Abstract
ENDOGENOUS neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase1 and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases2. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats3, cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems4 and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid3. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase5, from rat liver plasma mem-branes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor6, to arachidonic acid, indi-cating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides6–8. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
MacPhee-Quigley, K., Taylor, P. & Taylor, S. J. Biol. Chem. 260, 12185–12189 (1985).
Singer, T. P. & Ramsay, R. R. FASEB J. 9, 605–610 (1995).
Cravatt, B. F. et al. Science 268, 1506–1509 (1995).
Huidobro-Toro, J. P. & Harris, R. A. Proc. Natl Acad. Sci. USA 93, 8078–8082 (1996).
Patterson, J. E. et al. J. Am. Chem. Soc. 118, 5938–5945 (1996).
Devane, W. A. et al. Science 258, 1946–1949 (1992).
Wakamatsu, K. et al. Biochem. Biophys. Res. Commun. 168, 423–429 (1990).
Facci, L. et al. Proc. Natl Acad. Sci. USA 92, 3376–3380 (1995).
Klee, H. et al. Proc. Natl Acad. Sci. USA 81, 1728–1732 (1984).
Yamada, T., Palm, C. J., Brooks, B. & Kosuge, T. Proc. Natl Acad. Sci. USA 82, 6522–6526 (1985).
Corrick, C. M., Twomey, A. P. & Hynes, M. J. Gene 53, 63–71 (1987).
Chang, T.-H. & Abelson, J. Nucleic Acids Res. 18, 7180 (1990).
Wilson, R. et al. Nature 368, 32–38 (1994).
Ettinger, R. A. & DeLuca, H. F. Arch. Biochem. Biophys. 316, 14–19 (1995).
Mayaux, J.-F. et al. J. Bacteriol. 172, 6764–6773 (1990).
Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. Science 266, 1241–1246 (1994).
Pawson, T. Nature 373, 573–580 (1995).
Rotin, D. et al. EMBO J. 13, 4440–4450 (1994).
Maurelli, S. et al. FEBS Lett. 377, 82–86 (1995).
Ueda, N., Kurahashi, Y., Yamamoto, S. & Tokunaga, T. J. Biol. Chem. 270, 23823–23827 (1995).
Desarnaud, F., Cadas, H. & Piomelli, D. J. Biol. Chem. 270, 6030–6035 (1995).
Deutsch, D. G. & Chin, S. A. Biochem. Pharmacol. 46, 791–796 (1993).
Cravatt, B. F., Lerner, R. A. & Boger, D. L. J. Am. Chem. Soc. 118, 580–590 (1996).
Boivin, J., El Kaim, L. & Zard, S. Z. Tetrahedron Lett. 33, 1285–1288 (1992).
Falk, M. M., Kumar, N. M. & Gilula, N. B. J. Cell Biol. 127, 343–355 (1994).
Fernandez, J., Andrews, L. & Mische, S. M. Anal. Biochem. 218, 112–117 (1994).
Abdel-Aal, Y. A. I. & Hammock, B. D. Science 233, 1073–1076 (1986).
Imperiali, B. & Abeles, R. H. Biochemistry 25, 3760–3767 (1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cravatt, B., Giang, D., Mayfield, S. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996). https://doi.org/10.1038/384083a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/384083a0