-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLightning.py
199 lines (160 loc) · 6.05 KB
/
Lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import lightning.pytorch as pl
from lightning.pytorch.callbacks import ModelSummary
from lightning.pytorch.loggers import CSVLogger
import torch.nn as nn
import torch
import torchmetrics as tm
from torch.optim import Adam, SGD, lr_scheduler
import torch.nn.functional as F
from torch.utils.data import random_split, DataLoader
from torchvision.datasets import ImageFolder
import torchvision.transforms as tfms
from src.model import HNet
import src.config as CFG
from argparse import ArgumentParser
import sys
class HCRData(pl.LightningDataModule):
def __init__(self, TRAIN_PATH, TEST_PATH) -> None:
super().__init__()
self.save_hyperparameters({"train_path": TRAIN_PATH, "test_path": TEST_PATH})
self.TRAIN_PATH = TRAIN_PATH
self.TEST_PATH = TEST_PATH
self.train_ds = None
self.val_ds = None
self.test_ds = None
# the train & test transforms
self.transforms = {
"train": tfms.Compose(
[
tfms.PILToTensor(),
tfms.AutoAugment(tfms.AutoAugmentPolicy.IMAGENET),
tfms.ConvertImageDtype(torch.float),
tfms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
),
"test": tfms.Compose(
[
tfms.PILToTensor(),
tfms.ConvertImageDtype(torch.float),
tfms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
),
}
def setup(self, stage):
if stage == "fit":
train_ds = ImageFolder(
root=self.TRAIN_PATH, transform=self.transforms["train"]
)
# Train/val splitting
lengths = [
int(len(train_ds) * 0.8),
len(train_ds) - int(len(train_ds) * 0.8),
]
self.train_ds, self.val_ds = random_split(dataset=train_ds, lengths=lengths)
if stage == "test":
self.test_ds = ImageFolder(
root=self.TEST_PATH, transform=self.transforms["test"]
)
def train_dataloader(self):
return DataLoader(
dataset=self.train_ds,
batch_size=CFG.BATCH_SIZE,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(dataset=self.val_ds, batch_size=CFG.BATCH_SIZE)
def test_dataloader(self):
return DataLoader(dataset=self.test_ds, batch_size=CFG.BATCH_SIZE)
class LitHCR(pl.LightningModule):
def __init__(self, model, num_classes):
super().__init__()
self.model = model
self.loss = nn.CrossEntropyLoss()
self.train_accuracy = tm.Accuracy(task="multiclass", num_classes=num_classes)
self.val_accuracy = tm.Accuracy(task="multiclass", num_classes=num_classes)
self.test_accuracy = tm.Accuracy(task="multiclass", num_classes=num_classes)
def configure_optimizers(self):
optimizer = SGD(model.parameters(), lr=CFG.LR)
scheduler = lr_scheduler.CyclicLR(
optimizer=optimizer, base_lr=1e-5, max_lr=0.1, verbose=True
)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def training_step(self, batch, batch_idx):
images, labels = batch
outputs = self.model(images)
_, preds = torch.max(outputs, 1)
loss = F.cross_entropy(outputs, labels)
acc = self.train_accuracy(preds, labels)
self.log(name="Training_accuracy", value=acc, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch
outputs = self.model(images)
_, preds = torch.max(outputs, 1)
loss = F.cross_entropy(outputs, labels)
acc = self.val_accuracy(preds, labels)
self.log(name="Validation_accuracy", value=acc, prog_bar=True, logger=True)
def test_step(self, batch, bathc_idx):
images, labels = batch
outputs = self.model(images)
_, preds = torch.max(outputs, 1)
acc = self.test_accuracy(preds, labels)
self.log(name="Test_accuracy", value=acc, prog_bar=True, logger=True)
if __name__ == "__main__":
TRAIN_PATH, TEST_PATH, BEST_MODEL = "", "", ""
MODEL = None
parser = ArgumentParser(description="Train model for Hindi Character Recognition")
parser.add_argument(
"--mode",
type=str,
help="Train or Test ?",
default="Train",
choices=["Train", "Test"],
)
parser.add_argument(
"--epochs", type=int, help="number of epochs", default=CFG.EPOCHS
)
parser.add_argument("--lr", type=float, help="learning rate", default=CFG.LR)
parser.add_argument(
"--model_type",
type=str,
help="Type of model (vyanjan/digit)",
default="vyanjan",
)
args = parser.parse_args()
if len(sys.argv) > 1:
CFG.EPOCHS = args.epochs
CFG.LR = args.lr
if args.model_type == "digit":
MODEL = HNet(num_classes=10)
TRAIN_PATH = CFG.TRAIN_DIGIT_PATH
TEST_PATH = CFG.TEST_DIGIT_PATH
CFG.BEST_MODEL_PATH = CFG.BEST_MODEL_DIGIT
else:
MODEL = HNet(num_classes=36)
TRAIN_PATH = CFG.TRAIN_VYANJAN_PATH
TEST_PATH = CFG.TEST_VYANJAN_PATH
CFG.BEST_MODEL_PATH = CFG.BEST_MODEL_VYANJAN
# Create data module
data_module = HCRData(TRAIN_PATH=TRAIN_PATH, TEST_PATH=TEST_PATH)
# Lit Model
model = LitHCR(model=MODEL, num_classes=(10 if args.model_type == "digit" else 36))
# Trainer
trainer = pl.Trainer(
accelerator="gpu",
max_epochs=CFG.EPOCHS,
default_root_dir=".",
logger=CSVLogger(save_dir=".", name="Lit_HCR_logs"),
)
if args.mode == "Train":
trainer.fit(model, datamodule=data_module)
else:
trainer.test(
model=model,
datamodule=data_module,
ckpt_path=LitHCR.load_from_checkpoint(checkpoint_path=CFG.BEST_MODEL_PATH),
)