Abstract
Many insects have symbiotic microorganisms within their body. Such microbial symbiosis underpins the survival and prosperity of insects through multiple means. The brown-winged green stinkbug Plautia stali, which is notorious as an agricultural pest and utilized as an experimental model insect, harbors a bacterial symbiont Pantoea in a posterior part of the midgut, which is essential for the host’s development and reproduction. From both basic and applied research perspectives, it is important to investigate the mechanistic bases underpinning the insect-microbe symbiotic association. Here, we performed detailed electron and optical microscopic analyses of the early nymphal midguts to reveal the type of cellular structure and property that orchestrates the symbiont colonization in the restricted part of the midgut. We identified two peculiar structural features of the nymphal midgut that develop in a region-restricted manner: long and heterogenous cellular protrusions (microvilli) solely emerged in the midgut symbiotic region and highly developed circular muscle cell layers specifically observed in the junction of non-symbiotic and symbiotic regions of the midgut. We discuss the potential roles of these unique structures in the midgut bacterial symbiosis.










Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Abe Y, Mishiro K, Takanashi M (1995) Symbiont of brown-winged green bug, Plautia stali SCOTT. Jpn J Appl Entomol Zool 39:109–115. https://doi.org/10.1303/jjaez.39.109
Bourtzis K, Miller TA (eds) (2003) Insect symbiosis. CRC Press, Boca Raton
Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189. https://doi.org/10.1146/annurev.micro.59.030804.121041
Bistolas KSI, Sakamoto RI, Fernandes JAM, Goffredi SK (2014) Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 5:349. https://doi.org/10.3389/fmicb.2014.00349
Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York
Byeon JH, Seo ES, Lee JB et al (2015) A specific cathepsin-L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria. Dev Comp Immunol 53:79–84. https://doi.org/10.1016/j.dci.2015.06.003
Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121. https://doi.org/10.1038/ncb1007-1110
da Cunha FM, Caetano FH, Wanderley-Teixeira V et al (2012) Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on bt-cotton. Micron 43:245–250. https://doi.org/10.1016/j.micron.2011.08.006
Dai L, Yang B, Wang J et al (2019) The anatomy and ultrastructure of the digestive tract and salivary glands of Hishimonus lamellatus (Hemiptera: Cicadellidae). J Insect Sci 19:3. https://doi.org/10.1093/jisesa/iez061
Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. https://doi.org/10.1146/annurev-ento-010814-020822
Duron O, Noël V (2016) A wide diversity of Pantoea lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs. Environ Microbiol Rep 8:715–727. https://doi.org/10.1111/1758-2229.12432
Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025
Fialho MDCQ, Zanuncio JC, Neves CA et al (2009) Ultrastructure of the digestive cells in the midgut of the predator Brontocoris tabidus (Heteroptera: Pentatomidae) after different feeding periods on prey and plants. Ann Entomol Soc Am 102:119–127. https://doi.org/10.1603/008.102.0113
Figard L, Sokac AM (2014) A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change. BioArchitecture 4:39–46. https://doi.org/10.4161/bioa.29069
Futahashi R, Tanaka K, Tanahashi M et al (2013) Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont. PLoS ONE 8:e64557. https://doi.org/10.1371/journal.pone.0064557
Glasgow H (1914) The gastric caeca and the caecal bacteria of the Heteroptera. Biol Bull 26:101–171. https://doi.org/10.2307/1536004
Gutiérrez-Cabrera AE, Córdoba-Aguilar A, Zenteno E et al (2015) Origin, evolution and function of the hemipteran perimicrovillar membrane with emphasis on Reduviidae that transmit Chagas disease. Bull Entomol Res 106:279–291. https://doi.org/10.1017/S0007485315000929
Hayashi T, Hosokawa T, Meng X-Y et al (2015) Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs. Appl Environ Microbiol 81:2603–2611. https://doi.org/10.1128/AEM.04057-14
