Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research.
Graphical abstract




Similar content being viewed by others
References
Abd El-Baky HH, El-Baz FK, El-Baroty GS (2010) Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments. J Sci Food Agric 90(2):299–303. https://doi.org/10.1002/jsfa.3815
Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, Bach S, Bowler C (2013) Bioprospecting marine plankton. Mar Drugs 11(11):4594–4611. https://doi.org/10.3390/md11114594
Ahmadi A, Moghadamtousi SZ, Abubakar S, Zandi K (2015) Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res Int 2015:825203. https://doi.org/10.1155/2015/825203
Ahmed F, Zhou W, Schenk PM (2015) Pavlova lutheri is a high-level producer of phytosterols. Algal Res 10:210–217. https://doi.org/10.1016/j.algal.2015.05.013
Ahn CB, Jeon YJ, Kang DS, Shin TS, Jung BM (2004) Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res Int 37:253–258. https://doi.org/10.1016/j.foodres.2003.12.002
Ahuja K, Rawat A (2019) Astaxanthin Market Size by Source (Synthetic, Natural), by Application (Dietary Supplement, Personal Care, Pharmaceuticals, Food & Beverages, Animal Feed {Aquaculture, Livestock, Pets}) Industry Outlook Report, Regional Analysis, Application Potential, Price Trends, Competitive Market Share & Forecast, 2019–2026. Global Market Insights, Selbyville, DE, USA
Akaberi S, Gusbeth C, Silve A, Senthilnathan DS, Navarro-López E, Molina-Grima E, Müller G, Frey W (2019) Effect of pulsed electric field treatment on enzymatic hydrolysis of proteins of Scenedesmus almeriensis. Algal Res 43:101656. https://doi.org/10.1016/j.algal.2019.101656
Alateyah N, Ahmad S, Gupta I, Fouzat A, Thaher MI, Das P, Al Moustafa AE, Ouhtit A (2022) Haematococcus pluvialis microalgae extract inhibits proliferation, invasion, and induces apoptosis in breast cancer cells. Front Nutr. https://doi.org/10.3389/fnut.2022.882956
Alavijeh RS, Karimi K, Wijffels RH, Van den Berg C, Eppink M (2020) Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour Technol 309:123321. https://doi.org/10.1016/j.biortech.2020.123321
Alfaia CM, Pestana JM, Rodrigues M, Coelho D, Aires MJ, Ribeiro DM, Major VT, Martins CF, Santos H, Lopes PA, Lemos JP (2021) Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult Sci J 100(2):926–937. https://doi.org/10.1016/j.psj.2020.11.034
Al-Fartusie FS, Nabil N, Zgeer DS (2019) Evaluation of lipid profile and thyroid function in hyper and hypotensive patients: a case control study. Indian J Public Health Res Dev 10(4):609–614
Almendinger M, Saalfrank F, Rohn S, Kurth E, Springer M, Pleissner D (2021) Characterization of selected microalgae and cyanobacteria as sources of compounds with antioxidant capacity. Algal Res 53:102168. https://doi.org/10.1016/j.algal.2020.102168
Alzahrani M (2018) Proteins and their enzymatic hydrolysates from the marine diatom Nitzschia laevis and screening for their in vitro antioxidant, antihypertension, antiinflammatory and antimicrobial activities PhD diss, Research Space Auckland
Amaro HM, Fernandes F, Valentão P, Andrade PB, Sousa-Pinto I, Malcata FX, Guedes AC (2015) Effect of solvent system on extractability of lipidic components of Scenedesmus obliquus (M2–1) and Gloeothece sp on antioxidant scavenging capacity thereof. Mar Drugs 13:6453–6471. https://doi.org/10.3390/md13106453
Amaro HM, Guedes AC, Malcata FX (2011) Antimicrobial activities of microalgae: an invited review. In: Méndez-Vilas A (ed) Science against Microbial pathogens: communicating Current Research and Technological Advances. Formatex, Badajoz, Spain, pp 1272–1280
Amorim ML, Soares J, Coimbra JS, Leite MD, Albino LF, Martins MA (2020) Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 61:1–27. https://doi.org/10.1080/10408398.2020.1768046
Andrade LM, Andrade CJ, Dias M, Nascimento CAO, Mendes MA (2018) Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals and food supplements: an overview. MOJ Food Process Technol 6(1):45–58. https://doi.org/10.15406/mojfpt.2018.06.00144
Araya M, García S, Rengel J, Pizarro S, Álvarez G (2021) Determination of free and protein amino acid content in microalgae by HPLC-DAD with pre-column derivatization and pressure hydrolysis. Mar Chem 234:103999. https://doi.org/10.1016/j.marchem.2021.103999
Atitallah AB, Barkallah M, Hentati F, Dammak M, Hlima HB, Fendri I, Attia H, Michaud P, Abdelkafi S (2019) Physicochemical, textural, antioxidant and sensory characteristics of microalgae-fortified canned fish burgers prepared from minced flesh of common barbel (Barbus barbus). Food Biosci 30:100417
Babuskin S, Krishnan KR, Babu PAS, Sivarajan M, Sukumar M (2014) Functional foods enriched with marine microalga Nannochloropsis oculata as a source of ω-3 fatty acids. Food Tech Biotechnol 52:292–299
Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. J Appl Phycol 17:447–460. https://doi.org/10.1007/s10811-005-1641-4
Barka A, Blecker C (2016) Microalgae as a potential source of single-cell proteins a review. BASE 20:3. https://doi.org/10.25518/1780-4507.13132
Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health nutrition. Mar Drugs 17(5):304. https://doi.org/10.3390/md17050304
Barkia I, Ketata Bouaziz H, Sellami Boudawara T, Aleya L, Gargouri AF, Saari N (2020) Acute oral toxicity study on Wistar rats fed microalgal protein hydrolysates from Bellerochea malleus. Environ Sci Pollut Res 27(16):19087–19094
Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, Biondi N, Tredici MR, Sousa I, Raymundo A (2017) Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res 26:161–171. https://doi.org/10.1016/j.algal.2017.07.017
Becker E (2004) Microalgae for human and animal nutrition. In: Richmond A (ed) Handbook of microalgae culture: applied phycology and biotechnology, vol 312. Blackwell Science, London, pp 461–503. https://doi.org/10.1002/9781118567166.ch25
Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
Benfield AH, Henriques ST (2020) Mode-of-action of antimicrobial peptides: membrane disruption vs intracellular mechanisms. Front Med Technol 2:610997. https://doi.org/10.3389/fmedt.2020.610997
