CN113106160B - Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity - Google Patents

Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity Download PDF

Info

Publication number
CN113106160B
CN113106160B CN202110391145.9A CN202110391145A CN113106160B CN 113106160 B CN113106160 B CN 113106160B CN 202110391145 A CN202110391145 A CN 202110391145A CN 113106160 B CN113106160 B CN 113106160B
Authority
CN
China
Prior art keywords
hsa
mir
gene
microrna
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110391145.9A
Other languages
Chinese (zh)
Other versions
CN113106160A (en
Inventor
何志颖
刘中民
王喜城
张文成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai East Hospital
Original Assignee
Shanghai East Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai East Hospital filed Critical Shanghai East Hospital
Priority to CN202110391145.9A priority Critical patent/CN113106160B/en
Publication of CN113106160A publication Critical patent/CN113106160A/en
Application granted granted Critical
Publication of CN113106160B publication Critical patent/CN113106160B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种评估肝谱系细胞成熟度的标志物、双组学试剂盒及构建方法。本发明首次以新视角阐述了细胞发育中具有时序特征并且存在调控关系的microRNA集和基因集,建立了一种与调节肝细胞分化成熟相关的“转录因子‑microRNA‑靶基因”调控网络,并获得了肝谱系特异性的基因标签和microRNA标签,这些标签或它们的组合可作为肝谱系细胞潜在的新标志物。本发明也提供了肝谱系细胞的双组学试剂盒,为大规模扩增稳定的肝谱系细胞、监测肝谱系细胞的体外培养状态提供了新方案。The invention provides a marker, a dual-omics kit and a construction method for evaluating the maturity of liver lineage cells. For the first time, the present invention expounds the microRNA sets and gene sets with time-sequential characteristics and regulatory relationship in cell development from a new perspective, and establishes a "transcription factor-microRNA-target gene" regulatory network related to regulating the differentiation and maturation of hepatocytes, and Liver lineage-specific gene signatures and microRNA signatures were obtained, which, or their combination, could serve as potential new markers of liver lineage cells. The invention also provides a dual-omics kit for hepatic lineage cells, which provides a new solution for large-scale expansion of stable hepatic lineage cells and monitoring the in vitro culture state of hepatic lineage cells.

Description

评估肝谱系细胞成熟度的标志物、双组学试剂盒及构建方法Markers, dual-omics kits and construction methods for assessing the maturity of hepatic lineage cells

技术领域technical field

本发明涉及生物医药领域;更具体地,本发明涉及评估肝谱系细胞成熟度的标志物、双组学试剂盒及构建方法。The present invention relates to the field of biomedicine; more specifically, the present invention relates to a marker for evaluating the maturity of hepatic lineage cells, a dual-omics kit and a construction method.

背景技术Background technique

干细胞作为具有自我更新和多向分化潜能的细胞类型,为终末期疾病导致的器官功能丧失的治疗提供了有效的治疗新策略。目前,国际上已经有十余种干细胞治疗产品获批上市,而中国目前尚无产品获批。随着中国干细胞治疗产品管理规范逐渐完善,目前中国已有51项干细胞临床研究获得国家卫健委备案,另外有3款干细胞药品被药监局受理,获IND批准进入临床试验。肝脏作为人体代谢最重要的器官,以肝脏功能性缺失为特点的终末期肝病是危害人类健康的重大危害。中国是肝病大国,目前中国已经有8个与肝脏疾病相关的干细胞临床研究项目通过了备案。Stem cells, as a cell type with self-renewal and multilineage differentiation potential, provide an effective new therapeutic strategy for the treatment of organ function loss caused by end-stage diseases. At present, more than ten kinds of stem cell therapy products have been approved for marketing in the world, but there is no product approved in China. With the gradual improvement of China's stem cell therapy product management standards, 51 stem cell clinical studies in China have been filed with the National Health and Medical Commission, and 3 stem cell drugs have been accepted by the Food and Drug Administration and approved by the IND to enter clinical trials. The liver is the most important organ of human metabolism, and end-stage liver disease characterized by loss of liver function is a major hazard to human health. China is a big country with liver diseases. At present, 8 stem cell clinical research projects related to liver diseases have passed the filing.

然而,无论已经上市或者正在进行临床试验和临床研究阶段的干细胞产品,目前干细胞产品的生产工艺大多基于传统的二维培养体系。二维培养体系下,干细胞增殖能力有限、细胞干细胞容易丧失,且该体系人工成本高、生产损耗大、细胞批次质量不稳定,不适于干细胞产品产业化制备和生产。比较二维培养体系,三维培养模拟细胞在体内的自然状态,不但可以有效的维持干细胞和扩增过程中的干性,同时克服二维培养条件的耗材和制备空间损耗的问题,因此在干细胞产品规模化扩增中具有极大的优势。However, regardless of the stem cell products that have been marketed or are undergoing clinical trials and clinical research stages, the current production process of stem cell products is mostly based on the traditional two-dimensional culture system. Under the two-dimensional culture system, the proliferation ability of stem cells is limited, stem cells are easily lost, and the system has high labor costs, large production losses, and unstable cell batch quality, which is not suitable for the industrial preparation and production of stem cell products. Compared with the two-dimensional culture system, the three-dimensional culture simulates the natural state of cells in the body, which can not only effectively maintain the stemness of stem cells and the stemness during the expansion process, but also overcome the problems of consumables and preparation space loss in two-dimensional culture conditions. Therefore, in stem cell products It has great advantages in large-scale expansion.

目前,利用模拟细胞体内微环境的方式,基于微载体的干细胞三维培养扩增已经取得了非常好的进展。在微载体的基础上结合生物反应器,目前已经可以实现对包括脐带间充质干细胞在内的干细胞的规模化扩增,实现短期内获得百万级细胞的生产工艺。然而,从“小试”规模化的过渡尚有诸多问题有待明确,对干细胞在规模化扩增中的干性的维持的稳定性的监测,对于干细胞产品的质量(安全性和有效性)的保障是该过程中的重中之重。At present, the three-dimensional culture and expansion of stem cells based on microcarriers has made very good progress by simulating the microenvironment in vivo. On the basis of microcarriers combined with bioreactors, it is now possible to achieve large-scale expansion of stem cells including umbilical cord mesenchymal stem cells, and realize the production process of obtaining millions of cells in a short period of time. However, there are still many issues to be clarified in the transition from "small test" to large-scale expansion. The monitoring of the stability of the stemness of stem cells in large-scale expansion, and the quality (safety and effectiveness) of stem cell products Safeguarding is a top priority in the process.

目前常用可用于干细胞三维规模化扩增稳定性检测的指标,大多都是用于鉴定二维培养条件下干细胞特性的指标。比如脐带间充质干细胞,二维培养条件下维持的脐带间充质干细胞需满足干细胞表面标志、基因表达和成脂、成骨、成软骨分化的能力。这些指标同样作为金标准,广泛的应用于脐带间充质干细胞的三维规模化扩增细胞质量鉴定。At present, the commonly used indicators that can be used to detect the stability of three-dimensional large-scale expansion of stem cells are mostly indicators used to identify the characteristics of stem cells under two-dimensional culture conditions. For example, umbilical cord mesenchymal stem cells, umbilical cord mesenchymal stem cells maintained under two-dimensional culture conditions need to meet the surface markers of stem cells, gene expression and the ability of adipogenic, osteogenic, and chondrogenic differentiation. These indicators are also used as gold standards and are widely used in the quality identification of three-dimensional large-scale expansion of umbilical cord mesenchymal stem cells.

与脐带间充质干细胞不同,成熟的肝细胞在体外增殖能力有限。因此为了获得充足移植数量的肝细胞,目前本发明人通过获得可在体外增殖的肝前体细胞或者肝干细胞,并建立肝前体细胞或者肝干细胞的规模化扩增体系。获得充足数量可移植的细胞后,在移植前对肝前体细胞或者肝干细胞实现向肝细胞的诱导分化,从而获得充足的功能性的肝细胞进行移植治疗终末期肝病。Unlike umbilical cord mesenchymal stem cells, mature hepatocytes have limited ability to proliferate in vitro. Therefore, in order to obtain a sufficient number of hepatocytes for transplantation, the present inventors currently obtain hepatic precursor cells or hepatic stem cells that can proliferate in vitro, and establish a large-scale expansion system for hepatic precursor cells or hepatic stem cells. After obtaining a sufficient number of transplantable cells, the liver precursor cells or liver stem cells are induced to differentiate into hepatocytes before transplantation, so as to obtain sufficient functional liver cells for transplantation to treat end-stage liver disease.