Hosokawa T, Ishii Y, Nikoh N et al (2016) Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1:15011. https://doi.org/10.1038/nmicrobiol.2015.11
Hosokawa T, Kikuchi Y, Meng XY, Fukatsu T (2005) The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima. FEMS Microbiol Ecol 54:471–477. https://doi.org/10.1016/j.femsec.2005.06.002
Hosokawa T, Kikuchi Y, Nikoh N et al (2010) Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Appl Environ Microbiol 76:4130–4135. https://doi.org/10.1128/AEM.00616-10
Hosokawa T, Matsuura Y, Kikuchi Y, Fukatsu T (2016) Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. Zoological Lett 2:24. https://doi.org/10.1186/s40851-016-0061-4
Jang S, Matsuura Y, Ishigami K et al (2023) Symbiont coordinates stem cell proliferation, apoptosis, and morphogenesis of gut symbiotic organ in the stinkbug-Caballeronia symbiosis. Front Physiol 13:1071987. https://doi.org/10.3389/fphys.2022.1071987
Kaiwa N, Hosokawa T, Kikuchi Y et al (2010) Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol 76:3486–3494. https://doi.org/10.1128/AEM.00421-10
Kaiwa N, Hosokawa T, Nikoh N et al (2014) Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol 24:2465–2470. https://doi.org/10.1016/j.cub.2014.08.065
Kikuchi Y, Hosokawa T, Fukatsu T (2011) Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 77:4075–4081. https://doi.org/10.1128/AEM.00358-11
Kikuchi Y, Hosokawa T, Nikoh N et al (2009) Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7:2. https://doi.org/10.1186/1741-7007-7-2
Kikuchi Y, Meng X-Y, Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71:4035–4043. https://doi.org/10.1128/AEM.71.7.4035-4043.2005
Kikuchi Y, Ohbayashi T, Jang S, Mergaert P (2020) Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J 14:1627–1638. https://doi.org/10.1038/s41396-020-0633-3
Kim JK, Kim NH, Jang HA et al (2013) Specific midgut region controlling the symbiont population in an insect-microbe gut symbiotic association. Appl Environ Microbiol 79:7229–7233. https://doi.org/10.1128/AEM.02152-13
Kinosita Y, Kikuchi Y, Mikami N et al (2018) Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J 12:838–848. https://doi.org/10.1038/s41396-017-0010-z
Koga R, Moriyama M, Onodera-Tanifuji N et al (2022) Single mutation makes Escherichia coli an insect mutualist. Nat Microbiol 7:1141–1150. https://doi.org/10.1038/s41564-022-01179-9
Koga R, Tanahashi M, Nikoh N et al (2021) Host’s guardian protein counters degenerative symbiont evolution. Proc Natl Acad Sci U S A 118:e2103957118. https://doi.org/10.1073/pnas.2103957118
Koga R, Tsuchida T, Fukatsu T (2009) Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool 44:281–291. https://doi.org/10.1303/aez.2009.281
Koistinen V, Kärnä R, Koistinen A et al (2015) Cell protrusions induced by hyaluronan synthase 3 (HAS3) resemble mesothelial microvilli and share cytoskeletal features of filopodia. Exp Cell Res 337:179–191. https://doi.org/10.1016/j.yexcr.2015.06.016
Lee J, Jeong B, Kim J et al (2024) Specialized digestive mechanism for an insect-bacterium gut symbiosis. ISME J 18:wrad021. https://doi.org/10.1093/ismejo/wrad021
Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550. https://doi.org/10.1146/annurev.ento.42.1.525
Moriyama M, Hayashi T, Fukatsu T (2022) A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali. Sci Rep 12:7782. https://doi.org/10.1038/s41598-022-11895-1
Ohbayashi T, Futahashi R, Terashima M et al (2019) Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J 13:1469–1483. https://doi.org/10.1038/s41396-019-0361-8
Ohbayashi T, Takeshita K, Kitagawa W et al (2015) Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci USA 112:E5179-5188. https://doi.org/10.1073/pnas.1511454112
Oishi S, Harumoto T, Okamoto-Furuta K et al (2023) Mechanisms underpinning morphogenesis of a symbiotic organ specialized for hosting an indispensable microbial symbiont in stinkbugs. mBio 14:e0052223. https://doi.org/10.1128/mbio.00522-23
Oishi S, Moriyama M, Fukatsu T (2023) Structural remodeling of midgut symbiotic organ and altered food flow upon metamorphosis of the stinkbug Plautia stali. Appl Entomol Zool 58:393–399. https://doi.org/10.1007/s13355-023-00838-5
