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We demonstrate optical activity in an intrinsically non-chiral anisotropic planar metamaterial. The
phenomenon is due to extrinsic chirality resulting from the mutual orientation of the metamaterial
structure and the incident electromagnetic wave. The polarization effect, which has a resonant
nature, features a spectral band where linear birefringence is practically absent and can be easily
tuned by tilting the plane of the metamaterial relative to the incident beam. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3021082�

Recent predictions that strong optical activity could re-
sult in a negative index of refraction1,2 inspired intense work
on developing artificial three-dimensionally �3D� chiral
metamaterials, i.e., arrays of identical meta-molecules, where
the meta-molecules themselves are different from their mir-
ror image and therefore intrinsically 3D-chiral.3–9 Although
not widely known, optical activity in the form of circular
birefringence and dichroism can also be observed in extrin-
sically chiral systems. In such a system a non-chiral struc-
ture together with the incident wave forms a geometrical
arrangement that cannot be superimposed with its mirror im-
age and thus the whole arrangement is chiral. This mecha-
nism of polarization rotation was first identified by Bunn10

and has been observed in liquid crystals.11

In this letter we show that extrinsic chirality is a highly
significant source of optical activity in metamaterials. We
demonstrate strong polarization rotary power and circular di-
chroism at oblique incidence in a planar metamaterial, which
is neither two-dimensionally �2D� chiral12,13 nor 3D-chiral.
The effect is inherently tunable: its sign and magnitude are
controlled by the tilt of the metamaterial plane relative to the
incident beam. Importantly, this type of tunable optical ac-
tivity occurs in simple planar metamaterial designs that are
ideally suited for well-established planar manufacturing
technologies.

We studied optical activity in a planar metamaterial
structure consisting of a regular 2D array of metal split rings
supported by a 1.6 mm thick dielectric substrate �see Fig. 1�.
The rings were split asymmetrically into pairs of arcs of
different lengths separated by equal gaps. Each split ring had
a line of mirror symmetry but had no axis of twofold rota-
tion. The planar metamaterial sample was approximately
220�220 mm2 large and had a square unit cell of
15�15 mm2, which ensured no diffraction at normal or ob-
lique incidence for frequencies below 10 GHz. Our measure-
ments were performed in an anechoic chamber using micro-
wave broadband horn antennas �Schwarzbeck BBHA
9120D� equipped with lens concentrators and a vector net-
work analyzer �Agilent E8364B�. We measured losses and
phase delays for circularly polarized waves transmitted by
the metamaterial at various angles of incidence in the range
from −30° to +30° achieved by tilting the sample around its

symmetry axis. In practical terms we measured the complex
transmission matrix Ei

out= tijEj
in relating the electric fields of

the incident �Ein� and transmitted �Eout� waves, where sub-
scripts + and − denote right and left circular polarizations
correspondingly. Our measurements showed that the diago-
nal elements �t++ and t−−� were generally not equal indicating
that the structure had true optical activity. The difference
between the magnitudes of the diagonal elements
�= �t++�2− �t−−�2 is a measure of circular dichroism, while the
corresponding phase difference �=arg�t++�−arg�t−−� is a
measure of circular birefringence. Within the experimental
accuracy the off-diagonal elements of the matrix were non-
zero but equal, indicating the expected presence of linear
anisotropy in the structure. The metamaterial did not mani-
fest the asymmetric transmission effect which was recently
identified in 2D-chiral structures.13

Importantly, the structure’s circular birefringence and di-
chroism cannot be explained by just linear anisotropy, as
anisotropy does not contribute to either � or �. Particularly,
while linear anisotropy causes a polarization state dependent
modulation of azimuth rotation, it has no effect on the mate-
rial’s average polarization rotary power ��=−� /2. In all
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FIG. 1. �Color online� Extrinsically chiral optically active metamaterial:
circular birefringence and dichroism are seen when the metamaterial plane
is tilted around its symmetry axis, so that the plane normal n forms an angle
��0 with the wave vector of the incident wave k.
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cases experiments performed in opposite directions of wave
propagation yielded identical results.

Transmission spectra obtained for a tilt angle of
�= +30° are presented in Fig. 2 in terms of Tij = �tij�2. A
resonant region showing circular dichroism, i.e., T++�T−−,
can be seen between 5 and 7 GHz. Due to anisotropy the
metamaterial shows weak polarization conversion T+−=T−+.
At 5.8 GHz, however, linear anisotropy vanishes, resulting in
circular polarization eigenstates and, as circular dichroism is
also absent at this frequency, the material behaves like an
isotropic optically active medium in the k-vector direction.
As shown in Fig. 3, it rotates the polarization azimuth by
about 20° without changing the polarization state, while
transmission losses represented by T++ and T−− are less than
3 dB. Considering the metamaterial’s thickness of only 1/32
of the wavelength, the rotary power of this non-optimized
structure is remarkable. The non-chiral structure also shows
substantial circular dichroism in the vicinity of the resonant
frequency, which reaches more than 6 dB at 5.6 GHz.