基于本治疗策略中涉及对肝前体细胞或者肝干细胞的扩增,以及肝前体细胞或者肝干细胞向肝细胞的功能性分化成熟两个阶段。如何实现在第一个阶段过程中对肝前体细胞或者肝干细胞规模化扩增中稳定性的检测,以及如何实现在第二个阶段中对肝细胞功能性成熟程度的评价,是实现规模化扩增的肝前体细胞或者肝干细胞治疗终末期肝病的关键。Based on this treatment strategy, the expansion of liver precursor cells or liver stem cells and the functional differentiation and maturation of liver precursor cells or liver stem cells into liver cells are involved. How to realize the detection of the stability of liver precursor cells or liver stem cells in the large-scale expansion during the first stage, and how to realize the evaluation of the functional maturity of liver cells in the second stage, is to realize large-scale Expanded hepatic precursor cells or hepatic stem cells are key to the treatment of end-stage liver disease.

目前,对于第一个阶段肝前体细胞和肝干细胞的干性的评价需基于干细胞基因表达和成熟标志低表达的方式进行评价,尚缺乏高敏感的评价标志。而对第二阶段成熟的肝细胞的稳定性检测和质量控制,需以更为复杂的功能性鉴定指标进行综合评价,其中包括细胞形态、肝细胞特异性基因表达水平检测、吲哚箐绿摄取/排秘、脂肪合成、白蛋白分泌、尿素合成、药物代谢等。由于其评价标准复杂,难以在规模化扩增过程中推广。因此,亟需一种可对不同阶段肝干细胞、肝前体细胞和肝细胞进行干性或者成熟程度评价的标志。At present, the evaluation of the stemness of liver precursor cells and liver stem cells in the first stage needs to be evaluated based on the expression of stem cell genes and the low expression of maturation markers, and there is still a lack of highly sensitive evaluation markers. The stability detection and quality control of mature hepatocytes in the second stage need to be comprehensively evaluated with more complex functional identification indicators, including cell morphology, detection of hepatocyte-specific gene expression levels, and indocyanine green uptake. Detoxification, fat synthesis, albumin secretion, urea synthesis, drug metabolism, etc. Due to its complex evaluation criteria, it is difficult to promote in the process of large-scale expansion. Therefore, there is an urgent need for a marker that can evaluate the stemness or maturity of liver stem cells, liver precursor cells and hepatocytes at different stages.

人胆管树干细胞(hBTSCs)是位于胆道内胆管周围腺体的干细胞。胆管树干细胞的分离及其体内外特性表明,它们可以分化为成熟的肝细胞、胆管细胞和胰腺内分泌细胞。在所有年龄的供体中,在胆管树的主要导管中都发现了胆管树干细胞,在器官损伤过程中有可能产生功能性细胞类型。在肝实质胆管的远端,称为Hering管,被认为是人肝干细胞(hHpSCs)所在的生态位。胆管树干细胞已经成功地应用于拯救患有肝脏功能障碍疾病的动物和患有终末期肝病的患者。然而,正如在从多能干细胞(包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs))产生肝细胞的研究中所发现的,hBTSCs或hHpSCs成熟为肝细胞所需的时间需要数月,并且通常获得功能低效的肝细胞。同时,在体外培养胆管树干细胞、肝干细胞和成熟肝细胞时,往往面临难以预判肝干细胞的发育状态和成熟度的问题,在大规模成熟肝细胞或肝前体细胞时无法快速诊断其细胞状态。Human biliary tree stem cells (hBTSCs) are stem cells located in the peribiliary glands within the biliary tract. Isolation of biliary tree stem cells and their in vitro and in vivo characterization suggest that they can differentiate into mature hepatocytes, cholangiocytes, and pancreatic endocrine cells. Biliary tree stem cells were found in the major ducts of the biliary tree in donors of all ages, potentially giving rise to functional cell types during organ injury. At the distal end of the bile ducts in the hepatic parenchyma, known as the canal of Hering, is thought to be the niche where human hepatic stem cells (hHpSCs) reside. Biliary tree stem cells have been successfully used to rescue animals with liver dysfunction diseases and patients with end-stage liver disease. However, as found in studies of hepatocyte generation from pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the time required for hBTSCs or hHpSCs to mature into hepatocytes takes months, and Often less efficient hepatocytes are obtained. At the same time, when culturing biliary tree stem cells, hepatic stem cells and mature hepatocytes in vitro, it is often difficult to predict the developmental state and maturity of hepatic stem cells, and it is impossible to quickly diagnose the cells of mature hepatocytes or liver precursor cells on a large scale. state.

因此,本领域迫切需要拥有快速检测和预判肝细胞成熟度的方案,这是成功实施基于干细胞的肝病治疗的一项基本任务。Therefore, there is an urgent need in this field to have a solution for rapid detection and prediction of the maturity of hepatocytes, which is a basic task for the successful implementation of stem cell-based treatment of liver diseases.

发明内容Contents of the invention

本发明的目的在于提供评估肝谱系细胞成熟度的标志物、双组学试剂盒及构建方法。The purpose of the present invention is to provide a marker for evaluating the maturity of hepatic lineage cells, a dual-omics kit and a construction method.

在本发明的第一方面,提供microRNA标签或基因标签或其组合在制备用于评估肝谱系细胞成熟度的检测试剂、试剂盒或检测装置中的应用,所述microRNA标签包括选自下组的10~17个microRNA(如12、14、16个):In the first aspect of the present invention, there is provided a microRNA tag or a gene tag or a combination thereof in the preparation of a detection reagent, a kit or a detection device for assessing the maturity of liver lineage cells, the microRNA tag includes a group selected from 10-17 microRNAs (such as 12, 14, 16):

Figure BDA0003016752590000031
Figure BDA0003016752590000031

所述基因标签包括选自下组的10~23个基因(如12、14、16、18、20、22个):The gene signature includes 10 to 23 genes (such as 12, 14, 16, 18, 20, 22) selected from the following group:

Figure BDA0003016752590000032
Figure BDA0003016752590000032

在另一优选例中,所述基因包括其转录本(mRNA)。In another preferred example, the gene includes its transcript (mRNA).

在另一优选例中,所述评估肝谱系细胞成熟度包括对不同阶段肝干细胞、肝前体细胞、肝细胞或胆管树干细胞(hBTSCs)进行干性或者成熟程度评价。In another preferred example, the assessment of the maturity of the hepatic lineage cells includes evaluating the stemness or maturity of hepatic stem cells, hepatic precursor cells, hepatocytes or biliary tree stem cells (hBTSCs) at different stages.

在另一优选例中,所述10~17个microRNA中,包括:hsa-let-7a-5p、hsa-let-7e-5p、hsa-let-7i-5p、hsa-mir-7-5p和hsa-let-7f-2-3p中的1~5个,较佳地2~5个(如3或4个)。In another preferred example, the 10-17 microRNAs include: hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7i-5p, hsa-mir-7-5p and 1-5, preferably 2-5 (such as 3 or 4) of hsa-let-7f-2-3p.

在另一优选例中,所述10~23个基因中,包括PIK3R1和PTEN基因标签中的1或2个。In another preferred example, the 10-23 genes include 1 or 2 of PIK3R1 and PTEN gene signatures.