Oishi S, Moriyama M, Koga R, Fukatsu T (2019) Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zoological Lett 5:16. https://doi.org/10.1186/s40851-019-0134-2
Oishi S, Moriyama M, Mizutani M et al (2023) Regulation and remodeling of microbial symbiosis in insect metamorphosis. Proc Natl Acad Sci U S A 120:e2304879120. https://doi.org/10.1073/pnas.2304879120
Özyurt Koçakoğlu N (2021) Morphology and histology of the alimentary canal, salivary glands and Malpighian tubules in Pyrrhocoris apterus (Linnaeus, 1758) (Hemiptera: Pyrrhocoridae): a scanning electron and light microscopies study. Int J Trop Insect Sci 41:1845–1862. https://doi.org/10.1007/s42690-021-00530-7
Özyurt Koçakoğlu N, Candan S (2022) Ultrastructural characterization of salivary glands, alimentary canal and Malpighian tubules of the red shield bug Carpocoris mediterraneus Tamanini, 1958 (Heteroptera, Pentatomidae). Microsc Microanal 1–13:1. https://doi.org/10.1017/S1431927622000307
Perlmutter JI, Bordenstein SR (2020) Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol 18:97–111. https://doi.org/10.1038/s41579-019-0309-z
Prado SS, Rubinoff D, Almeida RPP (2006) Vertical transmission of a Pentatomid caeca-associated symbiont. Ann Entomol Soc Am 99:577–585. https://doi.org/10.1603/0013-8746(2006)99[577:VTOAPC]2.0.CO;2
Salem H, Florez L, Gerardo N, Kaltenpoth M (2015) An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc Biol Sci 282:20142957. https://doi.org/10.1098/rspb.2014.2957
Sato R, Nakamura T, Sumi R (1997) Outbreak of Plautia stali SCOTT and its forecasting methods in Fukuoka Prefecture in 1996. Proc Assoc Pl Prot Kyushu 43:114–116. https://doi.org/10.4241/kyubyochu.43.114
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
Silva CP, Ribeiro AF, Gulbenkian S, Terra WR (1995) Organization, origin and function of the outer microvillar (perimicrovillar) membranes of Dysdercus peruvianus (Hemiptera) midgut cells. J Insect Physiol 41:1093–1103. https://doi.org/10.1016/0022-1910(95)00066-4
Silva CP, Silva JR, Vasconcelos FF et al (2004) Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. Arthropod Struct Dev 33:139–148. https://doi.org/10.1016/j.asd.2003.12.002
Takeshita K, Kikuchi Y (2017) Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res Microbiol 168:175–187. https://doi.org/10.1016/j.resmic.2016.11.005
Terra WR (1988) Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz J Med Biol Res 21:675–734
Terra WR (1990) Evolution of digestive systems of insects. Ann Rev Entomol 35:181–200. https://doi.org/10.1146/annurev.en.35.010190.001145
Yamada K, Tsutsumi T, Tsuru Y et al (1991) Outbreak of stink bugs infesting fruits in Fukuoka Prefecture in 1990 and its causes. Proc Assoc Pl Prot Kyushu 37:183–187. https://doi.org/10.4241/kyubyochu.37.183
Acknowledgements
We thank Haruyasu Kohda, Keiko Okamoto-Furuta, and Tatsuya Katsuno (Center for Anatomical Studies, Graduate School of Medicine, Kyoto University) for their support in the electron microscopy study. We also thank Natsuya Oura and the Tadashi Uemura’s laboratory members for their support.
Funding
This work was supported by the Hakubi Project of Kyoto University (to T.H.), JST ERATO Grant Number JPMJER1902 (to T.H., M.M., T.F.), and JSPS KAKENHI Grant Numbers JP24H02294 and JP24K08935 (to T.H.).
Author information
Authors and Affiliations
Contributions
Conceptualization: T.H., T.F.; Formal analysis and investigation: T.H.; Writing—original draft preparation: T.H., T.F.; Writing—review and editing: T.H., M.M., T.F.; Funding acquisition: T.H., M.M., T.F.; Resources: M.M.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by: José Eduardo Serrão
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Harumoto, T., Moriyama, M. & Fukatsu, T. Peculiar structural features of midgut symbiotic organ in the early development of the stinkbug Plautia stali Scott, 1874 (Hemiptera: Pentatomidae). Sci Nat 112, 34 (2025). https://doi.org/10.1007/s00114-025-01986-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00114-025-01986-0