Bertsch P, Böcker L, Mathys A, Fischer P (2021) Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 108:326–342
Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578. https://doi.org/10.1007/s00425-004-1307-5
Bhagavathy S, Sumathi P, Bell IJS (2011) Green algae Chlorococcum humicola – a new source of bioactive compounds with antimicrobial activity. Asian Pacif J Trop Med 1(1):1–7. https://doi.org/10.1016/S2221-1691(11)60111-1
Bhuvana P, Sangeetha V, Anuradha M, Ali MS (2019) Spectral characterization of bioactive compounds from microalgae: N Oculata and C Vulgaris. Biocatal Agril Biotechnol 19:101094. https://doi.org/10.1016/j.bcab.2019.101094
Bito T, Okumura E, Fujishima M, Watanabe F (2020) Potential of Chlorella as a dietary supplement to promote human health. Nutrients 12(9):2524. https://doi.org/10.3390/nu12092524
Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33. https://doi.org/10.3390/foods6050033
Bolanho BC, Egea MB, Jácome ALM, Campos I, De Carvalho JCM, Danesi EDG (2014) Antioxidant and nutritional potential of cookies enriched with Spirulina platensis and sources of fibre. J Food Nutr Res 53:171–179
Borowitzka M (2013) High-value products from microalgae – their development and commercialization. J Appl Phycol 25(3):743–756
Brasil BDSAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89
Bratchkova A, Kroumov AD (2020) Microalgae as producers of biologically active compounds with antibacterial, antiviral, antifungal, antialgal, antiprotozoal, antiparasitic and anticancer activity. Acta Microbiol Bulg 36(3):79–89
Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Expt Marine Biol Ecol 145:79–99. https://doi.org/10.1016/0022-0981(91)90007-J
Bruton T (2009) A review of the potential of marine algae as a source of biofuel in Ireland, https://www.faoorg/uploads/media/0902
Bule MH, Ahmed I, Maqbool F, Bilal M, Iqbal HM (2018) Microalgae as a source of high-value bioactive compounds. Front Biosci 10:197–216
Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369
Camacho Macedo FA, Malcata F (2019) Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar Drugs 17(6):312. https://doi.org/10.3390/md17060312
Capelli B, Bagchi D, Cysewski GR (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12:145–152
Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 5:58. https://doi.org/10.3389/fnut.2018.00058
Carbone DA, Pellone P, Lubritto C, Ciniglia C (2021) Evaluation of microalgae antiviral activity and their bioactive compounds. Antibiotics 10(6):746. https://doi.org/10.3390/antibiotics10060746
Catarina GA, Barbosa CR, Amaro HM, Pereira CI, Xavier MF (2011) Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int J Food Sci Technol 46(4):862–870. https://doi.org/10.1111/j.1365-2621.2011.02567.x
Cervantes-Llanos M, Lagumersindez-Denis N, Marín-Prida J, Pavón-Fuentes N, Falcon-Cama V, Piniella-Matamoros B, Camacho-Rodríguez H, Fernández-Massó JR, Valenzuela-Silva C, Raíces-Cruz I, Pentón-Arias E (2018) Beneficial effects of oral administration of C-phycocyanin and phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci 194:130–138. https://doi.org/10.1016/j.lfs.2017.12.032
Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan CH (2010) Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agril Food Chem 58(8):4756–4761. https://doi.org/10.1021/jf100062m
Challouf R, Trabelsi L, Ben Dhieb R, El Abed O, Yahia A, Ghozzi K, Ben Ammar J, Omran H, Ben Ouada H (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838
Charles CN, Msagati T, Swai H, Chacha M (2019) Microalgae: an alternative natural source of bioavailable omega-3 DHA for promotion of mental health in East Africa. Sci Afr 6:e00187. https://doi.org/10.1016/j.sciaf.2019.e00187
Chen Z, Wang L, Qiu S, Ge S (2018) Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production. BioMed Res. https://doi.org/10.1155/2018/1503126
Chen W, Liu Y, Song L, Sommerfeld M, Hu Q (2020) Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res 51:102080
Chiranjeevi P, Venkata MS (2016) Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renew Energy 98:64–71. https://doi.org/10.1016/j.renene.2016.03.063
Chiranjeevi P, Venkata MS (2017) Diverse acidogenic effluents as feedstock for microalgae cultivation: dual phase metabolic transition on biomass growth and lipid synthesis. Bioresour Technol 242:191–196. https://doi.org/10.1016/j.biortech.2017.04.059
Chirasuwan N, Chaiklahan R, Kittakoop P, Chanasattru W, Ruengjitchatchawalya M, Tanticharoen M, Bunnag B (2009) Anti HSV-1 activity of sulphoquinovosyl diacylglycerol isolated from Spirulina platensis. Sci Asia 35:137–141
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Choo WT, Teoh ML, Phang SM, Convey P, Yap WH, Goh BH, Beardall J (2020) Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol 11:1086. https://doi.org/10.3389/fphar.2020.01086
Chou YC, Prakash E, Huang CF, Lien TW, Chen X, Su IJ, Chao YS, Hsieh HP, Hsu JT (2008) Bioassay-guided purification and identification of PPARα/γ agonists from Chlorella sorokiniana. Phytother Res 22(5):605–613. https://doi.org/10.1002/ptr.2280
Chowdhury H, Loganathan B (2019) 3rd generation biofuels from microalgae: a review. Curr Opin Green Sust Chem 20:39–44. https://doi.org/10.1016/j.cogsc.2019.09.003
Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799. https://doi.org/10.3109/09637486.2011.582460
Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, De Pascalis F, Scicchitano P, Riccioni G (2013) Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm. https://doi.org/10.1155/2013/782137
Costa JA, Freitas BC, Rosa GM, Moraes L, Morais MG, Mitchell BG (2019) Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946
Coulombier N, Jauffrais T, Lebouvier N (2021) Antioxidant compounds from microalgae: a review. Mar Drugs 19(10):549. https://doi.org/10.3390/md19100549
da Silva Gorg CM, Aranda DAG (2013) Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Nat Sci 5:783–791. https://doi.org/10.4236/ns.2013.57094
