Abstract
Clonally propagated crop species are less adaptable to environmental changes than those propagating sexually. DNA studies have shown that in all countries where taro (Colocasia esculenta (L.) Schott) has been introduced clonally its genetic base is narrow. As genetic variation is the most important source of adaptive potential, it appears interesting to attempt to increase genetic and phenotypic diversity to strengthen smallholders’ capacity to adapt to climatic changes. A global experiment, involving 14 countries from America, Africa, Asia and the Pacific was conducted to test this approach. Every country received a set of 50 indexed genotypes in vitro assembling significant genetic diversity. After on-station agronomic evaluation trials, the best genotypes were distributed to farmers for participatory on-farm evaluation. Results indicated that hybrids tolerant to taro leaf blight (TLB, Phytophthora colocasiae Raciborski), developed by Hawaii, Papua New Guinea and Samoa breeding programmes outperformed local cultivars in most locations. However, several elite cultivars from SE Asia, also tolerant to TLB, outperformed improved hybrids in four countries and in one country none of the introductions performed better than the local cultivars. Introduced genotypes were successfully crossed (controlled crossing) with local cultivars and new hybrids were produced. For the first time in the history of Aroids research, seeds were exchanged internationally injecting tremendous allelic diversity in different countries. If climatic changes are going to cause the problems envisaged, then breeding crops with wide genetic diversity appears to be an appropriate approach to overcome the disasters that will otherwise ensue.

Similar content being viewed by others
References
Birnbaum K (2006) Crop genetics on modern farms: gene flow between crop populations. In: Motley TJ, Zerega N, Cross H (eds) Darwin's harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 333–346
Brush SB (2000) Genes in the field: on-farm conservation of crop diversity. Lewis Pubs, Boca Raton
Camus P, Lebot V (2010) On-farm assessment of clonal introduction of root crops diversity in Vanuatu, Melanesia. Exp Agric 46(4):541–559
Ceballos H, Kawuki RS, Gracen VE, Yencho GG, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667
Chaïr H, Traoré RE, Duval MF, Rivallan R, Mukherjee A, Aboagye LM, Van Rensburg WJ, Andrianavalona V, Pinheiro de Carvalho MAA, Saborio F, Sri Prana M, Komolong B, Lawac F, Lebot V (2016) Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PloS ONE 11(6):1–19
Cho JJ (2004) Breeding Hawaiian taros for the future. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 192–196
Dodd RS, Douhovnikoff V (2016) Adjusting to global change through clonal growth and epigenetic variation. Front Ecol Evol 4:86. doi:10.3389/fevo.2016.00086
FAO (2014) FAO Statistical database. www.fao.org visited Feb 2014
Fonoti P (2005) Breeding resistance to taro leaf blight (Phytophthora colocasiae) in Samoa. Masters of Crop Science Thesis, USP, Alafua, July, 2005
Fullagar R, Field J, Denham T, Lentfer C (2006) Early and mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.) and other plants at Kuk Swamp in the highlands of Papua New Guinea. J Archaeol Sci 33(1):595–614
Harding RM, Revil PA, Hafner GJ, Yang I, Maino MK, Devitt LC, Dowling ML, Dale JL (2004) Characterisation of taro viruses and the development of diagnostic tests. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 98–101
Iosefa T, Taylor M, Hunter D, Tuia V (2012) The taro improvement programme in Samoa: sharing genetic resources through networking. FAO RAP-NIAS: plant genetic resources in Asia and the Pacific: impacts and future. In: Proceedings of a symposium held in Tsukuba, Japan. 18th Oct 2011-FAO-p, pp 25–40
Ivancic A, Lebot V (2000) Taro (Colocasia esculenta): genetics and breeding. Collection “Repères”, CIRAD, Montpellier, France
Ivancic A, Quero Garcia J, Lebot V (2003) Development of visual tools for selecting qualitative corm characteristics of taro (Colocasia esculenta (L.) Schott). Aust J Agric Res 54(6):581–588
Kreike CM, van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768
