Skip to main content
Log in

Perspectives of biotechnological production of l-tyrosine and its applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aromatic amino acid l-tyrosine is used as a dietary supplement and has promise as a valuable precursor compound for various industrial and pharmaceutical applications. In contrast to chemical production, biotechnological methods can produce l-tyrosine from biomass feedstocks under environmentally friendly and near carbon-free conditions. In this minireview, various strategies for synthesizing l-tyrosine by employing biocatalysts are discussed, including initial approaches as well as more recent advances. Whereas early attempts to engineer l-tyrosine-excreting microbes were based on auxotrophic and antimetabolite-resistant mutants, recombinant deoxyribonucleic acid technology and a vastly increasing knowledge of bacterial physiology allowed recently for more targeted genetic manipulations and strain improvements. As an alternative route, l-tyrosine can also be obtained from the conversion of phenol, pyruvate, and ammonia or phenol and serine in reactions catalyzed by the enzyme tyrosine phenol lyase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of antimetabolites. J Bacteriol 76:326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121

    Article  CAS  PubMed  Google Scholar 

  • Barnett HM (1935) Method of preparing leucine. US Patent no. US 2,009,868

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    Article  CAS  Google Scholar 

  • Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Bonuccelli U, Del Dotto P (2006) New pharmacologic horizons in the treatment of Parkinson disease. Neurology 67:S30–S38

    Article  CAS  PubMed  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Keβeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  • Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Valladares N, Martínez A, Pinero S, Lagunas-Muñoz VH, Tinoco R, de Anda R, Vazquez-Duhalt R, Bolívar F, Gosset G (2006) Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. Enzyme Microb Technol 38:772–779

    Article  CAS  Google Scholar 

  • Cardinal EV (1953) Separation of tyrosine and cystine. US Patent no. US 2,650,242

  • Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Vincent S, Wilson DB, Ganem B (2003) Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. Eur J Biochem 270:757–763

    Article  CAS  PubMed  Google Scholar 

  • Cohen GN, Adelberg EA (1958) Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. J Bacteriol 76:328–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deijen JB, Orlebeke JF (1994) Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull 33:319–23

    Article  CAS  PubMed  Google Scholar 

  • Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc 115:11581–11589

    Article  CAS  Google Scholar 

  • della-Cioppa G, Garger SJ, Sverlow GG, Turpen TH, Grill LK (1990) Melanin production in Escherichia coli from a cloned tyrosinase gene. Biotechnology 8:634–638

    CAS  PubMed  Google Scholar 

  • Dewick PM (1998) The biosynthesis of shikimate metabolites. Nat Prod Rep 15:17–58

    Article  CAS  PubMed  Google Scholar 

  • Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318

    Article  CAS  PubMed  Google Scholar 

  • Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    Article  CAS  PubMed  Google Scholar 

  • Enei H, Matsui H, Yamashita K, Okumura S, Yamada H (1972a) Distribution of tyrosine phenol lyase in microorganisms. Agric Biol Chem 36:1861–1868

    Article  CAS  Google Scholar 

  • Enei H, Nakazawa H, Matsui H, Okumura S, Yamada H (1972b) Enzymatic preparation of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from pyruvate, ammonia and phenol or pyrocatechol. FEBS Lett 21:39–41

    Article  CAS  PubMed  Google Scholar 

  • Enei H, Matsui H, Nakazawa H, Okumura S (1973a) Synthesis of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from DL-serine and phenol or pyrocathechol. Agric Biol Chem 37:493–499

    CAS  Google Scholar 

  • Enei H, Nakazawa H, Okumura S, Yamada H (1973b) Microbiological synthesis of L-tyrosine and 3,4-dihydroxyphenyl-L-alanine. 5. Synthesis of L-tyrosine or 3,4-dihydroxyphenyl-L-alanine from pyruvic acid, ammonia and phenol or pyrocatechol. Agric Biol Chem 37:725–735

    CAS  Google Scholar 

  • Fazel AM, Jensen RA (1979) Obligatory biosynthesis of L-tyrosine via pretyrosine branchlet in coryneform bacteria. J Bacteriol 138:805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazel AM, Jensen RA (1980) Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant. Proc Natl Acad Sci USA 77:1270–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    Article  CAS  PubMed  Google Scholar 

