Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Setting the stage: host invasion by HIV

Key Points

  • HIV invasion through the mucosa of the female lower genital tract contributes the largest number of new HIV infections worldwide. The second leading site of viral invasion is the lower male genital tract, followed by invasion via the rectal mucosa in both women and men.

  • Models of explanted human genital tissues have provided new insights into the mechanisms of sexual HIV transmission.

  • Initial attachment of HIV-1 to the mucosa may be aided by cervical mucus and various gp120-binding surface receptors on epithelial cells. HIV-1 penetration into the genital mucosa occurs rapidly after exposure and is possibly enhanced by micro-abrasions or genital ulcer disease.

  • In the human vagina, intraepithelial CD4+ T cells and CD1a+ Langerhans cells are the first cells infected by HIV-1.

  • Vaginal Langerhans cells exhibit a high capacity to endocytose HIV-1 virions. C-type lectins such as dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN; also known as CD209) or langerin (also known as CD207) appear to have little or no role in mediating this infection pathway.

  • Genital CD4+ T cells express high levels of CC-chemokine receptor 5 (CCR5) are rapidly infected by HIV-1 and produce large quantities of viral progeny.

  • In vitro studies have shown that dendritic cells use several pathways to enhance viral propagation to CD4+ T cells for productive infection. Presumably these also occur in the genital mucosa, but direct evidence is lacking.

  • The highly protective effect of circumcision indicates that viral invasion in men occurs predominantly through the inner foreskin, where both CD1a+ Langerhans cells and CD4+ T cells are abundant. The second leading site of viral invasion in the male genital tract is probably the penile urethra.

Abstract

For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV invasion sites.
Figure 2: Pathways of HIV invasion in the mucosa of the vagina and uterine ectocervix.
Figure 3: HIV-1 transcytosis in situ in the vaginal epithelium.
Figure 4: The significance of DC–T-cell interactions for HIV-1 transmission.

Similar content being viewed by others

References

  1. Kell, P. D., Barton, S. E., Edmonds, D. K. & Boag, F. C. HIV infection in a patient with Meyer-Rokitansky-Kuster-Hauser syndrome. J. R. Soc. Med. 85, 706–707 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, C. J., Alexander, N. J., Vogel, P., Anderson, J. & Marx, P. A. Mechanism of genital transmission of SIV: a hypothesis based on transmission studies and the location of SIV in the genital tract of chronically infected female rhesus macaques. J. Med. Primatol. 21, 64–68 (1992).

    CAS  PubMed  Google Scholar 

  3. Padian, N. S. et al. Diaphragm and lubricant gel for prevention of HIV acquisition in southern African women: a randomised controlled trial. Lancet 370, 251–261 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howell, A. L. et al. Human immunodeficiency virus type 1 infection of cells and tissues from the upper and lower human female reproductive tract. J. Virol. 71, 3498–3506 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Joag, S. V. et al. Animal model of mucosally transmitted human immunodeficiency virus type 1 disease: intravaginal and oral deposition of simian/human immunodeficiency virus in macaques results in systemic infection, elimination of CD4+ T cells, and AIDS. J. Virol. 71, 4016–4023 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Phillips, D. M., Tan, X., Perotti, M. E. & Zacharopoulos, V. R. Mechanism of monocyte-macrophage-mediated transmission of HIV. AIDS Res. Hum. Retroviruses 14, S67–S70 (1998).