Importantly, the strength �as well as sign� of the metama-
terial’s gyrotropic response depends on the tilt angle �,
which is illustrated by Fig. 3. At normal incidence both cir-
cular dichroism and polarization azimuth rotation are absent.
When the structure is tilted relative to the beam, as shown in
Fig. 1, a continuous increase in the strength of its gyrotropic
response is observed. For example, at 5.6 GHz circular di-
chroism increases from 0 to 2.3, 4.6, and 6.2 dB when the tilt

angle is increased from 0° to 30° in steps of 10°. Simulta-
neously, the polarization azimuth rotation—at 5.8 GHz—
increases almost linearly from 0° to 7°, 15°, and 21°. The
shape and position of the corresponding resonance appear to
depend weakly on the tilt angle. Importantly, we found that
tilting the metamaterial in the opposite direction �i.e., ��0�
simply reverses the signs of rotation and circular dichroism.

In summary, the following key features of the gyrotropic
response of planar non-chiral metamaterials have been iden-
tified: �i� no effect can be observed at normal incidence �i.e.,
�=0�; �ii� the magnitude of polarization rotation and circular
dichroism is controlled by the tilt angle; and �iii� equal tilt in
opposite directions yields circular dichroism and polarization
rotation of opposite signs.

As with conventional optical activity exhibited by 3D-
chiral molecules, the observed effect must result from simul-
taneous presence of electric and magnetic responses in the
structure. Here, the asymmetry of the split rings plays a key
role. For example, as illustrated in Fig. 4�a� a wave polarized
along the split induces unequal currents oscillating in the
upper and lower arches of the ring. Such a current configu-
ration may be represented as a sum of symmetric and anti-
symmetric currents corresponding to an electric dipole d in-
duced in the plane of the ring and a magnetic dipole m
oscillating perpendicular to the plane, respectively.

For oblique incidence, the metamaterial shows optical
activity if the split is not perpendicular to the plane of inci-
dence, while the maximum effect is observed when the split
is parallel to the plane of incidence �see Figs. 4�d� and 4�e��.
Indeed, in this case the wave vector k, d, and m are coplanar,
and similarly to how it happens in conventional 3D-chiral
media, the electric and magnetic dipole components perpen-
dicular to k create scattered electromagnetic waves with or-
thogonal polarizations, so that the polarization of the trans-
mitted wave acquires maximum rotation. The mutual phase
difference between the electric and magnetic responses and
thus the sign of optical activity depend on the sign of the tilt
�compare projections of d and m in Figs. 4�d� and 4�e��.

On the contrary, if the split is perpendicular to the plane
of incidence, d and m, as well as their projections, are or-
thogonal �see Fig. 4�c��. In this case the structure does not
show any optical activity as the oscillating magnetic and
electric dipoles emit electromagnetic waves of the same po-
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FIG. 2. �Color online� Circular transmission and polarization conversion
measured for electromagnetic waves incident at a tilt angle of �= +30° �see
Fig. 1�. The dashed line marks a frequency of pure optical activity; here
circular dichroism and linear anisotropy are virtually absent.
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FIG. 3. �Color online� Circular dichroism and birefringence in the non-chiral planar metamaterial structure measured for tilt angles from �=0° to +30° in
steps of 10°. Tilt angles of opposite sign result in reversed signs of circular dichroism and azimuth rotation. The frequency at which pure optical activity on
a background of vanishing anisotropy can be seen is marked by a vertical dashed line.
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larization as the incident wave. At normal incidence optical
activity cannot be observed as the projection of m on the
plane normal to the k-vector is zero �see Fig. 4�b��.

In conclusion we have demonstrated strong and tunable
resonant extrinsic optical activity and circular dichroism in
an intrinsically non-chiral planar metamaterial. We have
shown that chirality arising from the mutual orientation of a
non-chiral structure and the incident beam is sufficient to
lead to very pronounced circular birefringence and dichro-

ism. Even though the effect occurs only for anisotropic pat-
terns, our results demonstrate the existence of a spectral band
where optical activity is dominant and eigenstates are circu-
larly polarized, while linear birefringence is practically ab-
sent. Tunability of the polarization response and simplicity of
the structure, which can be easily scaled to the optical part of
the spectrum, allow exploitation of the phenomenon in po-
larization control applications both in microwave and photo-
nic devices.
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FIG. 4. �Color online� Electric and magnetic responses of asymmetrically
split rings. �a� Oscillating currents in a split ring can be represented as a sum
of symmetric and antisymmetric currents, corresponding to an electric di-
pole d �green arrow� and a magnetic dipole m �red arrow�. Optical activity
is controlled by the projections of d and m onto the plane perpendicular to
the k-vector �green and red dashed arrows correspondingly�: it is absent
either when one of the projections is zero �b� or if the projections are
orthogonal �c�; the strongest polarization rotations, of opposite sign, occur if
these projections are either parallel �d� or antiparallel �e�.
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