygenation of polycyclic selenophene Se-oxides
Chintala, Satyanarayana M.,Throgmorton, John C.,Maness, Peter F.,McCulla, Ryan D.
, (2020/10/02)
Photodeoxygenation of dibenzothiophene S-oxide (DBTO) is believed to produce ground-state atomic oxygen [O(3P)] in solution. Compared with other reactive oxygen species (ROS), O(3P) is a unique oxidant as it is potent and selective. Derivatives of DBTO have been used as O(3P)-precursors to oxidize variety of molecules, including plasmid DNA, proteins, lipids, thiols, and other small organic molecules. Unfortunately, the photodeoxygenation of DBTO requires ultraviolet irradiation, which is not an ideal wavelength range for biological systems, and has a low quantum yield of approximately 0.003. In this work, benzo[b]naphtho[1,2-d]selenophene Se-oxide, benzo[b]naphtho[2,1-d]selenophene Se-oxide, dinaphtho[2,3-b:2’,3’-d]selenophene Se-oxide, and perylo[1,12-b,c,d]selenophene Se-oxide were synthesized, and their ability to utilize visible light for generating O(3P) was interrogated. Benzo[b]naphtho[1,2-d]selenophene Se-oxide produces O(3P) upon irradiation centered at 420 nm. Additionally, benzo[b]naphtho[1,2-d]selenophene Se-oxide, benzo[b]naphtho[2,1-d]selenophene Se-oxide, and dinaphtho[2,3-b:2’,3’-d]selenophene Se-oxide produce O(3P) when irradiated with UVA light and have quantum yields of photodeoxygenation ranging from 0.009 to 0.33. This work increases the utility of photodeoxygenation by extending the range of wavelengths that can be used to generate O(3P) in solution.
Highly selective demethylation of anisole to phenol over H4Nb2O7modified MoS2catalyst
Ji, Na,Wang, Zhenjiao,Diao, Xinyong,Jia, Zhichao,Li, Tingting,Zhao, Yujun,Liu, Qingling,Lu, Xuebin,Ma, Degang,Song, Chunfeng
, p. 800 - 809 (2021/02/26)
Hydrogenolysis of lignin to obtain value-added phenolic chemicals is an important approach for its comprehensive utilization. Herein, H4Nb2O7modified MoS2catalyst with short slabs and narrow stacking degree was successfully synthesized by the one step hydrothermal method and used in the selective demethylation of anisole to phenol. The MoS2-H4Nb2O7-160 catalyst exhibited the best activity with 97.7% conversion of anisole and 98.0% selectivity of phenol under 3 MPa H2pressure at 270 °C for 4 h, which has been rarely reported on anisole transformation over heterogeneous catalysts so far. The characterizations results demonstrated that the H4Nb2O7modification reduced the slab length and stacking degree of MoS2during the hydrothermal process and enhanced the acidity property therefore improved the cleavage ability of CArO-CH3bond. This study provides a new scheme for the activity enhancement of MoS2in lignin demethylation, laying a foundation on the improvement of lignin utilization and the development of renewable energy strategy.
Rational design of oligomeric MoO3 in SnO2 lattices for selective hydrodeoxygenation of lignin derivatives into monophenols
Diao, Xinyong,Ji, Na,Jia, Zhichao,Jiang, Sinan,Li, Tingting,Liu, Caixia,Liu, Qingling,Lu, Xuebin,Song, Chunfeng,Wang, Zhenjiao
, p. 234 - 251 (2021/08/19)
Novel Mo-Sn bimetallic oxide catalysts with highly dispersed oligomeric MoO3 in SnO2 lattices, which were synthesized by the co-precipitation method and pretreated by anhydrous ethanol, were first employed in the hydrodeoxygenation of various lignin derivatives to produce monophenols with high activity and selectivity. In comparison with the pure α-MoO3 and the previous reported catalysts, the α-2Mo1Sn exhibited superior activity in the hydrodeoxygenation of guaiacol, with full conversion and 92.5% phenol yield at 300 °C under 4 MPa initial H2 pressure in n-hexane for 4 h. According to comprehensive characterizations and catalytic measurements, the excellent performance of α-2Mo1Sn was ascribed to the formation of abundant Sn-O-Mo-OV interfacial sites, which possessed strong Mo-Sn interaction with enhanced surface area, electron-donating group binding ability, Lewis acidity, and redox ability. It was demonstrated that over the present α-2Mo1Sn catalyst system, the Sn-O-Mo-OV interfacial sites could greatly facilitate the adsorption and activation of Caromatic-OCH3 and Caromatic-CH3 bonds, and thus significantly promote the demethoxylation and demethylation reaction to produce phenol. This work figures out the rational design of MoO3-based catalyst and displays a clear potential for the selective hydrodeoxygenation of lignin derivatives into monophenols.
Aromatic C?H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes
Masferrer-Rius, Eduard,Borrell, Margarida,Lutz, Martin,Costas, Miquel,Klein Gebbink, Robertus J. M.
, p. 3783 - 3795 (2021/03/09)
The oxidation of aromatic substrates to phenols with H2O2 as a benign oxidant remains an ongoing challenge in synthetic chemistry. Herein, we successfully achieved to catalyze aromatic C?H bond oxidations using a series of biologically inspired manganese catalysts in fluorinated alcohol solvents. While introduction of bulky substituents into the ligand structure of the catalyst favors aromatic C?H oxidations in alkylbenzenes, oxidation occurs at the benzylic position with ligands bearing electron-rich substituents. Therefore, the nature of the ligand is key in controlling the chemoselectivity of these Mn-catalyzed C?H oxidations. We show that introduction of bulky groups into the ligand prevents catalyst inhibition through phenolate-binding, consequently providing higher catalytic turnover numbers for phenol formation. Furthermore, employing halogenated carboxylic acids in the presence of bulky catalysts provides enhanced catalytic activities, which can be attributed to their low pKa values that reduces catalyst inhibition by phenolate protonation as well as to their electron-withdrawing character that makes the manganese oxo species a more electrophilic oxidant. Moreover, to the best of our knowledge, the new system can accomplish the oxidation of alkylbenzenes with the highest yields so far reported for homogeneous arene hydroxylation catalysts. Overall our data provide a proof-of-concept of how Mn(II)/H2O2/RCO2H oxidation systems are easily tunable by means of the solvent, carboxylic acid additive, and steric demand of the ligand. The chemo- and site-selectivity patterns of the current system, a negligible KIE, the observation of an NIH-shift, and the effectiveness of using tBuOOH as oxidant overall suggest that hydroxylation of aromatic C?H bonds proceeds through a metal-based mechanism, with no significant involvement of hydroxyl radicals, and via an arene oxide intermediate. (Figure presented.).