    PubMed  Google Scholar 

  7. Alfsen, A., Yu, H., Magerus-Chatinet, A., Schmitt, A. & Bomsel, M. HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer. Mol. Biol. Cell 16, 4267–4279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Muratori, C. et al. Macrophages transmit human immunodeficiency virus type 1 products to CD4-negative cells: involvement of matrix metalloproteinase 9. J. Virol. 81, 9078–9087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Herrewege, Y. et al. A dual chamber model of female cervical mucosa for the study of HIV transmission and for the evaluation of candidate HIV microbicides. Antiviral Res. 74, 111–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Kaizu, M. et al. Repeated intravaginal inoculation with cell-associated simian immunodeficiency virus results in persistent infection of nonhuman primates. J. Infect. Dis. 194, 912–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Khanna, K. V. et al. Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J. Clin. Invest. 109, 205–211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, T. et al. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J. Virol. 70, 3098–3107 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta, P. et al. Memory CD4+ T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J. Virol. 76, 9868–9876 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zussman, A., Lara, L., Lara, H. H., Bentwich, Z. & Borkow, G. Blocking of cell-free and cell-associated HIV-1 transmission through human cervix organ culture with UC781. AIDS 17, 653–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Maher, D., Wu, X., Schacker, T., Horbul, J. & Southern, P. HIV binding, penetration, and primary infection in human cervicovaginal tissue. Proc. Natl Acad. Sci. USA 102, 11504–11509 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, C. J. et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J. Virol. 79, 9217–9227 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dezzutti, C. S. et al. Cervical and prostate primary epithelial cells are not productively infected but sequester human immunodeficiency virus type 1. J. Infect. Dis. 183, 1204–1213 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, Z., Chen, Z. & Phillips, D. M. Human genital epithelial cells capture cell-free human immunodeficiency virus type 1 and transmit the virus to CD4+ cells: implications for mechanisms of sexual transmission. J. Infect. Dis. 188, 1473–1482 (2003).

    Article  PubMed  Google Scholar 

  20. Berlier, W. et al. Selective sequestration of X4 isolates by human genital epithelial cells: Implication for virus tropism selection process during sexual transmission of HIV. J. Med. Virol. 77, 465–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bomsel, M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nature Med. 3, 42–47 (1997). This study introduced the concept of HIV-1 transcytosis, a process by which intact virions are transported through the interior of epithelial cells, thereby retaining their infectivity.

    Article  CAS  PubMed  Google Scholar 

  22. Bobardt, M. D. et al. Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J. Virol. 81, 395–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Greenhead, P. et al. Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J. Virol. 74, 5577–5586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibata, B., Parr, E. L., King, N. J. & Parr, M. B. Migration of foreign lymphocytes from the mouse vagina into the cervicovaginal mucosa and to the iliac lymph nodes. Biol. Reprod. 56, 537–543 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Hladik, F. et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26, 257–270 (2007). This investigation found that HIV-1 rapidly penetrates intraepithelial vaginal CD1a+ Langerhans cells and CD4+ T cells, and that viral fusion predominates in T cells and viral endocytosis in LCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Munch, J. et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131, 1059–1071 (2007). The authors discovered that amyloidogenic fragments of prostatic acidic phosphatase in semen can serve as strong enhancing factors for HIV infection.

    Article  CAS  PubMed  Google Scholar 

  27. Furuta, Y. et al. Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes in the envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 91, 12559–12563 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeaman, G. R. et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. Immunology 113, 524–533 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoddard, E. et al. gp340 expressed on human genital epithelia binds HIV-1 envelope protein and facilitates viral transmission. J. Immunol. 179, 3126–3132 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J., Gardner, M. B. & Miller, C. J. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J. Virol. 74, 6087–6095 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishibu, A. et al. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J. Invest. Dermatol. 126, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, C. J., McChesney, M. & Moore, P. F. Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques. Lab. Invest. 67, 628–634 (1992).

    CAS  PubMed  Google Scholar 

  33. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  34. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Norvell, M. K., Benrubi, G. I. & Thompson, R. J. Investigation of microtrauma after sexual intercourse. J. Reprod. Med. 29, 269–271 (1984).