  • Frost JW, Draths KM (1995) Biocatalytic synthesis of aromatics from D-glucose: renewable microbial sources of aromatic compounds. Annu Rev Mircobiol 49:557–579

    Article  CAS  Google Scholar 

  • Frost JW, Snell KD, Frost KM (1998) Deblocking the common pathway of aromatic amino acid synthesis. US Patent no. US 5,776,736

  • Fukui S, Ikeda S, Fujimura M, Yamada H, Kumagai H (1975a) Comparative studies on properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5′-phosphate. Eur J Biochem 51:155–164

    Article  CAS  PubMed  Google Scholar 

  • Fukui S, Ikeda S, Fujimura M, Yamada H, Kumagai H (1975b) Production of L-tryptophan, L-tyrosine and their analogs by use of immobilized tryptophanase and immobilized beta-tyrosinase. Eur J Appl Microbiol 1:25–39

    Article  CAS  Google Scholar 

  • Garner CC, Herrmann KM (1985) Operator mutations of the Escherichia coli aroF gene. J Biol Chem 260:3820–3825

    CAS  PubMed  Google Scholar 

  • Gerth TD, Mann RW, Ayres JR (1999) Dietary supplement composition. US Patent no. US 5,925,377

  • Giovannini M, Verduci E, Salvatici E, Fiori L, Riva E (2007) Phenylketonuria: dietary and therapeutic challenges. J Inherit Metab Dis 30:145–152

    Article  CAS  PubMed  Google Scholar 

  • Hagino H, Nakayama K (1973a) L-tyrosine production by analog-resistant prototrophic mutants of glutamic acid producing bacteria. Agric Biol Chem 37:2007–2011

    Article  CAS  Google Scholar 

  • Hagino H, Nakayama K (1973b) L-tyrosine production by analog-resistant mutants derived from a phenylalanine auxotroph of Corynebacterium glutamicum. Agric Biol Chem 37:2013–2023

    Article  CAS  Google Scholar 

  • Hagino H, Yoshida H, Kato F, Arai Y, Katsumata R, Nakayama K (1973) L-tyrosine production by polyauxotrophic mutants of Corynebacterium glutamicum. Agric Biol Chem 37:2001–2005

    CAS  Google Scholar 

  • Hagino H, Nakayama K, Yoshida H (1974) Process for the production of L-tyrosine. US Patent no. US 3,787,287

  • Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25:119–124

    Article  CAS  PubMed  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  CAS  PubMed  Google Scholar 

  • Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136:361–388

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M (2003) Amino acid production processes. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol. 79. Springer, Berlin, pp 1–35

    Google Scholar 

  • Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Katsumata R (1994) Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 78:420–425

    Article  CAS  Google Scholar 

  • Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51:201–206

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Sakurai S, Tanaka T, Sato K, Enei H (1990a) Genetic breeding of L-tyrosine producer from Brevibacterium lactofermentum. Agric Biol Chem 54:699–705

    CAS  PubMed  Google Scholar 

  • Ito H, Sato K, Enei H, Hirose Y (1990b) Improvement in microbial production of L-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54:823–824

    CAS  PubMed  Google Scholar 

  • Katsumata R, Ikeda M (1993) Process for producing L-tryptophan, L-tyrosine or L-phenylalanine. European patent EP 0600463B1

  • Kim JH, Song JJ, Kim BG, Sung MH, Lee SG (2004) Enhanced stability of tyrosine phenol-lyase from Symbiobacterium toebii by DNA shuffling. J Microbiol Biotechnol 14:153–157

    CAS  Google Scholar 

  • Kim DY, Rha E, Choi SL, Song JJ, Hong SP, Sung MH, Lee SG (2007) Development of bioreactor system for L-tyrosine synthesis using thermostable tyrosine phenol-lyase. J Microbiol Biotechnol 17:116–122

    CAS  PubMed  Google Scholar 

  • Koffas M, del Cardayre S (2005) Evolutionary metabolic engineering. Metab Eng 7:1–3

    Article  CAS  Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94

    Article  Google Scholar 

  • Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283

    Article  CAS  PubMed  Google Scholar 

  • Kumagai H, Yamada H, Matsui H, Ohkishi H, Ogata K (1970) Tyrosine phenol lyase. I. Purification, crystallization, and properties. J Biol Chem 245:1767–72

