Skip to main content
Log in

Are matrix isolated species really “isolated”? Infrared spectroscopic and theoretical studies of noble gas-transition metal oxide complexes

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this review, we summarize our recent results on matrix isolation infrared spectroscopic studies and theoretical investigations of noble gas-transition metal oxide complexes. The results show that some transition metal oxide species trapped in solid noble gas matrices are chemically coordinated by one or multiple noble gas atoms forming noble gas complexes and, hence, cannot be regarded as isolated species. Noble gas coordination alters the vibrational frequencies as well as the geometric and electronic structures of transition metal oxide species trapped in solid noble gas matrixes. The interactions between noble gas atoms and transition metal oxides involve ion-induced dipole interactions as well as chemical bonding interactions. Periodic trends in the bonding in these noble gas-transition metal complexes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittle E, Dows DA, Pimentel GC. Matrix isolation method for the experimental study of unstable species. J Chem Phys, 1954, 22: 1943

    CAS  Google Scholar 

  2. Bondybey VE, Smith AM, Agreiter J. New developments in matrix isolation spectroscopy. Chem Rev,1996, 96: 2113–2134

    Article  CAS  Google Scholar 

  3. Zhou MF, Andrews L, Bauschlicher CWJr. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem Rev, 2001, 101: 1931–1961

    Article  CAS  Google Scholar 

  4. Himmel HJ, Downs AJ, Greene TM. Reactions of ground state and electronically excited atoms of main group elements: A matrix perspective. Chem Rev, 2002, 102: 4191–4241

    Article  CAS  Google Scholar 

  5. Wang GJ, Zhou MF. Probing the intermediates in the MO + CH4 ↔ M + CH3OH reactions by matrix isolation infrared spectroscopy. Int Rev Phys Chem, 2008, 27: 1–25

    Article  CAS  Google Scholar 

  6. Jacox ME. The vibrational energy levels of small transient molecules isolated in neon and argon matrices. Chem Phys, 1994, 189: 149–170

    Article  CAS  Google Scholar 

  7. Jacox ME. The spectroscopy of molecular reaction intermediates trapped in the solid rare gases. Chem Soc Rev, 2002, 31: 108–115

    Article  CAS  Google Scholar 

  8. Bartlett N. Xenon hexafluoroplatinate(V) Xe+[PtF6]. Proc Chem Soc, 1962: 218

  9. Turner JJ, Pimentel GC. Krypton fluoride, preparation by the matrix isolation technique. Science, 1963, 140: 974–975

    Article  CAS  Google Scholar 

  10. Khriachtchev L, Räsänen M, Gerber RB. Noble-gas hydrides: New chemistry at low temperatures. Acc Chem Res, 2009, 42: 183–191

    Article  CAS  Google Scholar 

  11. Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Räsänen M. A stable argon compound. Nature, 2000, 406: 874–876

    Article  CAS  Google Scholar 

  12. Perutz RN, Turner JJ. Photochemistry of the group 6 hexacarbonyls in low-temperature matrices, III. Interaction of the pentacarbonyls with noble gases and other matrices. J Am Chem Soc, 1975, 97: 4791–4800

    Article  CAS  Google Scholar 

  13. Burdett JK, Grzybowsky JM, Perutz RN, Poliakoff M, Turner JJ, Turner R F. Photolysis and spectroscopy with polarized light, key to the photochemistry of Cr(CO)5 and related species. Inorg Chem, 1978, 17: 147–154

    Article  CAS  Google Scholar 

  14. Turner JJ, Burdett JK, Perutz RN, Poliakoff M. Matrix photochemistry of metal carbonyl. Pure Appl Chem, 1977, 49: 271–285

    Article  CAS  Google Scholar 

  15. Simpson MB, Poliakoff M, Turner JJ, Maier WB, McLaughlin JG. [Cr(CO)5Xe] in solution, the first spectroscopic evidence. J Chem Soc Chem Commun, 1983: 1355-1357

  16. Sun X, George MW, Kazarian SG, Nikiforov SM, Poliakoff M. Can organometallic noble gas compounds be observed in solution at room temperature? A time-resolved infrared (TRIR) and UV spectroscopic study of the photochemistry of M(CO)6 (M = Cr, Mo, and W) in supercritical noble gas and CO2 solution. J Am Chem Soc, 1996, 118: 10525–10532

    Article  CAS  Google Scholar 

  17. Wells JR, Weitz E. Rare gas-metal carbonyl complexes, bonding of rare gas atoms to the group VI pentacarbonyls. J Am Chem Soc, 1992, 114: 2783–2787