    CAS  PubMed  Google Scholar 

  36. Weiler, A. M. et al. Genital ulcers facilitate rapid viral entry and dissemination following intravaginal inoculation with cell-associated SIVmac239. J. Virol. 82, 4154–4158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tschachler, E. et al. Epidermal Langerhans cells—a target for HTLV-III/LAV infection. J. Invest. Dermatol. 88, 233–237 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Zaitseva, M. et al. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nature Med. 3, 1369–1375 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Dittmar, M. T. et al. Langerhans cell tropism of human immunodeficiency virus type 1 subtype A through F isolates derived from different transmission groups. J. Virol. 71, 8008–8013 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawamura, T. et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J. Exp. Med. 192, 1491–1500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Collins, K. B., Patterson, B. K., Naus, G. J., Landers, D. V. & Gupta, P. Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract. Nature Med. 6, 475–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hu, Q. et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J. Exp. Med. 199, 1065–1075 (2004). This investigation clearly demonstrates that DCs migrating from HIV-1-exposed cervical tissue can efficiently transmit the virus. Inhibition of this pathway can occur only by simultaneous blockade of CD4 and mannose-binding C-type lectin receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cummins, J. E., Jr et al. Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob. Agents Chemother. 51, 1770–1779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol. 3, 975–983 (2002).

    Article  CAS  Google Scholar 

  45. Hussain, L. A. & Lehner, T. Comparative investigation of Langerhans' cells and potential receptors for HIV in oral, genitourinary and rectal epithelia. Immunology 85, 475–484 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000). In this report, DC-SIGN is identified as an HIV-1 receptor expressed by DCs that promotes efficient infection of CD4+ T cells in trans.

    Article  CAS  PubMed  Google Scholar 

  47. Jameson, B. et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J. Virol. 76, 1866–1875 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawamura, T. et al. Significant virus replication in Langerhans cells following application of HIV to abraded skin: relevance to occupational transmission of HIV. J. Immunol. 180, 3297–3304 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R. M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J. Exp. Med. 182, 2045–2056 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Cameron, P. U. et al. Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J. Virol. 81, 2297–2306 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Nobile, C. et al. Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J. Virol. 79, 5386–5399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burleigh, L. et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J. Virol. 80, 2949–2957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turville, S. G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Gummuluru, S., Rogel, M., Stamatatos, L. & Emerman, M. Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J. Virol. 77, 12865–12874 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boggiano, C., Manel, N. & Littman, D. R. Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J. Virol. 81, 2519–2523 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J. H., Janas, A. M., Olson, W. J. & Wu, L. Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J. Virol. 81, 8933–8943 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Med. 13, 367–371 (2007). This study showed that HIV-1 captured by the C-type lectin receptor langerin was internalized into Birbeck granules and degraded, therefore preventing HIV-1 transmission by skin LCs.

    Article  CAS  PubMed  Google Scholar 

  58. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Prakash, M., Kapembwa, M. S., Gotch, F. & Patterson, S. Chemokine receptor expression on mucosal dendritic cells from the endocervix of healthy women. J. Infect. Dis. 190, 246–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hladik, F. et al. Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J. Virol. 73, 5833–5842 (1999). This is the first reported observation that DCs isolated from the vaginal mucosa internalize HIV-1 into cytoplasmic endosomes and produce new virions that bud from the cell membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Spira, A. I. et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 183, 215–225 (1996). In this study, intravaginal inoculation of macaques with SIV led to the infection of stromal DCs and cells in the draining lymph nodes within two days.

    Article  CAS  PubMed  Google Scholar 

  62. Hu, J., Pope, M., Brown, C., O'Doherty, U. & Miller, C. J. Immunophenotypic characterization of simian immunodeficiency virus- infected dendritic cells in cervix, vagina, and draining lymph nodes of rhesus monkeys. Lab. Invest. 78, 435–451 (1998).

    CAS  PubMed  Google Scholar 

  63. Bhoopat, L. et al. In vivo identification of Langerhans and related dendritic cells infected with HIV-1 subtype E in vaginal mucosa of asymptomatic patients. Mod. Pathol. 14, 1263–1269 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Nestle, F. O. & Nickoloff, B. J. Deepening our understanding of immune sentinels in the skin. J. Clin. Invest. 117, 2382–2385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turville, S. G., Aravantinou, M., Stossel, H., Romani, N. & Robbiani, M. Resolution of de novo HIV production and trafficking in immature dendritic cells. Nature Methods 5, 75–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Johansson, E. L., Rudin, A., Wassen, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Edwards, J. N. & Morris, H. B. Langerhans' cells and lymphocyte subsets in the female genital tract. Br. J. Obstet. Gynaecol. 92, 974–982 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Hladik, F., Lentz, G., Delpit, E., McElroy, A. & McElrath, M. J. Coexpression of CCR5 and IL-2 in human genital but not blood T cells: implications for the ontogeny of the CCR5+ Th1 phenotype. J. Immunol. 163, 2306–2313 (1999).