在另一优选例中,所述的评估肝谱系细胞成熟度通过检测细胞内所述microRNA标签或基因标签或其组合的表达来进行;所述的microRNA标签表达水平显著高则表明细胞成熟度越低(越幼稚)或干性越高,表达水平显著低则表明细胞成熟度越高(越成熟)或干性越低;所述基因标签表达水平显著高则表明细胞成熟度越高(越成熟)或干性越低,表达水平显著低则表明细胞成熟度越低(越幼稚)或干性越高。In another preferred example, the assessment of the maturity of the hepatic lineage cells is carried out by detecting the expression of the microRNA label or gene label or a combination thereof in the cell; a significantly higher expression level of the microRNA label indicates that the more mature the cell Low (more immature) or higher stemness, significantly lower expression levels indicate higher cell maturity (more mature) or lower stemness; significantly higher expression levels of the gene signature indicate higher cell maturity (more mature ) or lower stemness, a significantly lower expression level indicates lower cell maturity (more immature) or higher stemness.

在另一优选例中,所述用于评估肝谱系细胞成熟度的检测试剂包括(但不限于):针对所述microRNA标签或所述基因标签的PCR检测试剂、原位杂交试剂或免疫检测试剂;较佳地,包括(但不限于):特异性扩增所述microRNA标签或所述基因标签的引物,特异性识别所述microRNA标签或所述基因标签的探针或特异性结合所述基因标签编码的蛋白的抗体;更佳地,所述检测试剂为引物,检测microRNA标签的引物的核苷酸序列选自如SEQ ID NO:18~34所示(下游引物来自天根试剂盒),检测基因标签的引物的核苷酸序列选自如SEQ IDNO:35~80所示。In another preferred example, the detection reagents for assessing the maturity of hepatic lineage cells include (but not limited to): PCR detection reagents, in situ hybridization reagents or immunological detection reagents for the microRNA tag or the gene tag preferably, including (but not limited to): primers for specifically amplifying the microRNA tag or the gene tag, specific recognition of the microRNA tag or the gene tag probe or specific binding to the gene The antibody of the protein encoded by the label; more preferably, the detection reagent is a primer, and the nucleotide sequence of the primer for detecting the microRNA label is selected from those shown in SEQ ID NO: 18-34 (downstream primers are from Tiangen kit), and the detection The nucleotide sequences of the primers of the gene tags are selected from those shown in SEQ ID NO:35-80.

在另一优选例中,所述的检测装置包括(但不限于):芯片、探针组(模块)、引物探针组(模块)、电泳装置或基因测序仪器。In another preferred example, the detection device includes (but not limited to): a chip, a probe set (module), a primer probe set (module), an electrophoresis device or a gene sequencing instrument.

在另一优选例中,所述的评估肝谱系细胞成熟度包括:评估细胞分化过程或分化后细胞状态,评估细胞重编程过程或重编程后细胞状态。In another preferred example, the evaluation of the maturity of the hepatic lineage cells includes: evaluating the process of cell differentiation or the state of cells after differentiation, and evaluating the process of cell reprogramming or the state of cells after reprogramming.

在本发明的另一方面,提供一种用于评估肝谱系细胞成熟度的试剂盒或检测装置,其中包括用于评估肝谱系细胞成熟度的检测试剂,包括(但不限于):针对microRNA标签或基因标签或其组合的检测试剂,所述microRNA标签包括选自下组的10~17个microRNA(如12、14、16个):In another aspect of the present invention, a kit or detection device for assessing the maturity of hepatic lineage cells is provided, which includes detection reagents for assessing the maturity of hepatic lineage cells, including (but not limited to): targeting microRNA tags Or a gene tag or a combination detection reagent, the microRNA tag includes 10 to 17 microRNAs (such as 12, 14, 16) selected from the following group:

Figure BDA0003016752590000041
Figure BDA0003016752590000041

所述基因标签包括选自下组的10~23个基因(如12、14、16、18、20、22个):The gene signature includes 10 to 23 genes (such as 12, 14, 16, 18, 20, 22) selected from the following group:

Figure BDA0003016752590000042
Figure BDA0003016752590000042

在本发明的另一方面,提供一种用于评估肝谱系细胞成熟度的系统,其包括检测单元以及数据分析单元;In another aspect of the present invention, a system for assessing the maturity of hepatic lineage cells is provided, comprising a detection unit and a data analysis unit;

所述检测单元包括:可测得microRNA标签或基因标签或其组合的表达水平的检测试剂,或含有所述检测试剂的试剂盒或检测装置;所述检测试剂包括(但不限于):针对microRNA标签或基因标签或其组合的检测试剂,所述microRNA标签包括选自下组的10~17个microRNA(如12、14、16个):The detection unit includes: a detection reagent that can measure the expression level of a microRNA tag or a gene tag or a combination thereof, or a kit or a detection device containing the detection reagent; the detection reagent includes (but is not limited to): A detection reagent for a tag or a gene tag or a combination thereof, the microRNA tag includes 10 to 17 microRNAs (such as 12, 14, 16) selected from the following group:

Figure BDA0003016752590000043
Figure BDA0003016752590000043

所述基因标签包括选自下组的10~23个microRNA(如12、14、16、18、20、22个):The gene signature includes 10-23 microRNAs (such as 12, 14, 16, 18, 20, 22) selected from the following group:

Figure BDA0003016752590000044
Figure BDA0003016752590000044

所述数据分析单元包括:用于对检测单元的检测结果(所测得的microRNA标签或基因标签或其组合的表达水平)进行分析处理的处理单元,获得肝谱系细胞成熟度的评估结果。The data analysis unit includes: a processing unit for analyzing and processing the detection results of the detection unit (measured expression levels of microRNA tags or gene tags or combinations thereof), to obtain evaluation results of the maturity of hepatic lineage cells.

在一个优选例中,所述检测试剂包括(但不限于):PCR检测试剂、原位杂交试剂或免疫检测试剂,更佳地,包括(但不限于):特异性扩增所述microRNA标签或所述基因标签的引物、特异性识别所述microRNA标签或所述基因标签的探针或特异性结合所述基因标签编码的蛋白的抗体;更佳地,所述检测试剂为引物,检测microRNA标签的引物的核苷酸序列选自如SEQ ID NO:18~34所示(下游引物来自天根试剂盒),检测基因标签的引物的核苷酸序列选自如SEQ ID NO:35~80所示。In a preferred example, the detection reagents include (but not limited to): PCR detection reagents, in situ hybridization reagents or immunological detection reagents, more preferably, include (but not limited to): specific amplification of the microRNA tag or Primers for the gene tag, probes that specifically recognize the microRNA tag or the gene tag, or antibodies that specifically bind to the protein encoded by the gene tag; preferably, the detection reagent is a primer that detects the microRNA tag The nucleotide sequences of the primers are selected from those shown in SEQ ID NOs: 18-34 (the downstream primers are from Tiangen kit), and the nucleotide sequences of the primers for detecting gene tags are selected from those shown in SEQ ID NOs: 35-80.

在另一优选例中,所述的检测装置包括(但不限于):芯片、探针组(模块)、引物探针组(模块)、电泳装置或基因测序仪器。In another preferred example, the detection device includes (but not limited to): a chip, a probe set (module), a primer probe set (module), an electrophoresis device or a gene sequencing instrument.

在本发明的另一方面,提供一种评估肝谱系细胞成熟度的方法,包括:利用权利要求8或9所述的系统评估;包括:使用所述检测单元检测所述microRNA标签或基因标签或其组合的表达水平,以及使用所述数据分析单元对检测单元的检测结果进行分析处理,获得肝谱系细胞成熟度结果;其中,所述的microRNA标签表达水平显著高则表明细胞成熟度越低(越幼稚)或干性越高,表达水平显著低则表明细胞成熟度越高(越成熟)或干性越低;所述基因标签表达水平显著高则表明细胞成熟度越高(越成熟)或干性越低,表达水平显著低则表明细胞成熟度越低(越幼稚)或干性越高。In another aspect of the present invention, there is provided a method for assessing the maturity of hepatic lineage cells, comprising: using the system assessment described in claim 8 or 9; comprising: using the detection unit to detect the microRNA label or gene label or The expression level of its combination, and use the data analysis unit to analyze and process the detection result of the detection unit to obtain the result of the maturity of the hepatic lineage cells; wherein, the significantly higher expression level of the microRNA tag indicates that the lower the cell maturity ( The more immature) or the higher the stemness, the significantly lower expression level indicates that the cell maturity is higher (more mature) or the stemness is lower; the significantly higher expression level of the gene signature indicates that the cell maturity is higher (more mature) or The lower the stemness, the significantly lower expression levels indicate less mature (naive) or higher stemness of the cells.