da Silva VB, Moreira JB, de Morais MG, Costa JAV (2016) Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 7:73–77. https://doi.org/10.1016/J.COFS.2015.12.006
da Silva MET, de Paula Correa K, Martins MA, da Matta SLP, Martino HSD, dos Reis Coimbra JS (2020) Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. J Funct Foods 65:103711
Das BK, Pradhan J, Pattnaik P, Samantaray BR, Samal SK (2005) Production of antibacterials from the freshwater alga Euglena viridis (Ehren). World J Microbiol Biotechnol 21:45–50
Davinelli S, Nielsen ME, Scapagnini G (2018) Astaxanthin in skin health, repair, and disease: a comprehensive review. Nutr 10(4):522. https://doi.org/10.3390/nu10040522
Day AG, Brinkmann D, Franklin S, Espina K, Rudenko G, Roberts A, Howse KS (2009) Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regul Toxicol Pharmacol 55:166–180
de Morais MG, Vaz BD, de Morais EG, Costa JA (2015) Biologically active metabolites synthesized by microalgae. BioMed Res Int. https://doi.org/10.1155/2015/835761
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C (2020) Challenging microalgal vitamins for human health. Microb Cell Fact 19(1):1–23. https://doi.org/10.1186/s12934-020-01459-1
Edelmann M, Aalto S, Chamlagain B, Kariluoto S, Piironen V (2019) Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J Food Comp Anal 82:103226. https://doi.org/10.1016/J.JFCA.2019.05.009
El-Baky HHA, El-Baz FK, El-Baroty GS (2009) Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr J Biotechnol 8(24):7059–7067
El-Baz FK, Abdo SM, Hussein AMS (2017) Microalgae Dunaliella salina for use as food supplement to improve pasta quality. Int J Pharm Sci Rev Res 46:45–51
Fabregas J, Garcıa D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res 44(1):67–73
FAO, IFAD, UNICEF, WFP and WHO (2020) The state of food security and nutrition in the world 2020 transforming food systems for affordable healthy diets FAO, Rome
Fayyad RJ, Ali AN, Dwaish AS, Abboodi AK (2019) Anticancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell lines. Plant Arch 19(1):1419–1426
Ferdous UT, Yusof ZNB (2021) Medicinal prospects of antioxidants from algal sources in cancer therapy. Front Pharmacol 12:157. https://doi.org/10.3389/fphar.2021.593116
Fernandes T, Cordeiro N (2021) Microalgae as sustainable biofactories to produce high-value lipids: biodiversity, exploitation, and biotechnological applications. Mar Drugs 19(10):573. https://doi.org/10.3390/md19100573
Figueroa FL (2021) Mycosporine-like amino acids from marine resource. Mar Drugs 19(1):18. https://doi.org/10.3390/md19010018
Fobian AD, Elliott L, Louie T (2018) A systematic review of sleep, hypertension, and cardiovascular risk in children and adolescents. Curr Hypertens Rep 20(5):1–11. https://doi.org/10.1007/s11906-018-0841-7
Fujitani N, Sakaki S, Yamaguchi Y, Takenaka H (2001) Inhibitory effects of microalgae on the activation of hyaluronidase. J Appl Phycol 13(6):489–492. https://doi.org/10.1023/A:1012592620347
Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C (2019) Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Nutr 11(6):1226. https://doi.org/10.3390/nu11061226
Garcia ES, Van Leeuwen J, Safi C, Sijtsma L, Eppink MH, Wijffels RH, van den Berg C (2018) Selective and energy efficient extraction of functional proteins from microalgae for food applications. Bioresour Technol 268:197–203. https://doi.org/10.1016/j.biortech.2018.07.131
García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz EG (2020) The role of oxidative stress in physiopathology and pharmacological treatment with pro-and antioxidant properties in chronic diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2020/2082145
Ghasemi Y, Moradian A, Mohagheghzadeh A (2007) Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus disperses. J Biolog Sci 7:904–910. https://doi.org/10.3923/jbs.2007.904.910
Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C, Tumminello FM, Leto G (2015) Vitamin D in cancer chemoprevention. Pharm Biol 53(10):1399–1434. https://doi.org/10.3109/13880209.2014.988274
Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486
Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412
Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Indus Microb Biotechnol 38(12):1879–1890. https://doi.org/10.1007/s10295-011-1032-6
Gong Y, Sørensen SL, Dahle D, Nadanasabesan N, Dias J, Valente LM, Sørensen M, Kiron V (2020) Approaches to improve utilization of Nannochloropsis oceanica in plant-based feeds for Atlantic salmon. AQCLAL 522:735122. https://doi.org/10.1016/j.aquaculture.2020.735122
Guedes AC, Meireles LA, Amaro HM, Malcata FX (2010) Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Amer Oil Chem Soc 87(7):791–801. https://doi.org/10.1007/s11746-010-1559-0
Guldas M, Ziyanok-Demirtas S, Sahan Y, Yildiz E, Gurbuz O (2020) Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Sci Technol 41:615–625
Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M (2021) Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol 182:1371–1383
Gürlek C, Yarkent Ç, Köse A, Tuğcu B, Gebeloğlu IK, Öncel SŞ, Elibol M (2019) Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health Technol 10(1):111–117. https://doi.org/10.1007/s12553-019-00388-3
Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17(6):665–670
Hao S, Yan Y, Huang W, Gai F, Wang J, Liu L, Wang C (2018) C-phycocyanin reduces inflammation by inhibiting NF-κB activity through down regulating PDCD5 in lipopolysaccharide-induced RAW 2647 macrophages. J Funct Foods 42:21–29. https://doi.org/10.1016/j.jff.2018.01.008
Haq SH, Al-Ruwaished G, Al-Mutlaq MA, Naji SA, Al-Mogren M, Al-Rashed S, Ain QT, Al-Amro AA, Al-Mussallam A (2019) Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-019-55309-1
Hasbay I, Galanakis CM (2018) Recovery technologies and encapsulation techniques. In: Galanakis CM (ed) Polyphenols: properties, recovery, and applications, vol 1. Woodhead Publishers. Sawston, Cambridge, pp 233–264. https://doi.org/10.1016/B978-0-12-813572-3.00007-5