    CAS  PubMed  Google Scholar 

  69. Zhang, L. et al. In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 72, 5035–5045 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Prakash, M., Kapembwa, M. S., Gotch, F. & Patterson, S. Higher levels of activation markers and chemokine receptors on T lymphocytes in the cervix than peripheral blood of normal healthy women. J. Reprod. Immunol. 52, 101–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999). The authors identified CD4+ T cells in the macaque genital mucosa as the predominant targets for SIV infection, and they noted that both activated and resting T cells propagate virus.

    Article  CAS  PubMed  Google Scholar 

  72. Veazey, R. S., Marx, P. A. & Lackner, A. A. Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J. Infect. Dis. 187, 769–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Z. Q. et al. Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc. Natl Acad. Sci. USA 101, 5640–5645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Picker, L. J. & Watkins, D. I. HIV pathogenesis: the first cut is the deepest. Nature Immunol. 6, 430–432 (2005).

    Article  CAS  Google Scholar 

  75. Tuttle, D. L., Harrison, J. K., Anders, C., Sleasman, J. W. & Goodenow, M. M. Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J. Virol. 72, 4962–4969 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Meng, G. et al. Lamina propria lymphocytes, not macrophages, express CCR5 and CXCR4 and are the likely target cell for human immunodeficiency virus type 1 in the intestinal mucosa. J. Infect. Dis. 182, 785–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Saphire, A. C., Bobardt, M. D., Zhang, Z., David, G. & Gallay, P. A. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 75, 9187–9200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marechal, V. et al. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J. Virol. 75, 11166–11177 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. 24, 2481–2489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Groot, F., Welsch, S. & Sattentau, Q. J. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood, 22 February 2008 (doi:10.1182/blood-2007-12-130070).

    Article  CAS  PubMed  Google Scholar 

  81. Harada, H., Goto, Y., Ohno, T., Suzu, S. & Okada, S. Proliferative activation up-regulates expression of CD4 and HIV-1 co-receptors on NK cells and induces their infection with HIV-1. Eur. J. Immunol. 37, 2148–2155 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Rappocciolo, G. et al. DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog. 2, e70 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nature Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  Google Scholar 

  85. Cameron, P. U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387 (1992). This is the first study demonstrating HIV-1 transmission from DCs to CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  86. Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994). This investigation showed that DCs and T cells derived from human epithelium form stable conjugates which can enhance HIV replication.

    Article  CAS  PubMed  Google Scholar 

  87. Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297 (2003). The investigators introduce the concept of an infectious synapse between DCs and T cells to which HIV is recruited on the DC side and CD4 and CCR5 on the T-cell side, thus promoting efficient in trans infection.

    Article  CAS  PubMed  Google Scholar 

  89. Arrighi, J. F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med. 200, 1279–1288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wiley, R. D. & Gummuluru, S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl Acad. Sci. USA 103, 738–743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jolly, C. & Sattentau, Q. J. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J. Virol. 81, 7873–7884 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jolly, C. & Sattentau, Q. J. Retroviral spread by induction of virological synapses. Traffic 5, 643–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biol. 9, 310–315 (2007). Retroviruses are transmitted between cells not only across large-surface interfaces (infectious synapses) but also through movement along the outer surface of thin filopodial bridges that are extended from the non-infected to the infected cells.

    Article  CAS  PubMed  Google Scholar 

  94. Hope, T. J. Bridging efficient viral infection. Nature Cell Biol. 9, 243–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Watkins, S. C. & Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Cavrois, M., Neidleman, J., Kreisberg, J. F. & Greene, W. C. In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog. 3, e4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. & Littman, D. R. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Granelli-Piperno, A., Finkel, V., Delgado, E. & Steinman, R. M. Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr. Biol. 9, 21–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. van Montfort, T., Nabatov, A. A., Geijtenbeek, T. B., Pollakis, G. & Paxton, W. A. Efficient capture of antibody neutralized HIV-1 by cells expressing DC-SIGN and transfer to CD4+ T lymphocytes. J. Immunol. 178, 3177–3185 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Ganesh, L. et al. Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J. Virol. 78, 11980–11987 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, P., Hubner, W., Spinelli, M. A. & Chen, B. K. Predominant mode of HIV transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 81, 12582–12595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McCoombe, S. G. & Short, R. V. Potential HIV-1 target cells in the human penis. AIDS 20, 1491–1495 (2006).