在另一优选例中,包括以下步骤:In another preferred example, the following steps are included:

(1)获取待测细胞的核酸样品;(1) obtaining a nucleic acid sample of the cell to be tested;

(2)检测所述细胞的microRNA标签或基因标签或其组合的表达水平;(2) Detecting the expression level of microRNA tags or gene tags or a combination thereof of the cells;

(3)进行以下表达显著性差异分析:(3) Perform the following significant difference analysis of expression:

满足以下一或多种(1~5种,如1、2、3、4、5种)情形,表明细胞成熟度越高或干性越低:Satisfying one or more of the following conditions (1-5, such as 1, 2, 3, 4, 5) indicates that the higher the cell maturity or the lower the stemness:

①50%以上基因标签(10~23个中的50%以上)高表达,① More than 50% of the gene signatures (more than 50% of 10 to 23) are highly expressed,

②所有基因标签(10~23个)的表达在整体上具有统计学意义提高,② The expression of all gene signatures (10-23) has a statistically significant increase on the whole,

③50%以上microRNA标签(10~17个microRNA中50%以上)低表达,③Low expression of more than 50% microRNA tags (more than 50% of 10-17 microRNAs),

④所有microRNA标签(10~17个)的表达具有统计学意义降低,④The expressions of all microRNA tags (10-17) were statistically significantly reduced,

⑤基因标签和microRNA标签进行双标签整合差异分析也显著性差异,即基因标签在实验组中的整体高表达和microRNA标签的整体低表达相比亦具有显著性;⑤ There is also a significant difference in the double-label integration differential analysis of gene tags and microRNA tags, that is, the overall high expression of gene tags in the experimental group is also significant compared with the overall low expression of microRNA tags;

满足以下一或多种(1~5种,如1、2、3、4、5种)情形,表明细胞成熟度越低或干性越高:Satisfying one or more of the following conditions (1-5, such as 1, 2, 3, 4, 5) indicates that the lower the cell maturity or the higher the stemness:

(a)50%以上基因标签(10~23个中的50%以上)低表达,(a) More than 50% of gene signatures (more than 50% of 10 to 23) are underexpressed,

(b)所有基因标签(10~23个)的表达在整体上具有统计学意义降低,(b) The expression of all gene signatures (10-23) is statistically significantly lower overall,

(c)50%以上microRNA标签(10~17个microRNA中50%以上)高表达,(c) More than 50% of microRNA tags (more than 50% of 10 to 17 microRNAs) are highly expressed,

(d)所有microRNA标签(10~17个)的表达具有统计学意义提高,(d) The expression of all microRNA tags (10-17) has a statistically significant increase,

(e)基因标签和microRNA标签进行双标签整合差异分析也显著性差异,即基因标签在实验组中的整体低表达和microRNA标签的整体高表达相比亦具有显著性;(e) There is also a significant difference in the double-label integration differential analysis of gene tags and microRNA tags, that is, the overall low expression of gene tags in the experimental group is also significant compared with the overall high expression of microRNA tags;

若显著性差异分析结果无显著,表明细胞状态稳定,无明显的干性变化和成熟度改变。If the result of the significant difference analysis is not significant, it indicates that the cell state is stable, and there is no obvious change in stemness and maturity.

在另一优选例中,所述的“整体上具有统计学意义提高”或“整体上具有统计学意义降低”是指对该组标签进行整体的表达统计分析,获得具有统计学意义的代表表达水平的值,例如可以进行包括但不限于以下统计:表达中位值统计,表达均值统计,GSVA分析。In another preferred example, the "overall statistically significant increase" or "overall statistically significant decrease" refers to performing an overall statistical analysis of the expression of the group of tags to obtain a statistically significant representative expression The value of the level, for example, can include but not limited to the following statistics: expression median statistics, expression mean statistics, GSVA analysis.

在另一优选例中,所述方法用于针对不同数据库中收集到的各种状态下的肝谱系细胞(如但不限于包括胚胎肝干细胞、内胚层干细胞、肝前体细胞、成熟肝细胞、成人肝细胞、诱导分化的成熟肝细胞等),进行成熟度分析。In another preferred example, the method is used to target liver lineage cells in various states collected in different databases (such as but not limited to including embryonic liver stem cells, endoderm stem cells, liver precursor cells, mature liver cells, Adult hepatocytes, mature hepatocytes induced to differentiate, etc.) for maturity analysis.

在另一优选例中,所述方法用于对细胞体外规模化培养、连续传代培养或者重编程过程中,成熟度或干性是否发生变化进行快速判断。In another preferred embodiment, the method is used to quickly judge whether the maturity or stemness of cells changes during large-scale culture in vitro, continuous subculture or reprogramming.

在另一优选例中,所述的评估肝谱系细胞成熟度的方法为不以疾病的诊断结果为直接目的的方法,或为非诊断性的方法。In another preferred example, the method for assessing the maturity of hepatic lineage cells is a method that does not directly aim at diagnosing a disease, or is a non-diagnostic method.

在本发明的另一方面,提供一种建立细胞谱系相关“转录因子-microRNA-靶基因”调控网络的方法,包括:In another aspect of the present invention, a method for establishing a cell lineage-related "transcription factor-microRNA-target gene" regulatory network is provided, including:

(1)获得细胞谱系不同阶段的细胞,进行microRNA测序和RNA-seq测序(例如,可通过对公共数据库进行数据整合和清洗获得);(1) Obtain cells at different stages of the cell lineage, perform microRNA sequencing and RNA-seq sequencing (for example, can be obtained by data integration and cleaning of public databases);

(2)通过主成分分析(PCA分析),确定细胞发育的时序特征;(2) Determine the temporal characteristics of cell development through principal component analysis (PCA analysis);

(3)进行短时间序列表达分析(STEM分析),获得随时序变化的microRNA集和mRNA集;(3) Perform short time series expression analysis (STEM analysis) to obtain microRNA sets and mRNA sets that change over time;

(4)进行GO或KEGG富集分析;(4) GO or KEGG enrichment analysis;

(5)使用microRNA相关靶基因预测数据库获得随着时间发育表达水平逐渐发生变化的microRNA的靶基因;较佳地,所述数据库包括(但不限于)miRDB,miRTarBase,TargetScan,miRWalk和DIANA-MicroT-CDS数据库;(5) Use the microRNA-related target gene prediction database to obtain the target gene of the microRNA whose expression level gradually changes over time; preferably, the database includes (but not limited to) miRDB, miRTarBase, TargetScan, miRWalk and DIANA-MicroT - CDS database;

(6)与随着谱系发育表达水平发生变化的基因进行取交集,进而获得不仅是随着谱系发育逐渐变化并且具有互相调控作用的microRNA标签和靶基因标签。(6) Intersect with the genes whose expression levels change with lineage development, and then obtain microRNA tags and target gene tags that not only change gradually with lineage development but also have mutual regulatory effects.

在另一优选例中,步骤(6)之后,还包括:进一步通过包括(但不限于)下组的方法验证所述microRNA标签和靶基因标签的可靠性:GO和KEGG富集分析、相关性分析、三维主成分分析(PCA)。In another preferred example, after step (6), it also includes: further verifying the reliability of the microRNA tags and target gene tags by methods including (but not limited to) the following group: GO and KEGG enrichment analysis, correlation Analysis, three-dimensional principal component analysis (PCA).

在另一优选例中,进一步还包括:从TransmiR v2.0数据库下载实验支持的谱系相关microRNAs及其调节转录因子之间的相互作用,获得能够调控microRNA标签的转录因子。In another preferred example, it further includes: downloading experimentally supported lineage-associated microRNAs and their interactions between regulatory transcription factors from the TransmiR v2.0 database to obtain transcription factors capable of regulating microRNA tags.

在另一优选例中,进一步还包括:通过cytoscape进行“转录因子-microRNA-靶基因”的调控网络的绘制。In another preferred embodiment, it further includes: mapping the regulatory network of "transcription factor-microRNA-target gene" by cytoscape.