Hasui M, Matsuda M, Okutani K, Shigeta S (1995) In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int J Biolog Macromol 17(5):293–297
Heo SY, Ko SC, Kim CS, Oh GW, Ryu B, Qian ZJ, Kim G, Park WS, Choi IW, Phan TT, Heo SJ (2017) A heptameric peptide purified from Spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme-and angiotensin II-induced vascular dysfunction in human endothelial cells. Int J Mol Med 39(5):1072–1082. https://doi.org/10.3892/ijmm.2017.2941
Hernandez-Lopez I, Valdes JRB, Castellari M, Aguilo-Aguayo I, Morillas-Espana A, Sanchez-Zurano A, Acien-Fernandez FG, Lafarga T (2021) Utilisation of the marine microalgae Nannochloropsis sp. and Tetraselmis sp. as innovative ingredients in the formulation of wheat tortillas. Algal Res 58:102361. https://doi.org/10.1016/j.algal.2021.102361
Hossain Z, Kurihara H, Hosokawa M, Takahashi K (2005) Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. In Vitro Cell Dev Biol Animal 41(5):154–159
Hossain AKM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS (2017) The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and whole meal flours incorporation in improving the physical and functional properties of cookies. Foods 6(8):57
Huang J, Chen B, You W (2001) Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro Chinese. Mar Drugs 12:05
Huheihel M, Ishanu V, Tal J, Arad SM (2001) Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Appl Phycol 13:127–134
Hur SB, Bae JH, Youn JY, Jo MJ (2015) KMMCC-Korea marine microalgae culture center: list of strains. Algae 30:1–188
Inan B, Cakir Koc R, Ozcimen D (2021) Comparison of the anticancer effect of microalgal oils and microalgal oil-loaded electrosprayed nanoparticles against PC-3, SHSY-5Y and AGS cell lines. Artif Cells Nanomed Biotechnol 49(1):381–389. https://doi.org/10.1080/21691401.2021.1906263
Jannel S, Caro Y, Bermudes M, Petit T (2020) Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: advances and key challenges to allow its industrial use as novel food ingredient. J Marine Sci Engg 8(10):789. https://doi.org/10.3390/jmse8100789
Janssen M, Wijffels RH, Barbosa MJ (2022) Microalgae based production of single-cell protein. Curr Opin Biotechnol 75:102705. https://doi.org/10.1016/j.copbio.2022.102705
Jong-Yuh C, Mei-Fen S (2005) Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sci 77(9):980–990. https://doi.org/10.1016/j.lfs.2004.12.036
Jusidin MR, Othman R, Shaleh SRM, Ching FF, Senoo S, Oslan SNH (2022) In Vitro antibacterial activity of marine microalgae extract against Vibrio harveyi. Appl Sci 12(3):1148
Katircioglu H, Beyatli Y, Aslim B, Yuksekdag Z, Atici T (2006) Screening for antimicrobial agent production of some freshwater. Microbiology 2:1–9
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J (2020) Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for inhibition of 4T1 breast tumors’ growth and metastasis. Phytother Res 34(2):368–378. https://doi.org/10.1002/ptr.6527
Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 10(2):0118985. https://doi.org/10.1371/journal.pone.0118985
Khan BM, Qiu HM, Xu SY, Liu Y, Cheong KL (2020) Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra Haitanensis. Int J Biolog Macromol 145:1155–1161
Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK (2018) Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod Process 110:60–84. https://doi.org/10.1016/J.FBP.2018.02.002
Khemiri S, Khelifi N, Nunes MC, Ferreira A, Gouveia L, Smaali I, Raymundo A (2020) Microalgae biomass as an additional ingredient of gluten-free bread: dough rheology, texture quality and nutritional properties. Algal Res 50:101998. https://doi.org/10.1016/j.algal.2020.101998
Kim SK, Kang KH (2011) Medicinal effects of peptides from marine microalgae. Adv Food Nutr Res 64:313–323. https://doi.org/10.1016/B978-0-12-387669-0.00025-9
Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2(1):1–9. https://doi.org/10.1016/j.jff.2010.01.003
Kiran BR, Venkata MS (2021) Microalgal cell biofactory-therapeutic, nutraceutical and functional food applications. Plants 10(5):836. https://doi.org/10.3390/plants10050836
Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TA, Aggelis G (2020) Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 367(5):28. https://doi.org/10.1093/femsle/fnaa028
Koyande AK, Chew KW, Rambabu K, Tao Y, Chu DT, Show PL (2019) Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Wellness 8(1):16–24. https://doi.org/10.1016/J.FSHW.2019.03.001
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR (2020) Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front Bioengg Biotechnol 8:914. https://doi.org/10.3389/fbioe.2020.00914
Kusmayadi A, Leong YK, Yen HW, Huang CY, Chang JS (2021) Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere 271:129800. https://doi.org/10.1016/j.chemosphere.2021.129800
Lafarga T (2019) Effect of microalgal biomass incorporation into foods: nutritional and sensorial attributes of the end products. Algal Res 41:101566. https://doi.org/10.1016/j.algal.2019.101566
Lafarga T, Fernandez-Sevilla JM, Gonzalez-Lopez C, Acien-Fernandez FG (2020) Spirulina for the food and functional food industries. Food Res Int 137:109356
Lafarga T, Rodríguez-Bermúdez R, Morillas-España A, Villaró S, García-Vaquero M, Morán L, Sánchez-Zurano A, González-López CV, Acién-Fernández FG (2021) Consumer knowledge and attitudes towards microalgae as food: the case of Spain. Algal Res 54:102174. https://doi.org/10.1016/j.algal.2020.102174
Layam A, Reddy CLK (2006) Antidiabetic property of Spirulina. Diabetol Croat 35:29–33
Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biolog Pharm Bull 29(10):2135–2139
Lee SH, Qian ZJ, Kim SK (2010) A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 118(1):96–102. https://doi.org/10.1016/J.FOODCHEM.2009.04.086
Lee NY, Kim Y, Kim YS, Shin JH, Rubin LP, Kim Y (2020) β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts. J Nutr Biochem 82:108402. https://doi.org/10.1016/jjnutbio2020108402
Li Y, Lammi C, Boschin G, Arnoldi A, Aiello G (2019) Recent advances in microalgae peptides: cardiovascular health benefits and analysis. J Agril Food Chem 67(43):11825–11838. https://doi.org/10.1021/acs.jafc.9b03566