    Article  CAS  Google Scholar 

  18. Portius P, Yang JX, Sun X, Grills DC, Matousek P, Parker AW, Towrie M, George MW. Unraveling the photochemistry of Fe(CO)5 in solution, observation of Fe(CO)3 and the conversion between 3Fe(CO)4 and 1Fe(CO)4(solvent). J Am Chem Soc, 2004, 126: 10713–10720

    Article  CAS  Google Scholar 

  19. Grills DC, Sun XZ, Childs GI, George MW. An investigation into the reactivity of organometallic noble gas complexes: A time-resolved infrared study in supercritical noble gas and alkane solution at room temperature. J Phys Chem A, 2000, 104: 4300–4307

    Article  CAS  Google Scholar 

  20. Grills DC, Childs GI, George MW. The characterization and reactivity of (η5-C5H5)M(CO)3(Xe) (M = Nb or Ta) in solution at room temperature. Chem Commun, 2000, 1841-1842

  21. Weiller BH, Wasserman EP, Bergman RG, Moore CB, Pimentel GC. Time-resolved IR spectroscopy in liquid rare gases, direct rate measurement of an intermolecular alkane carbon-hydrogen oxidative addition reaction. J Am Chem Soc, 1989, 111: 8288–8290

    Article  CAS  Google Scholar 

  22. Schultz RH, Bengali AA, Tauber MJ, Weiller BH, Wasserman EP, Kyle KR, Moore CB, Bergman RG. IR flash kinetic spectroscopy of C-H bond activation of cyclohexane-d0 and d12 by Cp*Rh(CO)2 in liquid rare gases, kinetics, thermodynamics, and unusual isotope effect. J Am Chem Soc, 1994, 116: 7369–7377

    Article  CAS  Google Scholar 

  23. Jina OS, Sun XZ, George MW. Do early and late transition metal noble gas complexes react by different mechanisms? A room temperature time-resolved infrared study of (η5-C5R5)Rh(CO)2 (R = H or Me) in supercritical noble gas solution at room temperature. Dalton Trans, 2003:1773–1778

  24. Yeston JS, McNamara BK, Bergman RG, Moore CB. Flash infrared kinetics of the photochemistry of Tp*Rh(CO)2 and Bp*Rh(CO)2 in liquid xenon solution. Organometallics, 2000, 19: 3442–3446

    Article  CAS  Google Scholar 

  25. Sun XZ, Grills DC, Nikiforov SM, Poliakoff M, George MW. Remarkable stability of (η5-C5H5)Re(CO)2L (L = n-heptane, Xe, and Kr): A time-resolved infrared spectroscopic study of (η5-C5H5)Re(CO)3 in conventional and supercritical fluid solution. J Am Chem Soc, 1997, 119: 7521–7525

    Article  CAS  Google Scholar 

  26. Ball GE, Darwish TA, Geftakis S, George MW, Lawer DJ, Portius P, Rourke J. Characterization of an organometallic xenon complex using NMR and IR spectroscopy Re(iPrCp)(CO)(PF3)Xe. Proc Natl Acad Sci USA, 2005, 120: 1853–1858

    Article  CAS  Google Scholar 

  27. McMaser J, Portius P, Ball GE, Rourke JP, George MW. Density functional theoretical studies of the Re-Xe bonds in Re(Cp)(CO)(PF3)-Xe and Re(Cp)(CO)2Xe. Organometallics, 2006, 25, 5242–5248

    Article  CAS  Google Scholar 

  28. Seidel S, Seppelt K. Xenon as a complex ligand: The tetra xenono gold(II) cation in AuXe4 2+(Sb2F11 )2. Science, 2000, 290: 117–118

    Article  CAS  Google Scholar 

  29. Seppelt KZ. Metal-xenon complexes. Anorg Allg Chem, 2003, 629: 2427–2430

    Article  CAS  Google Scholar 

  30. Drews T, Seidel S, Seppelt K. Gold-xenon complexes. Angew Chem Int Ed, 2002, 41: 454–456

    Article  CAS  Google Scholar 

  31. Hwang IC, Seidel S, Seppelt K. Gold(I) and mercury(II) xenon complexes. Angew Chem Int Ed, 2003, 42: 4392–4395

    Article  CAS  Google Scholar 

  32. Evans CJ, Gerry MCL. The microwave spectra and structure of Ar-AgX (X = F, Cl, Br). J Chem Phys, 2000, 112: 1321–1329

    Article  CAS  Google Scholar 

  33. Evans CJ, Gerry MCL. Noble gas-metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar-CuX (X = F, Cl, Br). J Chem Phys, 2000, 112: 9363–9374