在另一优选例中,进一步还包括:多维度验证方法1:获取正常胚胎发育过程中的细胞谱系测序结果,通过GSEA或GSVA分析,验证调控网络结果的可靠性。In another preferred example, it further includes: multi-dimensional verification method 1: obtaining cell lineage sequencing results during normal embryonic development, and verifying the reliability of regulatory network results through GSEA or GSVA analysis.

在另一优选例中,进一步还包括:多维度验证方法2:获取谱系重编程过程中的细胞重编程测序结果,通过GSEA或GSVA分析,验证调控网络结果的可靠性。In another preferred example, it further includes: multi-dimensional verification method 2: obtaining the sequencing results of cell reprogramming in the process of lineage reprogramming, and verifying the reliability of the regulatory network results through GSEA or GSVA analysis.

在另一优选例中,进一步还包括:通过qRT-PCR等实验手段对获得的microRNA和基因进行验证和对体外连续传代后重编程细胞成熟度的监测。In another preferred example, it further includes: verifying the obtained microRNA and genes by qRT-PCR and other experimental means, and monitoring the maturity of reprogrammed cells after serial passage in vitro.

本发明的其它方面由于本文的公开内容,对本领域的技术人员而言是显而易见的。Other aspects of the invention will be apparent to those skilled in the art from the disclosure herein.

附图说明Description of drawings

图1、构建细胞谱系相关“转录因子-microRNA-靶基因”调控网络的基本步骤和流程。Figure 1. The basic steps and process of constructing the cell lineage-related "transcription factor-microRNA-target gene" regulatory network.

图2、本发明构建的独特系统获得肝谱系相关“转录因子-microRNA-靶基因”调控网络。Figure 2. The unique system constructed by the present invention obtains the regulatory network of "transcription factor-microRNA-target gene" related to liver lineage.

图3A-F、17个microRNA和23个基因中大部分都具有负相关性,并验证“17microRNA”标签的准确性。Figure 3A-F, most of the 17 microRNAs and 23 genes are negatively correlated, and verify the accuracy of the "17microRNA" label.

图4A-H、胚胎发育相关数据库验证“23基因”标签的准确性。Figure 4A-H, the accuracy of the label "23 genes" verified by the database related to embryonic development.

图5A-G、谱系重编程相关数据库验证“23基因”标签的准确性。Figure 5A-G, lineage reprogramming-related database verification of the accuracy of the "23 genes" label.

图6、microRNA标签在体外细胞培养重编程中的应用。Figure 6. Application of microRNA tags in in vitro cell culture reprogramming.

图7、基因标签在体外细胞培养重编程中的应用。Figure 7. Application of gene tags in in vitro cell culture reprogramming.

具体实施方式Detailed ways

本发明人经过大量的分析、研究和筛选,首次以新视角阐述了肝谱系细胞发育过程中存在具有时序特征并且存在调控关系的microRNA和基因,建立了一种与调节肝细胞分化成熟相关的“转录因子-microRNA-靶基因”调控网络,并获得了肝谱系特异性的基因标签和microRNA标签,这些标签或它们的组合可作为肝谱系细胞潜在的新标志物。在此基础上,本发明也提供了肝谱系相关的双组学试剂盒,为大规模扩增稳定的肝谱系细胞、监测肝谱系细胞的体外培养状态提供了新方案。After a lot of analysis, research and screening, the present inventors expounded for the first time from a new perspective that there are microRNAs and genes with timing characteristics and regulatory relationships in the development of liver lineage cells, and established a "regulatory mechanism" related to the regulation of liver cell differentiation and maturation. Transcription factor-microRNA-target gene” regulatory network, and obtained liver lineage-specific gene signatures and microRNA signatures, these signatures or their combination can be used as potential new markers of liver lineage cells. On this basis, the present invention also provides a hepatic lineage-related dual-omics kit, which provides a new solution for large-scale expansion of stable hepatic lineage cells and monitoring the in vitro culture status of hepatic lineage cells.

术语the term

如本发明所用,所述的“评估”包括“检测”、“测定”、“分析”、“预测”或“评价”。As used in the present invention, the "assessment" includes "detection", "measurement", "analysis", "prediction" or "evaluation".

如本发明所用,所述的“试剂盒”可以指用于实施本发明公开的方法的材料或试剂的系统。As used herein, the "kit" may refer to a system of materials or reagents used to practice the methods disclosed herein.

如本发明所用,术语“高表达”、“表达水平高”相互可以交换的,并且在应用含义上应当意指与对照物或“阈值”相比较,至少有2%、3%、4%、5%、6%、7%、8%、9%或10%、优选的至少15%或20%、更优选25%、30%、50%、80%、100%或更显著的提高。例如,可对至少存在一个表达强度超过阈值的基因重复用Student’s T-test进行检测,以确定显著性。As used in the present invention, the terms "high expression" and "high expression level" are interchangeable with each other and shall mean at least 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 50%, 80%, 100% or more significant increase. For example, the Student's T-test can be used to repeatedly detect at least one gene whose expression intensity exceeds the threshold to determine significance.

如本发明所用,术语“低表达”、“表达水平低”相互可以交换的,并且在应用含义上应当意指与“对照物”或“阈值”相比较,至少有2%、3%、4%、5%、6%、7%、8%、9%或10%、优选的至少15%或20%、更优选25%、30%、50%、80%、100%或更显著的降低。例如,可对至少存在一个表达强度低于阈值的基因重复用Student’s T-test进行检测,以确定显著性。As used in the present invention, the terms "low expression" and "low expression level" are interchangeable with each other and shall mean at least 2%, 3%, 4% compared with "control" or "threshold" in the applied meaning %, 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 50%, 80%, 100% or more significant reduction . For example, the Student's T-test can be used to repeatedly detect at least one gene whose expression intensity is lower than the threshold to determine significance.

如本发明所用,基因或microRNA表达的“对照物”或“阈值”的设定是本领域技术人员在本发明的主旨的基础上易于设定的。选择合适的“对照物”或“阈值”是实验设计的例行部分,例如可首先基于成熟程度已明确的细胞进行相应microRNA或基因的表达水平进行具有统计学意义的分析,将所获得的表达值作为“对照”或“阈值”。As used in the present invention, the setting of "control" or "threshold" of gene or microRNA expression can be easily set by those skilled in the art based on the gist of the present invention. Choosing an appropriate "control" or "threshold" is a routine part of the experimental design. For example, the expression level of the corresponding microRNA or gene can be analyzed for statistical significance based on the expression level of the corresponding microRNA or gene in the cells whose maturity has been determined, and the obtained expression Value as "control" or "threshold".

对于细胞成熟度的界定,可以以本领域(如细胞分化或细胞重编程领域)已有的界定标准进行。The definition of cell maturity can be carried out according to existing definition standards in this field (such as the field of cell differentiation or cell reprogramming).

“转录因子-microRNA-靶基因”调控网络"Transcription factor-microRNA-target gene" regulatory network

本发明人通过大量的研究和分析,在本发明中揭示了一种特定的microRNA和mRNA的调节网络,其与肝谱系干细胞成熟为有功能的肝细胞密切相关联。Through a lot of research and analysis, the present inventors revealed in the present invention a specific regulatory network of microRNA and mRNA, which is closely related to the maturation of hepatic lineage stem cells into functional hepatocytes.

microRNA(microRNAs)为一类约22个核苷酸长度的短RNA,可以通过切割信使mRNA分子(mRNA),或通过结合到其3’非翻译区(UTRs)的互补区以形成mRNA诱导的沉默复合物来抑制其翻译来调节信使mRNA。利用这些负向调控机制,microRNAs参与多种发育和生物细胞过程,包括干细胞分化和细胞周期调节等。同时,microRNA通过靶向与一种或多种信号通路相关的各种基因来发挥其调节功能,包括HIPPO、WNT/β-连环蛋白、PI3K/AKT信号通路等。然而,哪些microRNA与肝细胞发育的时序性具有相关性,microRNA参与的调控网络以及microRNA如何在早期谱系阶段操纵干细胞的谱系成熟,包括肝干细胞向肝细胞的分化,是本领域尚未阐明的。microRNA (microRNAs) is a class of short RNAs about 22 nucleotides in length that can form mRNA-induced silencing by cleaving messenger mRNA molecules (mRNA) or by binding to the complementary regions of their 3' untranslated regions (UTRs) complex to inhibit its translation to regulate messenger mRNA. Using these negative regulatory mechanisms, microRNAs are involved in a variety of developmental and biological cellular processes, including stem cell differentiation and cell cycle regulation. At the same time, microRNAs exert their regulatory functions by targeting various genes related to one or more signaling pathways, including HIPPO, WNT/β-catenin, PI3K/AKT signaling pathways, etc. However, which microRNAs are relevant to the timing of hepatocyte development, the regulatory network that microRNAs participate in, and how microRNAs manipulate the lineage maturation of stem cells at early lineage stages, including the differentiation of hepatic stem cells to hepatocytes, have not been elucidated in the art.