Lim SJ, Aida WMW, Maskat MY, Mamot S, Ropien J, Mohd DM (2014) Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll 42:280–288
Limon P, Malheiro R, Casal S, Acien-Fernandez FG, Fernandez-Sevilla JM, Rodrigues N, Cruz R, Bermejo R, Pereira JA (2015) Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts. Food Chem 175:203–211. https://doi.org/10.1007/s13197-017-2689-2
Liu T, Liu WH, Zhao JS, Meng FZ, Wang H (2017) Lutein protects against β-amyloid peptide-induced oxidative stress in cerebrovascular endothelial cells through modulation of Nrf-2 and NF-κb. Cell Biol Toxicol 33(1):57–67. https://doi.org/10.1007/s10565-016-9360-y
Long SF, Kang S, Wang QQ, Xu YT, Pan L, Hu JX, Li M, Piao XS (2018) Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profile of broilers. Poult Sci 97(6):1881–1890. https://doi.org/10.3382/ps/pey027
Lopes G, Sousa C, Valentao P, Andrade PB (2013) Sterols in algae and health. In: Hernández-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. Wiley, Chichester, pp 173–187
López-Bascón MA, De Castro ML (2020) Soxhlet extraction. Liquid-phase extraction. Elsevier, Amsterdam, Netherlands, pp 327–354. https://doi.org/10.1016/b978-0-12-816911-7.00011-6
Los PR, Simoes DRS, Leone RDS, Bolanho BC, Cardoso T, Danesi EDG (2018) Viability of peach palm by-product Spirulina Platensis, and Spinach for the enrichment of dehydrated soup. Pesqui Agropecu Bras 53:1259–1267
Low KL, Idris A, Yusof NM (2020) Novel protocol optimized for microalgae lutein used as food additives. Food Chem 307:125631. https://doi.org/10.1016/j.foodchem.2019.125631
Lucas BF, de Morais MG, Santos TD, Costa JAV (2018) Spirulina for snack enrichment: nutritional, physical and sensory evaluations. LWT Food Sci Technol 90:270–276
Luo X, Su P, Zhang W (2015) Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 13(7):4231–4254. https://doi.org/10.3390/md13074231
Ma XN, Chen TP, Yang B, Liu J, Chen F (2016) Lipid production from Nannochloropsis. Mar Drugs 14(4):61. https://doi.org/10.3390/md14040061
Maeda N, Kokai Y, Ohtani S, Hada T, Yoshida H, Mizushina Y (2009) Inhibitory effects of preventive and curative orally administered spinach glycoglycerolipid fraction on the tumor growth of sarcoma and colon in mouse graft models. Food Chem 112(1):205–210. https://doi.org/10.1016/j.foodchem.2008.05.059
Martínez-Ruiz M, Martínez-González CA, Kim DH, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Parra-Saldivar R (2022) Microalgae bioactive compounds to topical applications products—a review. MOLEFW 27(11):3512. https://doi.org/10.3390/molecules27113512
Marti-Quijal FJ, Zamuz S, Tomasevic I, Gomez B, Rocchetti G, Lucini L, Remize F, Barba FJ, Lorenzo JM (2019) Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. LWT Food Sci Technol 110:316–323. https://doi.org/10.1016/j.lwt.2019.04.097
Masten Rutar J, Jagodic Hudobivnik M, Nečemer M, Vogel Mikuš K, Arčon I, Ogrinc N (2022) Nutritional quality and safety of the Spirulina dietary supplements sold on the Slovenian market. Foods 11(6):849. https://doi.org/10.3390/foods11060849
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020
Matsui MS, Muizzuddin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104(1):13–22. https://doi.org/10.1385/abab:104:1:13
Matufi F, Choopani A (2020) Spirulina, food of past, present and future health. Biotechnol Biopharm 3(4):1–20
Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barría E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the panamanian marine cyanobacterium Leptolyngbya sp. J Amer Chem Soc 130(20):6324–6325. https://doi.org/10.1021/ja801383f
Meireles LA, Guedes AC, Malcata FX (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agril Food Chem 51(8):2237–2241. https://doi.org/10.1021/jf025952y
Mishra VK, Bacheti RK, Husen A (2011) Medicinal uses of chlorophyll: a critical overview. In: Le H, Salcedo E (eds) Chlorophyll: structure, function and medicinal. Nova Science Publishers, New York, pp 177–196
Montero-Lobato Z, Vázquez M, Navarro F, Fuentes JL, Bermejo E, Garbayo I, Vílchez C, Cuaresma M (2018) Chemicallyinduced production of anti-inflammatory molecules in microalgae. Mar drugs 16(12):478
Morales M, Aflalo C, Bernard O (2021) Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenerg 150:106108. https://doi.org/10.1016/J.BIOMBIOE.2021.106108
Morris HJ, Carrillo O, Almarales A, Bermudez RC, Lebeque Y, Fontaine R, Llaurado G, Beltran Y (2007) Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice Enzyme. Microbial Technol 40(3):456–460. https://doi.org/10.1016/j.enzmictec.2006.07.021
Mtaki K, Kyewalyanga MS, Mtolera MS (2020) Assessment of antioxidant contents and free radical-scavenging capacity of Chlorella vulgaris cultivated in lowcost media. Appl Sci 10(23):8611
Mudimu O, Rybalka N, Bauersachs T, Born J, Friedl T, Schulz R (2014) Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites 4(2):373–393. https://doi.org/10.3390/metabo4020373
Mularczyk M, Michalak I, Marycz K (2020) Astaxanthin and other nutrients from Haematococcus pluvialis—multifunctional applications. Mar Drugs 18(9):459. https://doi.org/10.3390/md18090459
Mutanda T, Naidoo D, Bwapwa JK, Anandraj A (2020) Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products. Front Energy Res 8:598803
Nacer W, Ahmed FZB, Merzouk H, Benyaoub W, Bouanane S, Mebarek K (2019) Metabolic and antioxidant effects of micro algae in diabetic rats: implications for the prevention of human pathologies. Arch Cardiovasc Dis Suppl 11(3):360
Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavsky J, Tsvetkova IV, Ninova MS, Kussovski VK (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48(7):1533–1540. https://doi.org/10.1111/IJFS.12122
Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29
Nauroth JM, Liu YC, Van Elswyk M, Bell R, Hall EB, Chung G, Arterburn LM (2010) Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo. Lipids 45(5):375–384
Naviner M, Berge JP, Durand P, Le Bris H (1999) Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquac 174(1):15–24
Noguchi N, Konishi F, Kumamoto S, Maruyama I, Ando Y, Yanagita T (2013) Beneficial effects of Chlorella on glucose and lipid metabolism in obese rodents on a high-fat diet. ORCP 7(2):e95–e105. https://doi.org/10.1016/j.orcp.2013.01.002
Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S (2003) Effects of astaxanthin on lipopolysaccharide induced inflammation in vitro and in vivo. Invest Ophthalmol vis Sci 44(6):2694–2701
Pai S, Hebbar A, Selvaraj S (2022) A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ Sci Poll Res 29:35518–35541. https://doi.org/10.1007/s11356-022-19423-4
Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226
Pandeirada CO, Maricato E, Ferreira SS, Correia VG, Pinheiro BA, Evtuguin DV, Palma AS, Correia A, Vilanova M, Coimbra MA, Nunes C (2019) Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydr Polym 222:114962
Pane G, Cacciola G, Giacco E, Mariottini GL, Coppo E (2015) Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external otitis. Mar Drugs 13(10):440–452. https://doi.org/10.3390/md13106440
Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190. https://doi.org/10.1016/j.algal.2016.06.007
Penalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G (2020) Seaweeds as a functional ingredient for a healthy diet. Mar Drugs 18(6):301. https://doi.org/10.3390/md18060301
Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9(10):1806–1828. https://doi.org/10.3390/md9101806
Pinto LFR, Ferreira GF, Beatriz FP, Cabral FA, Maciel Filho R (2022) Lipid and phycocyanin extractions from Spirulina and economic assessment. J Supercrit Fluids 184:105567
Pourkarimi S, Hallajisani A, Alizadehdakhel A, Nouralishahi A, Golzary A (2020) Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal Agric Biotechnol 29:101771
Pradhan B, Nayak R, Patra S, Bhuyan PP, Dash SR, Ki JS, Jena M (2022) Cyanobacteria and algae-derived bioactive metabolites as antiviral agents: evidence, mode of action, and scope for further expansion: a comprehensive review in light of the SARS-CoV-2 Outbreak. Antioxidants 11(2):354. https://doi.org/10.3390/antiox11020354
Pratt R, Daniels TC, Eiler JJ, Gunnison JB, Kumler WD, Oneto JF, Strait LA, Spoehr HA, Hardin GJ, Milner HW, Smith JHC (1944) Chlorellin, an antibacterial substance from Chlorella. Sci 99(2574):351–352. https://doi.org/10.1126/science.99.2574.351
Priatni S, Ratnaningrum D, Kosasih W (2021) The screening of antidiabetic activity and the cultivation study of local marine microalgae. In IOP Conf Ser Mater Sci Eng 1011:012066. https://doi.org/10.1088/1757-899X/1011/1/012066
Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae–a review. J Algal Biomass Util 3(4):89–100
Qazi WM, Ballance S, Uhlen AK, Kousoulaki K, Haugen JE, Rieder A (2021) Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii-Impact on dough rheology and bread quality. LWT Food Sci Technol 143:111–115. https://doi.org/10.1016/j.lwt.2021.111115
Ramos-Romero S, Torrella JR, Viscor G, Torres JL (2021) Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutr 13(2):563. https://doi.org/10.3390/nu13020563
Ranadheer P, Kona R, Sreeharsha RV, Venkata MS (2019) Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic microalgae towards the synthesis of proteins and lipids. Bioresour Technol 283:373–377
Randhir A, Laird DW, Maker G, Trengove R, Moheimani NR (2020) Microalgae: a potential sustainable commercial source of sterols. Algal Res 46:101772. https://doi.org/10.1016/j.algal.2019.101772
Raposo MFDJ, De Morais RMSC, Bernardo de Morais AMM (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11(1):233–252. https://doi.org/10.3390/md11010233
Rasmussen HM, Johnson EJ (2013) Nutrients for the aging eye. Clin Interven Aging 8:741–748. https://doi.org/10.2147/CIA.S45399
Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH auxostat culture with acetic acid as principal carbon source. Lipids 36(11):1241–1246. https://doi.org/10.1007/s11745-001-0838-x
Rayens E, Norris KA (2022) Prevalence and healthcare burden of fungal infections in the United States, 2018. In: Open forum infectious diseases, vol. 9. Oxford University Press: US, pp. ofab593
Reynolds D, Huesemann M, Edmundson S, Sims A, Hurst B, Cady S, Beirne N, Freeman J, Berger A, Gao S (2021) Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: a review of antiviral potential throughout pathogenesis. Algal Res 57:102331
Ricketts TR (1966) Magnesium 2,4-divinylphaeoporphyrin a5 monomethyl ester, a protochlorophyll-like pigment present in some unicellular flagellates. Phytochemistry 5:223–229
Rohit MV, Venkata MS (2018) Quantum yield and fatty acid profile variations with nutritional mode during microalgae cultivation. Front Bioengg Biotechnol 6:111
Ryu NH, Lim Y, Park JE, Kim J, Kim JY, Kwon SW, Kwon O (2014) Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: a double-blinded, randomized, placebo-controlled study. Nutr J 13(1):1–8. https://doi.org/10.1186/1475-2891-13-57
Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS, Usov AI (2014) Chemical structure and biological activity of a highly branched (1→ 3, 1→ 6)-β-D-glucan from Isochrysis galbana. Carbohydr Polym 111:139–148
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clin Prac 1:157. https://doi.org/10.1016/j.diabres.2019.107843
Saha SK, Murray P (2018) Exploitation of microalgae species for nutraceutical purposes: cultivation aspects. Fermentation 4:46. https://doi.org/10.3390/fermentation4020046
Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae-a review. Food Res Int 48:948–960. https://doi.org/10.1016/j.foodres.2012.03.013
Samarakoon KW, O-Nam K, Ko JY, Lee JH, Kang MC, Kim D, Lee JB, Lee JS, Jeon YJ (2013) Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J Appl Phycol 25:1595–1606
Samuels R, Mani UV, Iyer UM, Nayak US (2002) Hypocholesterolemic effect of Spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 5(2):91–96. https://doi.org/10.1089/109662002760178177
Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405
Sandgruber F, Gielsdorf A, Baur AC, Schenz B, Müller SM, Schwerdtle T, Dawczynski C (2021) Variability in macro-and micronutrients of 15 commercially available microalgae powders. Mar Drugs 19(6):310. https://doi.org/10.3390/md19060310
Santos TD, de Freitas BCB, Moreira JB, Zanfonato K, Costa JAV (2016) Development of powdered food with the addition of spirulina for food supplementation of the elderly population. IFSET 37:216–220. https://doi.org/10.1016/J.IFSET.2016.07.016
Santoyo S, Rodríguez-Meizoso I, Cifuentes A, Jaime L, García-Blairsy Reina G, Señorans FJ, Ibáñez E (2009) Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT Food Sci Technol 42:1213–1218. https://doi.org/10.1016/j.lwt.2009.01.012
Santoyo S, Jaime L, Plaza M, Herrero M, Rodriguez-Meizoso I, Ibañez E, Reglero G (2012) Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J Appl Phycol 24(4):731–741
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine Saudi. J Biolog Sci 26(4):709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
Schmid B, Coelho L, Schulze PS, Pereira H, Santos T, Maia IB, Reis M, Varela J (2022) Antifungal properties of aqueous microalgal extracts. Bioresour Technol Rep, 101096. SSRN-id4060858
Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127. https://doi.org/10.1016/j.biortech.2011.07.046
Senousy HH, Abd Ellatif S, Ali S (2020) Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water. Environ Sci Pollut Res 27:18463–18474
Senthilkumar T, Ashokkumar N (2012) Impact of Chlorella pyrenoidosa on the attenuation of hyperglycemia-mediated oxidative stress and protection of kidney tissue in streptozotocin-cadmium induced diabetic nephropathic rats. Biomed Preventive Nutr 2:125–131. https://doi.org/10.1016/J.BIONUT.2012.01.006
Seo C, Sohn JH, Oh H, Kim BY, Ahn JS (2009) Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp SF-5060. Bioorg Med Chem Lett 19:6095–6097. https://doi.org/10.1016/j.bmcl.2009.09.025
Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531
Shaima AF, Yasin NHM, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel MY (2022) Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci 29(2):1043–1052. https://doi.org/10.1016/j.sjbs.2021.09.069
Sheih IC, Fang TJ, Wu TK (2009) Isolation and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 115:279–284
Sheih IC, Fang TJ, Wu TK, Lin PH (2010) Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J Agril Food Chem 58:1202–1207
Shevade DS (2021) Mucormycosis: black fungus, a deadly post-COVID infection. Microbiology 2:1
Sibi G (2015) Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment. J Adv Pharm Technol Res 6(1):7–12. https://doi.org/10.4103/2231-4040.150364
Sigamani S, Ramamurthy D, Natarajan H (2016) A review on potential biotechnological applications of microalgae. J Appl Pharm Sci 6(8):179–184
Silva J, Alves C, Pinteus S, Reboleira J, Pedrosa R, Bernardino S (2019) Chlorella. Nonvitamin and nonmineral nutritional supplements. Academic Press, pp 187–193. https://doi.org/10.1016/B978-0-12-812491-8.00026-6
Singh A, Krishna S (2019) Immunomodulatory and therapeutic potential of marine flora products in the treatment of cancer. Bioactive natural products for the management of cancer: from bench to bedside. Springer, Singapore, pp 139–166
Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508. https://doi.org/10.1016/j.jenvman.2018.04.010
Slocombe SP, Ross M, Thomas N, McNeill S, Stanley MS (2013) A rapid and general method for measurement of protein in micro-algal biomass. Bioresour Technol 129:51–57
Soto-Sierra A, Stoykova P, Nikolov ZL (2018) Extraction and fractionation of microalgae-based protein products. Algal Res 36:175–192. https://doi.org/10.1016/j.algal.2018.10.023
Sousa I, Gouveia L, Batista AP, Raymundo A, Bandarra NM (2008) Microalgae in novel food products. Food Chem Res Dev 75–112. http://hdl.handle.net/10400.5/2434
Speranza L, Pesce M, Patruno A, Franceschelli S, De Lutiis MA, Grilli A, Felaco M (2012) Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar drugs 10(4):890–899
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioengg 10(2):87–96. https://doi.org/10.1263/jbb.101.87
Sreeharsha RV, Venkata Mohan SV (2021) Symbiotic integration of bioprocesses to design a self-sustainable life supporting ecosystem in a circular economy framework. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.124712
Srimongkol P, Sangtanoo P, Songserm P, Watsuntorn W, Karnchanatat A (2022) Microalgae-based wastewater treatment for developing economic and environmental sustainability: current status and future prospects. Front Bioeng Biotechnol 7(10):904046. https://doi.org/10.3389/fbioe.2022.904046
Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod 228:1320–1333
Suetsuna K, Chen JR (2001) Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol 3:305–309. https://doi.org/10.1007/s10126-001-0012-7
Sui Y, Vlaeminck SE (2020) Dunaliella microalgae for nutritional protein: an undervalued asset. Trends Biotechnol 38(1):10–12. https://doi.org/10.1016/j.tibtech.2019.07.011
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA: a Cancer. J for Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
Sushytskyi L, Lukáč P, Synytsya A, Bleha R, Rajsiglová L, Capek P, Pohl R, Vannucci L, Čopíková J, Kaštánek P (2020) Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr Polym 246:116588. https://doi.org/10.1016/j.carbpol.2020.116588
Syed S, Arasu PI (2015) The uses of Chlorella vulgaris as antimicrobial agent and as a diet: the presence of bio-active compounds which caters the vitamins, minerals in general. Int J BioSci BioTechnol 7:185–190
Tabarzad M, Atabaki V, Hosseinabadi T (2020) Anti-inflammatory activity of bioactive compounds from microalgae and cyanobacteria by focusing on the mechanisms of action. Mol Biol Rep 47(8):6193–6205
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S (2021) Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease expert. Rev Neurotherap 21(6):625–642
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar drugs 13(10):6152–6209