    Article  PubMed  Google Scholar 

  103. Patterson, B. K. et al. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am. J. Pathol. 161, 867–873 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Donoval, B. A. et al. HIV-1 target cells in foreskins of African men with varying histories of sexually transmitted infections. Am. J. Clin. Pathol. 125, 386–391 (2006).

    Article  PubMed  Google Scholar 

  105. Meier, A. S., Bukusi, E. A., Cohen, C. R. & Holmes, K. K. Independent association of hygiene, socioeconomic status, and circumcision with reduced risk of HIV infection among Kenyan men. J. Acquir. Immune Defic. Syndr. 43, 117–118 (2006).

    Article  PubMed  Google Scholar 

  106. Gray, R. H. et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 369, 657–666 (2007).

    Article  PubMed  Google Scholar 

  107. Quinn, T. C. Circumcision and HIV transmission. Curr. Opin. Infect. Dis. 20, 33–38 (2007).

    Article  PubMed  Google Scholar 

  108. Wawer, M. J. et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J. Infect. Dis. 191, 1403–1409 (2005).

    Article  PubMed  Google Scholar 

  109. Pudney, J. & Anderson, D. J. Immunobiology of the human penile urethra. Am. J. Pathol. 147, 155–165 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. McClure, C. P. et al. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS 19, 1257–1265 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Miller, C. J. et al. Genital mucosal transmission of simian immunodeficiency virus: animal model for heterosexual transmission of human immunodeficiency virus. J. Virol. 63, 4277–4284 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cohen, M. S. et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349, 1868–1873 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Krieger, J. N. et al. Vasectomy and human immunodeficiency virus type 1 in semen. J. Urol. 159, 820–825; discussion 825–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Pudney, J., Oneta, M., Mayer, K., Seage, G., 3rd & Anderson, D. Pre-ejaculatory fluid as potential vector for sexual transmission of HIV-1. Lancet 340, 1470 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Ilaria, G. et al. Detection of HIV-1 DNA sequences in pre-ejaculatory fluid. Lancet 340, 1469 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Brenchley, J. M., Price, D. A. & Douek, D. C. HIV disease: fallout from a mucosal catastrophe? Nature Immunol. 7, 235–239 (2006).

    Article  CAS  Google Scholar 

  117. Wang, X. et al. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection. Blood 109, 1174–1181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Haase, A. T. Perils at mucosal front lines for HIV and SIV and their hosts. Nature Rev. Immunol. 5, 783–792 (2005).

    Article  CAS  Google Scholar 

  121. HIV/AIDS among men who have sex with men, 2007. CDC HIV/AIDS Fact Sheet. Centers for Diseases Control and Prevention, Atlanta. [online]

  122. The Global HIV/AIDS pandemic. Morb. Mort. Wkly. Rep. 55, 841–844 (2006).

  123. Page-Shafer, K. et al. Risk of HIV infection attributable to oral sex among men who have sex with men and in the population of men who have sex with men. AIDS 16, 2350–2352 (2002).

    Article  PubMed  Google Scholar 

  124. Aceijas, C., Stimson, G. V., Hickman, M. & Rhodes, T. Global overview of injecting drug use and HIV infection among injecting drug users. AIDS 18, 2295–2303 (2004).

    Article  PubMed  Google Scholar 

  125. Lehman, D. A. & Farquhar, C. Biological mechanisms of vertical human immunodeficiency virus (HIV-1) transmission. Rev. Med. Virol. 381–403 (2007).

  126. Galvin, S. R. & Cohen, M. S. The role of sexually transmitted diseases in HIV transmission. Nature Rev. Microbiol. 2, 33–42 (2004).