本发明人在研究中发现,当将肝细胞移植到肝损伤动物模型中时,肝细胞发生肝分化并产生功能性肝细胞以挽救肝损伤;然而,促进和维持胆管树干细胞分化的确切触发因素和调节因子却是未明的,这促使了本发明人的探索工作。本发明人对肝谱系的四个阶段(胆管树干细胞(hBTSCs)、肝干细胞(hHpSCs)、肝祖细胞(hHBs)和成熟肝细胞(hAHeps))进行microRNA-seq和RNA-seq测序数据的分析。在此基础上,经过大量的分析工作,揭示了潜在的能够调节肝细胞分化成熟的“转录因子-microRNA-靶基因”调控网络。The present inventors found in their studies that when hepatocytes were transplanted into an animal model of liver injury, hepatocytes underwent hepatic differentiation and produced functional hepatocytes to rescue liver injury; however, the exact triggers that promote and maintain biliary tree stem cell differentiation and regulatory factors are unknown, which prompted the inventors' search work. The inventors analyzed microRNA-seq and RNA-seq sequencing data for four stages of the hepatic lineage: biliary tree stem cells (hBTSCs), hepatic stem cells (hHpSCs), hepatic progenitor cells (hHBs) and mature hepatocytes (hAHeps) . On this basis, after a lot of analysis work, a potential "transcription factor-microRNA-target gene" regulatory network that can regulate the differentiation and maturation of hepatocytes was revealed.

本发明也提供了一种如何构建细胞发育成熟谱系过程中“转录因子-microRNA-靶基因”的调控网络的方法,本发明的图1以及实施例中给出的该方法的优选的操作方式。The present invention also provides a method of how to construct the regulatory network of "transcription factor-microRNA-target gene" in the process of cell development and maturation lineage, the preferred operation mode of this method given in Figure 1 of the present invention and the examples.

在提供“转录因子-microRNA-靶基因”调控网络的基础上,本发明人不仅仅获得了肝谱系相关细胞潜在的新标志物,还通过多种验证手段(microRNA测序、RNA-seq测序、单细胞测序、qRT-PCR)验证了其有效性和可应用性。并因此研发了肝谱系的相关双组学试剂盒,为大规模扩增稳定的肝谱系相关细胞、监测肝谱系相关细胞的体外培养状态提供了新的思路和方案。On the basis of providing a "transcription factor-microRNA-target gene" regulatory network, the inventors not only obtained potential new markers of liver lineage-related cells, but also obtained a variety of verification methods (microRNA sequencing, RNA-seq sequencing, single Cell sequencing, qRT-PCR) verified its validity and applicability. As a result, a hepatic lineage-related dual-omics kit was developed, which provides new ideas and solutions for large-scale expansion of stable hepatic lineage-related cells and monitoring the in vitro culture status of hepatic lineage-related cells.

本发明上述调控网络的建立方案,也可被应用于分析肝谱系细胞以外的其他类型的细胞。干细胞可以分化为多种细胞类型,藉由本发明的这一分析方法,也可针对干细胞向其它种类细胞分化过程或反之的重编程过程加以分析,获得与其分化过程或重编程密切相关、能够反映其分化或重编程走向(成熟度)的microRNA和/或靶基因。The establishment scheme of the above-mentioned regulatory network of the present invention can also be applied to the analysis of other types of cells other than the hepatic lineage cells. Stem cells can be differentiated into various cell types. By means of the analysis method of the present invention, it is also possible to analyze the differentiation process of stem cells to other types of cells or vice versa. Differentiation or reprogramming towards (maturity) microRNAs and/or target genes.

本发明提供了完整的预测细胞谱系发育的构建“转录因子-microRNA-靶基因”调控网络的方法,为研究更多细胞谱系发育中的编码基因和非编码基因之间的调控关系提供了完整的预测系统。The present invention provides a complete method for predicting the development of cell lineages and constructing a "transcription factor-microRNA-target gene" regulatory network, and provides a complete method for studying the regulatory relationship between coding genes and non-coding genes in the development of more cell lineages. prediction system.

本发明的方法对于多种物种的肝谱系细胞具有普适性,例如但不限于灵长类动物(包括人)、啮齿类动物(如小鼠、大鼠)等。The method of the present invention is universally applicable to hepatic lineage cells of various species, such as but not limited to primates (including humans), rodents (such as mice, rats) and the like.

microRNA标签和基因标签及其应用microRNA tags and gene tags and their applications

基于本发明人的新发现,本发明揭示了肝谱系特异性的两个组学标签:“23基因”标签和“17microRNA”标签。本发明也揭示了评估肝谱系细胞成熟程度的标志物、试剂盒及方法。优选地,通过针对测试集数据进行富集分析和多角度分析,我们还优选出不仅仅能够作为标签中的标志物之一,而且可能发挥着影响肝细胞分化成熟功能的分子,这些核心基因是PI3K/AKT信号通路的PIK3R1和PTEN基因,优选的microRNA是let-7家族中的hsa-let-7a-5p、hsa-let-7e-5p、hsa-let-7i-5p、hsa-mir-7-5p、hsa-let-7f-2-3p。Based on the inventors' novel findings, the present invention reveals two omics signatures specific to the liver lineage: the "23 gene" signature and the "17 microRNA" signature. The present invention also discloses markers, kits and methods for assessing the maturity of hepatic lineage cells. Preferably, by performing enrichment analysis and multi-angle analysis on the test set data, we also optimize molecules that can not only be used as one of the markers in the label, but also may play a role in affecting the differentiation and maturation of liver cells. These core genes are The PIK3R1 and PTEN genes of the PI3K/AKT signaling pathway, the preferred microRNA is hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7i-5p, hsa-mir-7 in the let-7 family -5p, hsa-let-7f-2-3p.

可以利用本发明披露的上述microRNA标签和基因标签,来作为评估肝谱系细胞成熟度的判断标志(标志物)。从而可用于了解感兴趣的细胞(待测细胞)处于怎样的状态。所述的状态包括但不限于:稳定(非分化、非重编程)状态、分化(趋于成熟)状态、幼稚化(趋于干性增强)状态等。所述评估肝谱系细胞成熟度包括但不限于:对不同阶段肝干细胞、肝前体细胞、肝细胞或胆管树干细胞(hBTSCs)进行干性或者成熟程度评价。The above-mentioned microRNA signature and gene signature disclosed in the present invention can be used as judgment marks (markers) for assessing the maturity of hepatic lineage cells. Therefore, it can be used to understand the state of the cells of interest (cells to be tested). The states include, but are not limited to: stable (non-differentiated, non-reprogrammed) state, differentiated (towards maturation) state, naive (towards increased stemness) state, and the like. The assessment of the maturity of hepatic lineage cells includes but is not limited to: evaluating the stemness or maturity of hepatic stem cells, hepatic precursor cells, hepatocytes or biliary tree stem cells (hBTSCs) at different stages.

利用本发明披露的上述microRNA标签和基因标签,所评估的细胞可以是机体分离的细胞,也可以是体外培养、传代的细胞。所评估的细胞可以是天然的细胞、诱变的细胞或基因工程化改造的细胞。Using the above-mentioned microRNA tags and gene tags disclosed in the present invention, the evaluated cells can be cells isolated from the body, or cells cultured and passaged in vitro. The cells evaluated can be natural cells, mutagenized cells or genetically engineered cells.

本发明也提供了一种用于评估肝谱系细胞成熟度的系统,其包括检测单元以及数据分析单元;所述检测单元包括:特异性检测所述microRNA标签或基因标签或其组合的试剂或装置;所述数据分析单元包括:用于对检测单元的检测结果(所测得的microRNA标签或基因标签或其组合的表达水平)进行分析处理的处理单元,获得肝谱系细胞成熟度的评估结果。所述特异性检测microRNA标签或基因标签或其组合的试剂可包括,但不限于:PCR检测试剂、原位杂交试剂或免疫检测试剂。所述特异性检测microRNA标签或基因标签或其组合的装置可包括,但不限于:芯片,探针组(模块),引物探针组(模块),电泳装置或基因测序仪器。The present invention also provides a system for evaluating the maturity of hepatic lineage cells, which includes a detection unit and a data analysis unit; the detection unit includes: a reagent or device for specifically detecting the microRNA tag or gene tag or a combination thereof The data analysis unit includes: a processing unit for analyzing and processing the detection results of the detection unit (measured expression levels of microRNA tags or gene tags or a combination thereof) to obtain evaluation results of the maturity of hepatic lineage cells. The reagents for specifically detecting microRNA tags or gene tags or combinations thereof may include, but are not limited to: PCR detection reagents, in situ hybridization reagents or immunological detection reagents. The device for specifically detecting microRNA tags or gene tags or combinations thereof may include, but is not limited to: a chip, a probe set (module), a primer probe set (module), an electrophoresis device or a gene sequencing instrument.

作为一种优选的方式,根据所述microRNA标签或基因标签或其组合的序列,可以设计特异性扩增它们的引物,来进行检测。聚合酶链反应(PCR)技术是本领域技术人员熟知的技术,其基本原理是体外酶促合成特异DNA片段的方法。本发明的方法可采用常规的PCR技术进行。本发明人优化设计了适合于检测的引物,提供了一种优化的从核酸样品中获得microRNA标签或基因标签或其组合的扩增产物的方法,所述的方法包括:以核酸样品为模板,利用选自针对microRNA标签的SEQ ID NO:18~34所示(下游引物来自天根试剂盒)或针对基因标签的SEQ ID NO:35~80的引物对进行PCR扩增,获得扩增产物。利用所述的引物,采用常规的PCR扩增方法即可获得较为理想的扩增结果。As a preferred manner, according to the sequences of the microRNA tags or gene tags or combinations thereof, primers for specifically amplifying them can be designed for detection. Polymerase chain reaction (PCR) technology is well known to those skilled in the art, and its basic principle is the method of enzymatically synthesizing specific DNA fragments in vitro. The method of the present invention can be carried out using conventional PCR techniques. The inventors optimized and designed primers suitable for detection, and provided an optimized method for obtaining amplification products of microRNA tags or gene tags or combinations thereof from nucleic acid samples, the method comprising: using the nucleic acid sample as a template, Use a primer pair selected from SEQ ID NOs: 18-34 for microRNA tags (downstream primers are from Tiangen kit) or SEQ ID NOs: 35-80 for gene tags to perform PCR amplification to obtain amplified products. Utilizing the primers, a relatively ideal amplification result can be obtained by using a conventional PCR amplification method.

作为一种可实施的方式,可以利用引物结合探针的方法,从而在定性和定量检测上更为灵敏快捷。例如,可采用Taqman实时荧光PCR检测技术:在PCR扩增时,在加入一对引物的同时加入一个特异性的标记有荧光素的Taqman探针,该探针为一寡核苷酸,其两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’→3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,荧光素游离于反应体系中,在特定光激发下发出荧光,随着循环次数的增加,被扩增的目的基因片段呈指数规律增长,通过实时检测与之对应的随扩增而变化荧光信号强度,求得Ct(cycle threshold,Ct)值。Ct值,即PCR扩增过程中扩增产物的荧光信号达到设定的阈值时所经过的扩增循环次数,它与模板的起始拷贝数的对数存在线性关系,模板DNA量越多,荧光达阈值的循环数越少,也即Ct值越小,从而实现对起始模板定量及定性的分析。As an implementable way, the method of combining primers with probes can be used, so that the qualitative and quantitative detection is more sensitive and faster. For example, Taqman real-time fluorescent PCR detection technology can be used: during PCR amplification, a specific Taqman probe labeled with fluorescein is added while a pair of primers are added, the probe is an oligonucleotide, and its two Each end is labeled with a reporter fluorophore and a quencher fluorophore. When the probe is intact, the fluorescent signal emitted by the reporter group is absorbed by the quencher group; during PCR amplification, the 5'→3' exonuclease activity of Taq enzyme will degrade the probe, so that the reporter fluorescent group and quencher The fluorescent group is separated, the fluorescein is free in the reaction system, and emits fluorescence under specific light excitation. With the increase of the number of cycles, the amplified target gene fragments grow exponentially. The intensity of the fluorescent signal was changed with the increase, and the Ct (cycle threshold, Ct) value was obtained. The Ct value, that is, the number of amplification cycles passed when the fluorescent signal of the amplified product reaches the set threshold during the PCR amplification process, has a linear relationship with the logarithm of the initial copy number of the template. The fewer cycles the fluorescence reaches the threshold value, that is, the smaller the Ct value, so as to realize the quantitative and qualitative analysis of the starting template.

作为一种可实施的方式,根据所述microRNA标签或基因标签或其组合的序列,可设计出适合的探针,固定在微阵列(microarray)或基因芯片(又称为“DNA芯片”)上。所述的基因芯片一般包括固相载体和有序固定在所述固相载体上的寡核苷酸探针,所述寡核苷酸探针由连续核苷酸组成。为了增强检测信号的强度,提高检测结果的准确率,杂交相关位点最好位于所在探针的中部。所述固相载体可采用基因芯片领域的各种常用材料,例如但不限于尼龙膜,经活性基团(如醛基、氨基、异硫晴酸基等)修饰的玻片或硅片、未修饰的玻片、塑料片等。所述探针还可以在其5’端包含一段氨基修饰的1-30聚的聚脱氧胸苷酸(聚dT)。所述的基因芯片上包含针对至少一种针对本发明所述microRNA标签或基因标签或其组合的探针;更优选的,所述的基因芯片上包含针对两种或两种以上针对所述microRNA标签或基因标签或其组合的探针;最优选的,在一张或多张基因芯片上包含针对所有本发明所述的microRNA标签或基因标签或其组合的探针。As an implementable manner, according to the sequence of the microRNA tag or gene tag or their combination, suitable probes can be designed and immobilized on a microarray or gene chip (also called "DNA chip") . The gene chip generally includes a solid phase carrier and oligonucleotide probes fixed on the solid phase carrier in an orderly manner, and the oligonucleotide probes are composed of continuous nucleotides. In order to enhance the intensity of the detection signal and improve the accuracy of the detection results, the hybridization-related site is preferably located in the middle of the probe. The solid phase carrier can adopt various commonly used materials in the field of gene chips, such as but not limited to nylon membranes, glass slides or silicon wafers modified with active groups (such as aldehyde groups, amino groups, isothiocyanate groups, etc.), Modified glass slides, plastic sheets, etc. The probe may also contain a stretch of amino-modified 1-30 polydeoxythymidylic acid (poly-dT) at its 5' end. The gene chip contains probes for at least one microRNA tag or gene tag or a combination thereof of the present invention; more preferably, the gene chip contains probes for two or more probes for the microRNA Probes for tags or gene tags or combinations thereof; most preferably, probes for all microRNA tags or gene tags or combinations thereof described in the present invention are included on one or more gene chips.