    Article  CAS  Google Scholar 

  34. Evans CJ, Lesarri A, Gerry MCL. Noble gas-metal chemical bonds. Microwave spectra, geometries, and nuclear quadrupole coupling constants of Ar-AuCl and Kr-AuCl. J Am Chem Soc, 2000, 122: 6100–6105

    Article  CAS  Google Scholar 

  35. Evans CJ, Rubinoff DS, Gerry MCL. Noble gas-metal chemical bonding: The microwave spectra, structures and hyperfine constants of Ar-AuF and Ar-AuBr. Phys Chem Chem Phys, 2000, 2: 3943–3948

    Article  CAS  Google Scholar 

  36. Thomas JM, Walker NR, Cooke SA, Gerry MCL. Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. J Am Chem Soc, 2004, 126: 1235–1246

    Article  CAS  Google Scholar 

  37. Cooke SA, Gerry MCL. Insights into the xenon-silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl. Phys Chem Chem Phys, 2004, 6: 3248–3256

    Article  CAS  Google Scholar 

  38. Cooke SA, Gerry MCL. XeAuF. J Am Chem Soc, 2004, 126: 17000–17008

    Article  CAS  Google Scholar 

  39. Li J, Bursten BE, Liang BY, Andrews L. Noble gas-actinide compounds: Complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science, 2002, 295: 2242–2245

    Article  CAS  Google Scholar 

  40. Andrews L, Liang BY, Li J, Bursten BE. Noble gas-actinide complexes of the CUO molecule with multiple Ar, Kr, and Xe atoms in noble-gas matrices. J Am Chem Soc, 2003, 125: 3126–3139

    Article  CAS  Google Scholar 

  41. Andrews L, Liang BY, Li J, Bursten BE. Ground-state reversal by matrix interaction, electronic states and vibrational frequencies of CUO in solid argon and neon. Angew Chem Int Ed, 2000, 39: 4565–4567

    Article  CAS  Google Scholar 

  42. Li J, Bursten BE, Andrews L, Marsden CJ. On the electronic structure of molecular UO2 in the presence of Ar atoms: Evidence for direct U-Ar bonding. J Am Chem Soc, 2004, 126: 3424–3425

    Article  CAS  Google Scholar 

  43. Wang XF, Andrews L, Li J, Bursten BE. Significant interactions between uranium and noble-gas atoms: Coordination of the UO2 + cation by Ne, Ar, Kr, and Xe atoms. Angew Chem Int Ed, 2004, 43: 2554–2557

    Article  CAS  Google Scholar 

  44. Sousa SF, Fernandes PA, Ramos MJ. General performance of density functionals. J Phys Chem A, 2007, 111: 10439–10452

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG.. Density functionals with broad applicability in chemistry. Acc Chem Res, 2008, 41: 157–167

    Article  CAS  Google Scholar 

  46. Becke AD. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2): 785–789

    Article  CAS  Google Scholar 

  48. Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys Rev B, 1984, 46: 618–622

    Google Scholar 

  49. Wachter AJH. Gaussian basis set for molecular wavefunctions containing third-row atoms. J Chem Phys, 1970, 52: 1033–1036

    Article  Google Scholar 

  50. Hay PJ. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J Chem Phys, 1977, 66: 4377–4384

    Article  CAS  Google Scholar 

  51. Raghavachari K, Trucks G W. Highly correlated systems. Excitation energies of first row transition metals Sc-Cu. J Chem Phys, 1989, 91: 1062–1065

    Article  Google Scholar 

  52. Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys, 1980, 72: 650–654

    Article  CAS  Google Scholar 

  53. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H. Energyadjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  54. McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11−18. J Chem Phys, 1980, 72: 5639–5648

    Article  CAS  Google Scholar 

  55. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem, 1992, 96: 6630–6636

    Article  CAS  Google Scholar 

  56. Pople JA, Gordon MH, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys, 1987, 87: 5968–5975

    Article  CAS  Google Scholar 

  57. Gaussian 03, Revision B.05, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham M A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian, Inc., Pittsburgh, PA, 2003

    Google Scholar 

  58. Chertihin GV, Andrews L, Rosi M, Bauschlicher CWJr. Reactions of laser-ablated scandium atoms with dioxygen; Infrared spectra of ScO, OScO, (O2)ScO, (ScO)2, and Sc(O2)2. J Phys Chem A, 1997, 101: 9085–9091

    Article  CAS  Google Scholar 

  59. Bauschlicher CWJr, Zhou MF, Andrews L, Johnson JRT, Panas I, Snis A, Roos BO. A further study of the products of scandium and dioxygen reactions. J Phys Chem A, 1999, 103: 5463–5467