    CAS  PubMed  Google Scholar 

  • Kyowa Hakko Kogyo (2006) Kyowa Hakko develops world’s first commercial production method for L-tyrosine based on fermentation; successful mass production of L-tyrosine from non-animal sources. Press release, September 26, 2006

  • Lee TK, Hsiao HY (1986) Synthesis of L-tyrosine by a coupled reaction of serine hydroxymethyl-transferase and beta-tyrosinase. Enzyme Microb Technol 8:523–526

    Article  CAS  Google Scholar 

  • Leuchtenberger W (1996) Amino acids—technical production and use. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology. Products of primary metabolism, vol. 6. 2nd edn. VCH, Weinheim, pp 465–502

    Chapter  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-George I, Chang TMS (1993) Free and microencapsulated Erwinia herbicola for the production of tyrosine. Biomater Artif Cells Immobil Biotechnol 21:323–33

    CAS  Google Scholar 

  • Lloyd-George I, Chang TMS (1995) Characterization of free and alginate–polylysine–alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine. Biotechnol Bioeng 48:706–714

    Article  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Stephanopoulos G (2005) Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol 71:7224–7228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lütke-Eversloh T, Stephanopoulos G (2007a) L-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75:103–110

    Article  PubMed  CAS  Google Scholar 

  • Lütke-Eversloh T, Stephanopoulos G (2007b) Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic aromatic amino acid biosynthesis gene overexpression. Metab Eng (submitted)

  • Lütke-Eversloh T, Stephanopoulos G (2007c) A semi-quantitative high-throughput screening method for microbial L-tyrosine production in microtiter plates. J Ind Microbiol Biotechnol, DOI https://doi.org/10.1007/s10295-007-0257-x

    Article  CAS  Google Scholar 

  • Mark AM (1939) Isolation of leucine and tyrosine from corn gluten. US Patent no. US 2,178,210

  • Nagasawa T, Utagawa T, Goto J, Kim CJ, Tani Y, Kumagai H, Yamada H (1981) Syntheses of L-tyrosine-related amino acids by tyrosine phenol-lyase of Citrobacter intermedius. Eur J Biochem 117:33–40

    Article  CAS  PubMed  Google Scholar 

  • Neri DF, Wiegmann D, Stanny RR, Shappell SA, McCardie A, McKay DL (1995) The effects of tyrosine on cognitive performance during extended wakefulness. Aviat Space Environ Med 66:313–319

    CAS  PubMed  Google Scholar 

  • O’Brien C, Mahoney C, Tharion WJ, Sils IV, Castellani JW (2007) Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol Behav 90:301–7

    Article  PubMed  CAS  Google Scholar 

  • Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Olson MM, Templeton LJ, Suh W, Youderian P, Sariaslani FS, Gatenby AA, Van Dyk TK (2007) Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains. Appl Microbiol Biotechnol 74:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Para G, Lucciardi P, Baratti J (1985) Synthesis of L-tyrosine by immobilized Escherichia intermedia cells. Appl Microbiol Biotechnol 21:273–279

    Article  CAS  Google Scholar 

  • Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik R, Spitzer RG, Liao JC (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA and Pps activities. Biotech Bioeng 46:361–370

    Article  CAS  Google Scholar 

  • Phillips RS, Ravichandran K, Vontersch RL (1989) Synthesis of L-tyrosine from phenol and S-(ortho-nitrophenyl)-L-cysteine catalyzed by tyrosine phenol-lyase. Enzyme Microb Technol 11:80–83

    Article  CAS  Google Scholar 

  • Pittard J (1996) Biosynthesis of aromatic amino acids. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol. 1. American Society of Microbiology, Washington, DC, pp 458–484

    Google Scholar 

  • Pittard J, Camakaris H, Yang J (2005) The TyrR regulon. Mol Microbiol 55:16–26

    Article  CAS  PubMed  Google Scholar 

  • Pohnert G, Zhang S, Husain A, Wilson DB, Ganem B (1999) Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217

    Article  CAS  PubMed  Google Scholar 

  • Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol 115:221–237

    Article  CAS  PubMed  Google Scholar 

  • Qi WW, Sariaslani S, Tang XS (2002). Methods for the production of tyrosine, cinnamic acid and para-hydroxycinnamic acid. World Patent no. WO 02/090523