    Article  CAS  Google Scholar 

  127. Royce, R. A., Sena, A., Cates, W., Jr. & Cohen, M. S. Sexual transmission of HIV. N. Engl. J. Med. 336, 1072–1078 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Halperin, D. T. Heterosexual anal intercourse: prevalence, cultural factors, and HIV infection and other health risks, Part I. Aids Patient Care STDS 13, 717–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Sowinski et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol. 10, 211–219 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Ballweber and P. Sakchalathorn for electron microscopy and P. Stegall for editorial assistance. This work was supported by the US National Institutes of Health grants AI51980, HD51455, and the James B. Pendleton Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Juliana McElrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

M. Juliana McElrath's homepage

Centers for disease control and prevention, USA

UNAIDS

Glossary

Simian–HIV

(SHIV). SHIVs are chimeric viruses that are created by inserting the envelope protein (Env), the transcriptional transactivator (Tat) and the regulator of virion gene expression (Rev) of HIV into the SIVMAC239 clone. Depending on the particular HIV Env protein, these SHIVs have different in vivo characteristics. The SHIV chimeric viruses are best used for testing antibodies specific for HIV in non-human primate models.

Transcytosis

The process of transport of material, including HIV virions, across a cell layer by uptake on one side of the cell into a coated vesicle. The vesicle might then be sorted through the trans-Golgi network and transported to the opposite side of the cell, where its contents are released into the extracelluar space.

Langerhans cell

(LC). A type of dendritic cell that is localized in the squamous epithelial layer of the skin and certain mucosae.

Syndecans

Single transmembrane domain proteins that carry three to five heparan sulphate and chondroitin sulphate chains that allow for interaction with various ligands including residues on the HIV-1 gp 120 protein.

Stromal papillae

Superficial areas of the mucosal stroma that interdigitate with the epithelium.

C-type lectin receptors

A large family of receptors that bind glycosylated ligands and have multiple roles, such as in cell adhesion, endocytosis, natural-killer-cell target recognition and dendritic-cell activation.

R5-tropic HIV-1

An HIV strain that uses CC-chemokine receptor 5 (CCR5) as the co-receptor to gain entry to target cells.

Birbeck granules

Membrane-bound rod- or tennis-racket-shaped structures with a central linear density, found in the cytoplasm of Langerhans cells. Their formation is induced by langerin, an endocytic C-type lectin receptor that is specific to Langerhans cells.

Phagosomes

Vacuolar compartments that confine microorganisms after enforced endocytosis or after phagocytosis. Unless counteracted by a microbial survival strategy, the phagosome matures into a hostile environment that is designed to kill and digest microorganisms.

Cross-presentation

The initiation of a CD8+ T-cell response to an antigen that is not present within antigen-presenting cells (APCs). This exogenous antigen must be taken up by APCs and then re-routed to the MHC-class-I pathway of antigen presentation.

Lamina propria

Connective tissue that underlies the epithelium of the mucosa and contains various myeloid and lymphoid cells, including macrophages, dendritic cells, T cells and B cells.

Macropinocytosis

A mechanism of endocytosis in which large droplets of fluid are trapped underneath extensions (ruffles) of the cell surface. Can be exploited by some pathogens as a route for entry into cells.

Exosomes

Small lipid-bilayer vesicles that are released from activated cells. They comprise either plasma membrane or membrane derived from intracellular vesicles.

Filopodia

Slender cytoplasmic projections, which extend from the leading edge of migrating cells.

Cytonemes

Actin-based filopodial-cell extensions.

Nanotubules

Cytonemes that connect blood cells over a distance of several cell diameters and transport membrane proteins, lipids and ions from one of the connected cells to another, thus executing long range intercellular communications.

Glans penis

Sensitive tip of the penis. When the penis is flaccid it is wholly or partially covered by the foreskin, except in men who have been circumcised.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hladik, F., McElrath, M. Setting the stage: host invasion by HIV. Nat Rev Immunol 8, 447–457 (2008). https://doi.org/10.1038/nri2302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2302

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing