CN103131862B - Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition - Google Patents
Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition Download PDFInfo
- Publication number
- CN103131862B CN103131862B CN201310079030.1A CN201310079030A CN103131862B CN 103131862 B CN103131862 B CN 103131862B CN 201310079030 A CN201310079030 A CN 201310079030A CN 103131862 B CN103131862 B CN 103131862B
- Authority
- CN
- China
- Prior art keywords
- rare earth
- add
- pretreatment
- waste
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 28
- 239000000843 powder Substances 0.000 title claims abstract description 15
- 229910001404 rare earth metal oxide Inorganic materials 0.000 title claims abstract description 11
- 238000000605 extraction Methods 0.000 title claims abstract description 10
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 33
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 33
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000001556 precipitation Methods 0.000 claims abstract description 7
- 239000002351 wastewater Substances 0.000 claims abstract description 7
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 239000006184 cosolvent Substances 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 238000007127 saponification reaction Methods 0.000 claims abstract description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 27
- -1 rare earth chloride Chemical class 0.000 claims description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 9
- 235000006408 oxalic acid Nutrition 0.000 claims description 9
- 210000003298 dental enamel Anatomy 0.000 claims description 6
- 239000012065 filter cake Substances 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 3
- 238000005352 clarification Methods 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 239000000706 filtrate Substances 0.000 claims description 3
- 239000008399 tap water Substances 0.000 claims description 3
- 235000020679 tap water Nutrition 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims 2
- 238000001354 calcination Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 10
- 238000004090 dissolution Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000012527 feed solution Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及荧光粉废料的回收利用技术领域,具体为一种预处理分解法从荧光粉废料中提取高纯稀土氧化物。 The invention relates to the technical field of recycling fluorescent powder waste, in particular to a pretreatment decomposition method for extracting high-purity rare earth oxides from fluorescent powder waste.
背景技术 Background technique
目前由于生产和使用因素,国内因荧光粉生产及产品报废达数十万吨。荧光粉废料当中普遍存在稀土配分相差,有低品味和高品味之分,然而,低品味荧光粉废料厂家只能弃之或存放之,只能处理高品味荧光粉废料。目前从荧光粉废料中回收有价元素的生产工艺通常是 :焙烧→酸溶或碱浸→净化除杂→萃取分离、提纯。普遍存在稀土废料酸溶收率低,回收稀土所用的化工辅料最终以氨、氮废水形式排放等问题,造成了大量有价资源的浪费,并对环境造成了严重污染。 At present, due to production and use factors, domestic phosphor production and product scrapping amount to hundreds of thousands of tons. Phosphor powder waste generally has a difference in the distribution of rare earths, which can be divided into low-grade and high-grade phosphor waste. However, manufacturers of low-grade phosphor waste can only discard or store them, and can only deal with high-grade phosphor waste. At present, the production process for recovering valuable elements from phosphor waste is usually: roasting→acid dissolution or alkali leaching→purification and impurity removal→extraction separation and purification. There are common problems such as low acid dissolution rate of rare earth waste, and the chemical auxiliary materials used in the recovery of rare earth are finally discharged in the form of ammonia and nitrogen wastewater, resulting in the waste of a large amount of valuable resources and serious pollution to the environment.
发明内容 Contents of the invention
本发明所解决的技术问题在于提供一种预处理分解法从荧光粉废料中提取高纯稀土氧化物,以解决上述背景技术中的问题。 The technical problem to be solved by the present invention is to provide a pretreatment decomposition method to extract high-purity rare earth oxides from fluorescent powder waste, so as to solve the above-mentioned problems in the background technology.
本发明所解决的技术问题采用以下技术方案来实现: The technical problem solved by the present invention adopts following technical scheme to realize:
预处理分解法从荧光粉废料中提取高纯稀土氧化物,包括以下6个步骤: The pretreatment decomposition method extracts high-purity rare earth oxides from phosphor waste, including the following six steps:
(1)荧光粉废料预处理;将荧光粉废料加入搪瓷反应锅内加水搅拌后调成浆液后,加温至40~80℃;缓慢加入盐酸至搪瓷反应锅内溶解运行12~20h,澄清后排放上清液;再加入自来水进行二次除杂,水洗完成后加入纯稀土溶液搅拌,恒温20~40min后加入草酸把部分溶解出的稀土进行沉淀,直至检测清液当中无稀土元素时放入板框压滤机进行板框压滤,滤液至废水处理,滤饼至氧化焙烧; (1) Phosphor powder waste pretreatment; add phosphor powder waste to the enamel reaction pot, add water and stir to make a slurry, heat to 40-80°C; slowly add hydrochloric acid to the enamel reaction pot to dissolve and run for 12-20h, after clarification Drain the supernatant; then add tap water for secondary impurity removal, add pure rare earth solution and stir after washing, keep the temperature for 20 to 40 minutes, add oxalic acid to precipitate part of the dissolved rare earth until it is detected that there are no rare earth elements in the clear liquid. Plate and frame filter press for plate and frame filter press, filtrate to wastewater treatment, filter cake to oxidation roasting;
(2)氧化焙烧;经过预处理出来的滤饼加入氢氧化钠溶液搅拌混合均匀后,通过窑炉进行焙烧氧化,控制焙烧温度为700~900℃,保温至废料焙烧完全; (2) Oxidative roasting: After the pretreated filter cake is mixed with sodium hydroxide solution and mixed evenly, it is roasted and oxidized in a kiln, and the roasting temperature is controlled at 700-900°C, and the heat is kept until the waste is roasted completely;
(3)酸解;在酸溶罐中将焙烧后的废料加水制成浆液,然后加盐酸溶解,并加入助溶剂助溶,溶液经板框压滤机过滤得到氯化稀土料液,除杂; (3) Acid hydrolysis: Add water to the roasted waste to make a slurry in an acid-dissolving tank, then add hydrochloric acid to dissolve, and add a cosolvent to aid in dissolution, and the solution is filtered through a plate and frame filter press to obtain a rare earth chloride feed liquid, and remove impurities ;
(4)萃取;利用液碱作为萃取皂化剂,往氯化稀土料液中投入液碱后并除杂即得稀土氯化物溶液,且达到废水无氨、氮排放; (4) Extraction: use liquid caustic soda as the extraction saponification agent, put liquid caustic soda into the rare earth chloride feed solution and remove impurities to obtain rare earth chloride solution, and achieve no ammonia and nitrogen discharge in wastewater;
(5)沉淀;向步骤(4)得到的稀土氯化物溶液缓慢投入纯稀土料液和草酸,温度控制60℃~70℃,利用反应釜和抽滤池通过沉淀剂进行快速沉淀得到稀土草酸物; (5) Precipitation; Slowly add pure rare earth feed solution and oxalic acid to the rare earth chloride solution obtained in step (4), control the temperature at 60°C to 70°C, and use the reaction kettle and suction filter to conduct rapid precipitation through the precipitant to obtain the rare earth oxalate ;
(6)灼烧;利用窑炉对步骤(5)得到的稀土草酸物进行1000℃高温灼烧,再经脱水、碳化、氧化得到高纯稀土氧化物。 (6) Burning: use a kiln to burn the rare earth oxalate obtained in step (5) at a high temperature of 1000°C, and then undergo dehydration, carbonization, and oxidation to obtain high-purity rare earth oxides.
有益效果: Beneficial effect:
本发明通过控制反应温度和添加助溶剂,提高了废料中稀土的回收率;采用液碱作为皂化萃取剂,达到废水无氨、氮排放,减轻了环境污染;提高回收产品质量,降低了生产成本,工艺技术具有一定的创新性。 The invention improves the recovery rate of rare earths in waste by controlling the reaction temperature and adding co-solvent; adopts liquid caustic soda as a saponification extraction agent, achieves no ammonia and nitrogen discharge in waste water, and reduces environmental pollution; improves the quality of recycled products and reduces production costs , the process technology has a certain degree of innovation.
具体实施方式 detailed description
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面进一步阐述本发明。 In order to make it easy to understand the technical means, creative features, work flow, and use methods of the present invention to achieve the purpose and effect, the present invention will be further elaborated below.
预处理分解法从荧光粉废料中提取高纯稀土氧化物,包括以下6个步骤: The pretreatment decomposition method extracts high-purity rare earth oxides from phosphor waste, including the following six steps:
(1)荧光粉废料预处理;取300g荧光粉废料加入搪瓷反应锅内,加入800ml水搅拌调成浆液后,加温至75℃;缓慢加入盐酸至搪瓷反应锅内溶解运行20h,澄清后排放上清液,再加入自来水进行二次除杂,水洗完成后加入纯稀土溶液搅拌,75℃恒温35min后加入草酸把部分溶解出的稀土进行沉淀,直至检测清液当中无稀土元素时放入板框压滤机进行板框压滤,滤液至废水处理,滤饼至氧化焙烧; (1) Phosphor powder waste pretreatment; take 300g of phosphor powder waste and add it to the enamel reaction pot, add 800ml of water and stir to make a slurry, then heat to 75°C; slowly add hydrochloric acid to the enamel reaction pot to dissolve and run for 20 hours, and discharge after clarification Add tap water to the supernatant for secondary impurity removal. After washing, add pure rare earth solution and stir. After 35 minutes at 75°C, add oxalic acid to precipitate part of the dissolved rare earth until it is detected that there is no rare earth element in the supernatant. Frame filter press for plate and frame filter press, filtrate to wastewater treatment, filter cake to oxidation roasting;
(2)氧化焙烧;经过预处理出来的滤饼加入氢氧化钠溶液搅拌混合均匀后,通过窑炉进行焙烧氧化,控制焙烧温度为700~900℃,保温至废料焙烧完全; (2) Oxidative roasting: After the pretreated filter cake is mixed with sodium hydroxide solution and mixed evenly, it is roasted and oxidized in a kiln, and the roasting temperature is controlled at 700-900°C, and the heat is kept until the waste is roasted completely;
(3)酸解;在酸溶罐中将焙烧后的废料加入1L水制成浆液,然后加盐酸溶解,并加入助溶剂助溶,溶液经板框压滤机过滤得到氯化稀土料液,除杂; (3) Acid hydrolysis: Add 1L of water to the roasted waste in an acid-dissolving tank to make a slurry, then add hydrochloric acid to dissolve, and add a cosolvent to aid in dissolution. The solution is filtered through a plate and frame filter press to obtain a rare earth chloride feed solution. cleaning;
(4)萃取;利用液碱作为萃取皂化剂,往氯化稀土料液中投入液碱后,机械搅拌后除杂即得稀土氯化物溶液,且达到废水无氨、氮排放; (4) Extraction: use liquid caustic soda as the extraction saponification agent, put liquid caustic soda into the rare earth chloride feed liquid, remove impurities after mechanical stirring to obtain rare earth chloride solution, and achieve no ammonia and nitrogen discharge in wastewater;
(5)沉淀;向步骤(4)得到的稀土氯化物溶液缓慢投入纯稀土料液和草酸,温度控制65℃,利用反应釜和抽滤池通过沉淀剂进行快速沉淀得到稀土草酸物; (5) Precipitation: Slowly add pure rare earth feed liquid and oxalic acid to the rare earth chloride solution obtained in step (4), control the temperature at 65°C, and use the reaction kettle and suction filter tank to conduct rapid precipitation through a precipitant to obtain rare earth oxalic acid;
(6)灼烧;利用窑炉对步骤(5)得到的稀土草酸物进行1000℃高温灼烧,再经脱水、碳化、氧化得到高纯稀土氧化物。 (6) Burning: use a kiln to burn the rare earth oxalate obtained in step (5) at a high temperature of 1000°C, and then undergo dehydration, carbonization, and oxidation to obtain high-purity rare earth oxides.
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。 The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments, and what described in the above-mentioned embodiments and the description only illustrates the principles of the present invention, and the present invention will also have other functions without departing from the spirit and scope of the present invention. Variations and improvements all fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310079030.1A CN103131862B (en) | 2013-03-13 | 2013-03-13 | Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310079030.1A CN103131862B (en) | 2013-03-13 | 2013-03-13 | Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103131862A CN103131862A (en) | 2013-06-05 |
CN103131862B true CN103131862B (en) | 2016-09-14 |
Family
ID=48492310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310079030.1A Active CN103131862B (en) | 2013-03-13 | 2013-03-13 | Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103131862B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039698A (en) * | 2015-04-21 | 2015-11-11 | 南京林业大学 | Method of high-effectively recycling rare earth from waste CRT fluorescent powder |
CN104946896B (en) * | 2015-07-15 | 2017-07-14 | 江西理工大学 | A kind of method of the Extraction of rare earth from useless fluorescent RE powder |
CN105200250A (en) * | 2015-09-30 | 2015-12-30 | 中铝广西国盛稀土开发有限公司 | Method of recovering rare-earth elements from oxalic acid precipitate rare-earth mother liquor |
CN110627104A (en) * | 2019-08-30 | 2019-12-31 | 赣州市恒源科技股份有限公司 | Method for preparing high-purity rare earth oxide by recovering fluorescent powder waste |
CN110923439A (en) * | 2019-12-09 | 2020-03-27 | 四川省冕宁县方兴稀土有限公司 | Method for improving rare earth ore conversion rate in rare earth wet smelting |
CN111392756A (en) * | 2020-05-06 | 2020-07-10 | 龙南县中利再生资源开发有限公司 | Process for extracting high-purity rare earth oxide from fluorescent powder waste |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251514A (en) * | 1985-04-30 | 1986-11-08 | Mitsubishi Chem Ind Ltd | Recovery method for high-purity rare earth oxides |
JP2004285467A (en) * | 2003-01-27 | 2004-10-14 | National Institute Of Advanced Industrial & Technology | Method for separating and recovering Y and Eu |
CN102115822A (en) * | 2010-11-18 | 2011-07-06 | 吴泉锦 | Method for recovering rare earth oxide from fluorescent powder and polishing powder waste |
CN102242270A (en) * | 2011-08-10 | 2011-11-16 | 于向真 | Method for recovering rare earth from catalyst waste residues |
CN102634667A (en) * | 2012-04-26 | 2012-08-15 | 中国科学院城市环境研究所 | Method for recycling rear-earth elements form abandoned fluorescent lamps |
CN102660688A (en) * | 2012-05-10 | 2012-09-12 | 北京科技大学 | Method for recovering rare earth from waste rare earth luminescent material |
-
2013
- 2013-03-13 CN CN201310079030.1A patent/CN103131862B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251514A (en) * | 1985-04-30 | 1986-11-08 | Mitsubishi Chem Ind Ltd | Recovery method for high-purity rare earth oxides |
JP2004285467A (en) * | 2003-01-27 | 2004-10-14 | National Institute Of Advanced Industrial & Technology | Method for separating and recovering Y and Eu |
CN102115822A (en) * | 2010-11-18 | 2011-07-06 | 吴泉锦 | Method for recovering rare earth oxide from fluorescent powder and polishing powder waste |
CN102242270A (en) * | 2011-08-10 | 2011-11-16 | 于向真 | Method for recovering rare earth from catalyst waste residues |
CN102634667A (en) * | 2012-04-26 | 2012-08-15 | 中国科学院城市环境研究所 | Method for recycling rear-earth elements form abandoned fluorescent lamps |
CN102660688A (en) * | 2012-05-10 | 2012-09-12 | 北京科技大学 | Method for recovering rare earth from waste rare earth luminescent material |
Also Published As
Publication number | Publication date |
---|---|
CN103131862A (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103131862B (en) | Extraction of High Purity Rare Earth Oxide from Phosphor Powder Waste by Pretreatment Decomposition | |
CN110205503B (en) | Method for decomposing bastnaesite | |
CN112725622B (en) | Method for separating and recovering rare earths in waste cerium-based rare earth polishing powder by two-step acid leaching | |
CN101988154B (en) | New technology for preparing electrolytic manganese metal solution and recycling iron by reducing pyrolusite with iron scraps | |
CN103103349B (en) | Method for decomposing bayan obo rare earth ore concentrate by acid and alkali combination at low temperature | |
CN101463426A (en) | Comprehensive utilization method for red mud | |
CN103820640B (en) | A kind of method of wet underwater welding iron from red soil nickel ore | |
CN104120267A (en) | Method for extracting high-purity scandium oxide from titanium dioxide waste acid and Bayer-process red mud by virtue of high-temperature acid leaching | |
CN101186969A (en) | A method for separating rare earths, iron, copper, cobalt and tungsten from alloys | |
CN105948104A (en) | Method for preparing sodium stannate by using tin anode slime oxygen pressure alkaline leaching | |
CN107460345A (en) | A kind of method for producing high titanium slag | |
CN106586992B (en) | A kind of technique of the recycling of mixed rare earth concentrates liquid alkaline Decomposition-Synthesis fluorine and phosphorus | |
CN102732727B (en) | Method for extracting vanadium from high vanadium-sodium-aluminum-silicon slag | |
CN114534706B (en) | Method for preparing titanium-silicon carrier by recycling waste denitration catalyst | |
CN111004933A (en) | Six-stage continuous complete dissolution method for monazite optimal dissolution slag | |
CN101955226B (en) | Extraction process for lixiviating vanadium from vanadium ores in alkali liquor by adopting microwave method | |
CN102899488A (en) | Resource transforming method for separating rare earth from fluorine by utilizing rare earth ore concentrate hydrochloric leachate | |
CN111017991A (en) | High-purity zirconium oxychloride extraction process | |
CN203144495U (en) | A phosphor powder waste pretreatment and decomposition device | |
KR102319523B1 (en) | Separation and recovery of valuable metals from desulfurized waste catalyst | |
CN103131875A (en) | A preparation process for extracting high-purity rare earth oxides from waste rare earth luminescent materials | |
CN101270416A (en) | Zinc Bayer process for treating zinc oxide materials | |
CN101205085A (en) | Method for producing secondary ammonium molybdate by molybdenum recovery material | |
CN103589861B (en) | Method for microwave sulfating roasting-water leaching treatment of jarosite slag | |
CN113005304A (en) | Method for recovering bismuth from bismuth oxychloride waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 341000 Fukang Industrial Zone, Longnan economic and Technological Development Zone, Longnan City, Ganzhou City, Jiangxi Province Patentee after: Longnan Zhongli renewable resources development Co.,Ltd. Address before: 341000 Fukang Industrial Zone, Longnan County, Ganzhou City, Jiangxi Province Patentee before: LONGNAN COUNTY ZHONGLI REGENERATION RESOURCE DEVELOPMENT Co.,Ltd. |
|
CP03 | Change of name, title or address |