Talukdar J, Dasgupta S, Nagle V, Bhadra B (2020) COVID-19: Potential of microalgae derived natural astaxanthin as adjunctive supplement in alleviating cytokine storm. Available at SSRN 3579738
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997. https://doi.org/10.1016/j.biortech.2020.122997
Tarento TD, McClure DD, Vasiljevski E, Schindeler A, Dehghani F, Kavanagh JM (2018) Microalgae as a source of vitamin K1. Algal Res 36:77–87. https://doi.org/10.1016/J.ALGAL.2018.10.008
Tejano LA, Peralta JP, Yap EES, Chang YW (2019) Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Sci Nutr 7(7):2381–3290. https://doi.org/10.1002/fsn3.1097
Thariath DV, Divakaran D, Chenicherry S (2019) Influence of salinity on the dimethylsulphoniopropionate production from Prymnesium simplex. Sust Environ Res 29(1):1–8. https://doi.org/10.1186/s42834-019-0017-4
Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119. https://doi.org/10.1007/s10811-014-0428-x
Tiong IKR, Nagappan T, Wahid MEA, Muhammad TST, Tatsuki T, Satyantini WH, Mahasri G, Sorgeloos P, Sung YY (2020) Antioxidant capacity of five microalgae species and their effect on heat shock protein 70 expression in the brine shrimp Artemia. Aquac Rep 18:100433. https://doi.org/10.1016/j.aqrep.2020.100433
Tohamy MM, Ali MA, Shaaban HA, Mohammas AG, Hasanain AM (2018) Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Scie Pol Technol Aliment 17:347–358. https://doi.org/10.17306/j.afs.0589
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Pandey A (2022) Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. https://doi.org/10.1007/s11101-021-09784-y
Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, Wainford RD (2020) International society of hypertension global hypertension practice guidelines. Hypertension 75(6):1334–1357
United Nations Department of Economic and Social Affairs (UNDES) (2017) World population projected to reach 98 billion in 2050, and112 Billion in 2100. https://population.un.org/wpp/
Uribe-Wandurraga ZN, Igual M, García-Segovia P, Martínez-Monzó J (2019) Effect of microalgae addition on mineral content, colour and mechanical properties of breadsticks. Food Funct 10:4685–4692
Velasco LA, Carrera S, Barros J (2016) Isolation, culture and evaluation of Chaetoceros muelleri from the Caribbean as food for the native scallops Argopecten Nucleus and Nodipecten Nodosus. Lat Am J Aquat Res 44:557–568
Ventura SPM, Nobre BP, Ertekin F, Hayes M, Garciá-Vaquero M, Vieira F, Koc M, Gouveia L, Aires-Barros MR, Palavra AMF (2017) Extraction of value-added compounds from microalgae. Microalgae-based biofuels and bioproducts. Woodhead Publishers, Sawston, Cambridge, pp 461–483. https://doi.org/10.1016/B978-0-08-101023-5.00019-4
Wan XZ, Ai C, Gao CYH, XX, Zhong RT, Liu B, Chen XH, Zhao C, (2019) Physicochemical characterization of a polysaccharide from green microalga Chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats. J Agril Food Chem 68(5):1186–1197. https://doi.org/10.1021/acs.jafc.9b06282
Wang S, Qi X (2022) The putative role of astaxanthin in neuroinflammation modulation: mechanisms and therapeutic potential. Front Pharmacol 13:916653. https://doi.org/10.3389/fphar.2022.916653
Wang X, Zhang X (2013) Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol Progress 29(3):681–687. https://doi.org/10.1002/btpr.1725
Wang Y, Tibbetts SM, McGinn PJ (2021) Microalgae as sources of high-quality protein for human food and protein supplements. Foods 10(12):3002. https://doi.org/10.3390/foods10123002
Washida K, Koyama T, Yamada K, Kitab M, Uemura D (2006) Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett 47:2521–2525. https://doi.org/10.1016/J.TETLET.2006.02.045
Watanabe F, Yabuta Y, Bito T, Teng F (2014) Vitamin B12-containing plant food sources for vegetarians. Nutr 6(5):1861–1873
Wilson GM, Gorgich MJ, Corrêa PS, Martins AA, Mata TM, Caetano NS (2020) Microalgae for biotechnological applications cultivation, harvesting and biomass processing. AQUAC 528:735562. https://doi.org/10.1016/j.aquaculture.2020.735562
Yang S, Wan H, Wang R, Hao D (2019) Sulfated polysaccharides from Phaeodactylum tricornutum: isolation, structural characteristics, and inhibiting HepG2 growth activity in vitro. Peer J 7:e6409
Yang Z, Hou J, Miao L (2021) Harvesting freshwater microalgae with natural polymer flocculants. Algal Res 57:102358
Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysacchride from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25
Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Li C, Ali B (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804. https://doi.org/10.1016/j.biortech.2020.122804
Yoshimoto S, Okada K, Hayashi O (2019) Immuno-regulatory and anti-infammatory actions of phycocyanin on Caco-2/U937 cells co-culture as a model of the intestinal barrier. Funct Foods Health Dis 9(7):466–483
Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13(1):1–26. https://doi.org/10.1186/s13020-018-0177-x
Zhang J, Liu L, Ren Y, Chen F (2019) Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biolog Macromol 128:761–767. https://doi.org/10.1016/j.ijbiomac.2019.02.009
Zhao C, Wu Y, Yang C, Liu B, Huang Y (2015) Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. Int J Food Sci Technol 50(8):1705–1717
Acknowledgements
Author(s) would like to convey their sincere thanks to Science and Engineering Research Board (SERB), Federation of Indian Chambers of Commerce and Industry (FICCI), India and Mr Pawan Kumar Goel, Chemical Resources (CHERESO), Panchkula, Haryana, India.
Funding
This work has been supported by the SERB, FICCI India and Chemical Resources (CHERESO), Panchkula under Prime Minister Research Fellowship Program.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author(s) do not have any conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kaur, M., Bhatia, S., Gupta, U. et al. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochem Rev 22, 903–933 (2023). https://doi.org/10.1007/s11101-022-09848-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11101-022-09848-7