  • Qi WW, Vannelli T, Breinig S, Ben-Bassat A, Gatenby AA, Haynie SL, Sariaslani FS (2007) Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab Eng 9:268–76

    Article  CAS  PubMed  Google Scholar 

  • Rajput A, Rajput AH (2006) Parkinson’s disease management strategies. Expert Rev Neurother 6:91–99

    Article  CAS  PubMed  Google Scholar 

  • Rohr FJ, Lobbregt D, Levy HL (1998) Tyrosine supplementation in the treatment of maternal phenylketonuria. Am J Clin Nutr 67:473–476

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Mukhopadhyay SK, Chatterjee SP (1997) Production of tyrosine by auxotrophic and analogue resistant mutants of Arthrobacter globiformis. J Sci Ind Res 56:727–733

    CAS  Google Scholar 

  • Santos CNS, Stephanopoulos G (2007) Methods for identifying bacterial strains that produce L-tyrosine. US patent application no. 60/965,149

  • Sariaslani FS (2007) Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol 61:51–69

    Article  CAS  PubMed  Google Scholar 

  • Snell KD, Draths KM, Frost JW (1996) Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J Am Chem Soc 118:5605–5614

    Article  CAS  Google Scholar 

  • Sprenger GA (2007a) Aromatic amino acids. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Microbiology Monographs series, vol. 5. Springer, Berlin, pp 93–127 (Steinbüchel A, series editor)

    Chapter  Google Scholar 

  • Sprenger GA (2007b) From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749

    Article  CAS  PubMed  Google Scholar 

  • Steinmetzer W (1983) Process for recovering amino acids from protein hydrolysates. US Patent no. US 4,384,136

  • Stephanopoulos G, Sinskey AJ (1993) Metabolic engineering: issues and methodologies. Trends Biotechnol 11:392–396

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Simpson TW (1997) Flux amplification in complex metabolic networks. Chem Eng Sci 52:2607–2627

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Kelleher J (2001) How to make a superior cell. Science 292:2024–2026

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto S, Shiio I (1980) Purification and properties of bifunctional 3-deoxy-D-arabino-heptulosonate 7-phosphate synthasechorismate mutase component A from Brevibacterium flavum. J Biochem 87:881–890

    Article  CAS  PubMed  Google Scholar 

  • Takai A, Nishi R, Joe Y, Ito H (2005) L-Tyrosine producing bacterium and a method for producing L-tyrosine. US Patent application no. 2005/0277179 A1

  • Tanaka K, Ohshima K, Tokoro Y, Okii M (1972) Preparation of L-tyrosine by fermentation. US Patent no. US 3,698,997

  • Tribe DE (1987) Novel microorganism and method. US Patent no. US 4,681,852

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  CAS  PubMed  Google Scholar 

  • Tysyachnaya IV, Yakovleva VI, Kupletskaya MB, Berezin IV (1979) Kinetic study of tyrosine synthesis in tyrosine phenol lyase reaction catalyzed by Citrobacter freundii cells. Biochemistry (Moscow) 44:1739–1744

    Google Scholar 

  • van Spronsen FJ, van Rijn M, Bekhof J, Koch R, Smit PG (2001) Phenylketonuria: tyrosine supplementation in phenylalanine-restricted diets. Am J Clin Nutr 73:153–7

    Article  PubMed  Google Scholar 

  • Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Engin 9:142–151

    Article  CAS  Google Scholar 

  • Vassel B (1956) Separation of tyrosine. US Patent no. US 2,738,366

  • Williams M (2005) Dietary supplements and sports performance: amino acids. J Int Soc Sports Nutr 2:63–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada H, Kumagai H, Kashima N, Torii H, Enei H, Okumura S (1972) Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase. Biochem Biophys Res Commun 46:370–374

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate product yields in Escherichia coli. Biotechnol Prog 19:1450–1459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from the Singapore–MIT Alliance and fellowships from the Deutsche Forschungsgemeinschaft (TLE) and the National Science Foundation (CNS) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Lütke-Eversloh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lütke-Eversloh, T., Santos, C.N.S. & Stephanopoulos, G. Perspectives of biotechnological production of l-tyrosine and its applications. Appl Microbiol Biotechnol 77, 751–762 (2007). https://doi.org/10.1007/s00253-007-1243-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1243-y

Keywords