    Article  CAS  Google Scholar 

  60. Zhao YY, Wang GJ, Chen MH, Zhou MF. Noble gas-transition metal complexes: coordination of ScO+ by multiple Ar, Kr and Xe atoms in noble gas matrices. J Phys Chem A, 2005, 109: 6621–6623

    Article  CAS  Google Scholar 

  61. Zhao YY, Gong Y, Chen MH, Ding CF, Zhou MF. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: A matrix isolation infrared spectroscopic and theoretical study. J Phys Chem A, 2005, 109: 11765–11770

    Article  CAS  Google Scholar 

  62. Merer AJ. Spectroscopy of the diatomic 3d transition metal oxides. Annu Rev Phys Chem, 1989, 40: 407–483

    Article  CAS  Google Scholar 

  63. Huber KP, Herzberg G. Constants of Diatomic Molecules. New York: Van Nostrand-Reinhold, 1979

    Google Scholar 

  64. Harrison JF. Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (H-F). Chem Rev, 2000, 100: 679–716

    Article  CAS  Google Scholar 

  65. Langhoff SR, Bauschlicher CWJr. Ab initio studies of transition metal systems. Annu Rev Phys Chem, 1988, 39: 181–212

    Article  CAS  Google Scholar 

  66. Gutsev GL, Andrews L, Bauschlicher CWJr. Similarities and differences in the structure of 3d-metal monocarbides and monoxides. Theor Chem Acc, 2003, 109: 298–308

    CAS  Google Scholar 

  67. Bauschlicher CWJr, Maitre P. Theoretical study of the first transition row oxides and sulfides. Theor Chim Acta, 1995, 90: 189–203

    CAS  Google Scholar 

  68. Gong Y, Zhou MF, Andrews L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem Rev, 2009, 109: 6765–6808

    Article  CAS  Google Scholar 

  69. Zhao YY, Gong Y, Zhou MF. Matrix isolation infrared spectroscopic and theoretical study of NgMO (Ng = Ar, Kr, Xe; M = Cr, Mn, Fe, Co, Ni) complexes. J Phys Chem A, 2006, 110: 10777–10782

    Article  CAS  Google Scholar 

  70. Zhao YY, Gong Y, Chen MH, Zhou M F. Noble gas-transition-metal complexes: coordination of VO2 and VO4 by Ar and Xe atoms in solid noble gas matrixes. J Phys Chem A, 2006, 110: 1845–1849

    Article  CAS  Google Scholar 

  71. Zhao YY, Zheng XM, Zhou MF. Coordination of niobium and tantalum oxides by Ar, Xe and O2: Matrix isolation infrared spectroscopic and theoretical study of NbO2(Ng)2 (Ng = Ar, Xe) and MO4(X) (M = Nb, Ta; X=Ar, Xe, O2) in solid argon. Chem Phys, 2008, 351, 13-18

  72. Zhao YY, Su J, Gong Y, Li J, Zhou MF. Noble-gas-induced disproportionation reactions: facile superoxo-to-peroxo conversion on chromium dioxide. J Phys Chem A, 2008, 112: 8606–8611

    Article  CAS  Google Scholar 

  73. Yang R, Gong Y, Zhou H, Zhou MF. Matrix isolation infrared spectroscopic and theoretical study of noble gas coordinated rhodium-dioxygen complexes. J Phys Chem A, 2007, 111: 64–70

    Article  CAS  Google Scholar 

  74. Chertihin GV, Bare WD, Andrews L. Reactions of laser-ablated vanadium atoms with dioxygen. Infrared spectra of VO, VO2, OOVO2, and V2O2 in solid argon. J Phys Chem A, 1997, 101: 5090–5095

    Article  CAS  Google Scholar 

  75. Chertihin GV, Bare WD, Andrews L. Reactions of laser-ablated chromium atoms with dioxygen. Infrared spectra of CrO, OCrO, CrOO, CrO3, Cr(OO)2, Cr2O2, Cr2O3 and Cr2O4 in solid argon. J Chem Phys, 1997, 107: 2798–2806

    Article  CAS  Google Scholar 

  76. Zhou MF, Andrews L. Infrared spectra and density functional calculations of the CrO 2 , MoO 2 , and WO 2 molecular anions in solid neon. J Chem Phys, 1999, 111: 4230–4238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingFei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhou, M. Are matrix isolated species really “isolated”? Infrared spectroscopic and theoretical studies of noble gas-transition metal oxide complexes. Sci. China Chem. 53, 327–336 (2010). https://doi.org/10.1007/s11426-010-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0044-9

Keywords