Lebot V, Aradhya M (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56:55–66
Lebot V, Gunua T, Pardales JR, Prana MD, Thongjiem MS, Viet NV, Yap TC (2004) Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genet Resour Crop Evol 51:381–392
Lebot V, Ivancic A, Abraham K (2005) The geographical distribution of allelic diversity, a practical means of preserving and using minor root crops genetic resources. Exp Agric 41:475–489
Matsuda M (2002) Taro, Colocasia esculenta (L.) Schott, in Eastern Asia: its geographical distribution and dispersal into Japan. Doctoral Thesis, Kyoto University, Kyoto, Japan
Matthews PJ, Lockhart PJ, Ahmed I (2017) Phylogeography, ethnobotany and linguistics issues arising from research on the natural and cultural history of taro, Colocasia esculenta (L.) Schott. Man India 97(1):353–380
Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493
Mukherjee A, George J, Pillai R, Chakrabarti SK, Naskar SK, Patro R, Nayak S, Lebot V (2016) Development of taro (Colocasia esculenta (L.) Schott) hybrids overcoming its asynchrony in flowering using cryostored pollen. Euphytica 212(1):29–36
Namkoong G, Lewontin RC, Yanchuk AD (2004) Plant genetic resources management: the next investments in quantitative and qualitative genetics. Genet Resour Crop Evol 51:853–862
Omane E, Oduro KA, Cornelius EW, Opoku I, Akrofi A, Sharma K, Bandyopadhyay R (2012) First report of leaf blight of taro (Colocasia esculenta) caused by Phytophthora colocasiae in Ghana. Plant Dis 96(2):292
Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ Res Lett 8(2):024018
Roullier C, Benoit L, McKey D, Lebot V (2013) Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. PNAS 110(6):225–2210
Sardos J, Noyer JL, Malapa R, Bouchet S, Lebot V (2012) Genetic diversity of taro (Colocasia esculenta (L.) Schott) in Vanuatu (Oceania): An appraisal of the distribution of allelic diversity (DAD) with SSR markers. Genet Resour Crop Evol 59(5):805–820
Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Dainou O, Pham JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop: the case of yam in Benin. Mol Ecol 15(9):2421–2431
Singh D, Okpul T (2000) Evaluation of 12 taro (Colocasia esculenta (L.) Schott) leaf blight resistant lines for yield and eating quality in Papua New Guinea. SABRAO J Breed Genet 32(1):39–45
Soulard L, Letourmy P, Cao TV, Lawac F, Chaïr H, Lebot V (2016) Evaluation of vegetative growth, yield and quality related traits in taro (Colocasia esculenta (L.) Schott). Crop Sci 56(3):976–989
Taylor MB (2002) The establishment of a regional germplasm centre in the Pacific island region. In: Engels JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International, Oxon, pp 104–112
Taylor MB, Tuia V, Sant R, Lesione E, Prasad R, Prasad RL, Vosaki A (2004) Using in vitro techniques for the conservation and utilization of Colocasia esculenta var. esculenta (taro) in a regional genebank. In: Guarino L, Taylor M, Osborn T (eds) Proceedings of the 3rd taro symposium held in Nadi, Fiji. Secretariat of the Pacific Community, pp 69–73
VandenBroucke H, Mournet P, Vignes H, Chair H, Malapa R, Duval MF, Lebot V (2015) Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genet Resour Crop Evol 63(3):495–511
Zettler FW, Jackson GVH, Frison EA (eds) (1989) FAO/IBPGR technical guidelines for the safe movement of edible aroid germplasm. Food and Agriculture Organization of the United Nations, Rome/International Board for Plant Genetic Resources, Rome
Acknowledgements
This research was financially supported by the Europe-Aid project “Adapting clonally propagated crops to climatic and commercial changes” (Grant No. DCI-FOOD/2010/230-267 SPC). Thanks are due to the 14 different countries technicians working on research stations and to farmers and their families for their enthusiastic contribution.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Lebot, V., Tuia, V., Ivancic, A. et al. Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott). Genet Resour Crop Evol 65, 591–606 (2018). https://doi.org/10.1007/s10722-017-0557-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10722-017-0557-6