制备用于PCR扩增的细胞DNA的方法很多。用PCR方法扩增基因特定片段的方法已经是本领域公知技术,本发明中没有特别的限制。对扩增产物进行标记可以通过采用5’端带标记基团的引物进行扩增的方法,也可通过在扩增过程中掺入带标记基团的单核苷酸的方法,或通过在杂交时加入与扩增产物特异性结合的检测探针的方法实现,所述标记基团包括但不限于:地高辛分子(DIG)、生物素分子(Bio)、荧光素及其衍生生物分子(FITC等)、其他荧光分子(如Cy3、Cy5等)、碱性磷酸酶(AP)、辣根过氧化物酶(HRP)等。这些标记及其标记方法都已是本领域众所周知的常规技术,也可以参照王申五主编的《基因诊断技术-非放射性操作手册》;J.萨姆布鲁克,D.W.拉塞尔主编,《分子克隆实验指南》等。There are many methods for preparing cellular DNA for PCR amplification. The method of using PCR to amplify a specific segment of a gene is well known in the art, and there is no particular limitation in the present invention. The amplified product can be amplified by using a primer with a labeling group at the 5' end, or by incorporating a single nucleotide with a labeling group during the amplification process, or by hybridizing When adding a detection probe that specifically binds to the amplification product, the labeling group includes but is not limited to: Digoxigenin molecule (DIG), biotin molecule (Bio), fluorescein and its derivative biomolecules ( FITC, etc.), other fluorescent molecules (such as Cy3, Cy5, etc.), alkaline phosphatase (AP), horseradish peroxidase (HRP), etc. These labels and their labeling methods are well-known conventional techniques in the art, and you can also refer to "Gene Diagnosis Technology-Non-Radioactive Operation Manual" edited by Wang Shenwu; J. Sambrook, edited by D.W. Russell, "Molecular Cloning Experiment Guide, etc.

作为本发明的优选方式,提供了一种利用所述的“23基因”标签或“17microRNA”标签或其部分作为肝谱系细胞成熟程度标志物进行评估的方法。包括以下步骤:1)从扩增中的肝干细胞或肝前体细胞取样;2)通过试剂盒检测所述细胞的23个基因表达水平和17个microRNA的表达水平;3)初步对比不同发育程度细胞的23个基因和17个microRNA的表达水平;4)对23个基因和17个microRNA进行表达差异分析。As a preferred mode of the present invention, a method for evaluating the maturity degree of hepatic lineage cells using the "23 gene" signature or "17microRNA" signature or a part thereof is provided. The method comprises the following steps: 1) sampling from the expanding hepatic stem cells or hepatic precursor cells; 2) detecting the expression levels of 23 genes and 17 microRNAs of the cells through a kit; 3) preliminary comparison of different developmental degrees The expression levels of 23 genes and 17 microRNAs in the cells; 4) Analysis of the differential expression of the 23 genes and 17 microRNAs.

作为本发明的优选方式,可以通过均值、中位值或GSVA基因集变异分析等计算标签分析的方法计算,获得基因标签和microRNA标签的表达水平,此时先进行单标签分析,标签与对照组进行差异分析,若显著性差异,则提示细胞状态发生变化。若基因标签显著高表达,提示肝谱系细胞成熟分化,若microRNA标签显著高表达,提示肝谱系细胞幼稚化,若无明显变化,则提示细胞状态稳定。As a preferred mode of the present invention, the expression levels of gene tags and microRNA tags can be obtained by calculating the method of tag analysis such as mean value, median value or GSVA gene set variation analysis. Perform difference analysis, and if there is a significant difference, it indicates that the cell state has changed. Significantly high expression of gene signatures indicates the maturation and differentiation of hepatic lineage cells, significantly high expression of microRNA signatures indicates naive hepatic lineage cells, and no significant change indicates stable cell state.

作为本发明的优选方式,可以进行双标签联合分析,若microRNA标签表达越低而基因标签越高,则代表该组细胞更加成熟。若microRNA标签表达越高而基因标签越低,则代表该组细胞干性增强,若双标签无显著性差异,提示细胞状态稳定。As a preferred mode of the present invention, double-label joint analysis can be performed. If the expression of the microRNA label is lower and the gene label is higher, it means that the group of cells is more mature. If the expression of the microRNA label is higher and the gene label is lower, it means that the stemness of the cells in this group is enhanced. If there is no significant difference in the double label, it indicates that the cell state is stable.

综合上述的结果,得出实验组细胞与对照组细胞成熟度之间的关系。通过操作简便的双组学试剂盒方案和多种统计学分析手段,为体外长期培养和扩增肝谱系相关细胞提供了新的双组学标志物,并且提供了快捷、便利的预测成熟度方式,为稳定传代提供便捷的监测方式。Based on the above results, the relationship between the maturity of the cells in the experimental group and the cells in the control group was obtained. Through the easy-to-operate dual-omics kit scheme and a variety of statistical analysis methods, it provides a new dual-omics marker for long-term culture and expansion of liver lineage-related cells in vitro, and provides a fast and convenient way to predict maturity , providing a convenient monitoring method for stable passage.

本发明还提供一种用于检测的试剂盒,所述试剂盒可包括用于存储、运输反应试剂或装置(例如在适当容器中的引物、探针等)和/或配合材料(例如:缓冲液、执行评估的书面说明等)或将其从一个位置递送到另一个位置的系统。例如,试剂盒可包括一个或多个包含相关反应试剂和/或配合材料的外壳(例如:盒子)。这些内容物可以同时或单独地投递给预期的接收者。The present invention also provides a kit for detection, which may include reaction reagents or devices (such as primers, probes, etc.) fluid, written instructions for performing the assessment, etc.) or a system for delivering it from one location to another. For example, a kit can include one or more enclosures (eg, boxes) containing relevant reagents and/or complexing materials. These contents may be delivered to the intended recipient simultaneously or separately.

此外,所述的试剂盒中还可包括用于提取DNA、PCR、杂交、显色等所需的各种试剂,包括但不限于:抽提液、扩增液、杂交液、酶、对照液、显色液、洗液、抗体等。In addition, the kit can also include various reagents required for DNA extraction, PCR, hybridization, color development, etc., including but not limited to: extraction solution, amplification solution, hybridization solution, enzyme, control solution , chromogenic solution, washing solution, antibody, etc.

此外,所述的试剂盒中还可包括使用说明书和/或芯片图像分析软件等。In addition, the kit may also include instructions for use and/or chip image analysis software and the like.

本发明首先揭示了肝谱系发育过程中“23基因”标签和“17microRNA”标签的重要作用,并揭示了这两个不同组学的标签与随着肝谱系的发育具有明显的负相关性,从而提供了一种新的评估肝谱系相关细胞发育成熟度的有效方法、试剂盒和标志物,对监测肝谱系细胞体外状态和快速大规模体外扩增用于肝衰竭等相关的肝前体细胞和成熟肝细胞具有重要意义。The present invention first reveals the important role of the "23 gene" label and the "17microRNA" label in the development of the liver lineage, and reveals that these two different omics labels have a significant negative correlation with the development of the liver lineage, thereby Provides a new effective method, kit and marker for assessing the developmental maturity of hepatic lineage-related cells, which is useful for monitoring the in vitro state of hepatic lineage cells and rapid large-scale in vitro expansion for liver failure and other related hepatic precursor cells and Mature hepatocytes are of great importance.

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. Experimental methods not indicating specific conditions in the following examples are usually according to conventional conditions such as edited by J. Sambrook et al., Molecular Cloning Experiment Guide, Third Edition, Science Press, 2002, or according to the conditions described in the manufacturer suggested conditions.

材料和方法Materials and methods

1、同一谱系中不同时序阶段细胞的芯片和RNA-seq测序数据的准备1. Microarray and RNA-seq sequencing data preparation of cells at different time series stages in the same lineage

所有15个数据集,包括本发明人的和其他大量RNA-seq,scRNA-seq,micro-RNA-seq数据,均从Gene Expression Omnibus(GEO)数据库中收集(http://www.NCBI.NLM.NIH.gov/geo)。All 15 datasets, including the inventor's and other massive RNA-seq, scRNA-seq, micro-RNA-seq data, were collected from the Gene Expression Omnibus (GEO) database (http://www.NCBI.NLM .NIH.gov/geo).

其中,包括使用了本发明人之前已发表的4个数据集:Among them, including the use of 4 data sets published before the inventor:

GSE101133(Yan F et al.Human embryonic stem cell-derived hepatoblastsare an optimal lineage stage for hepatitis C virus infection.Hepatology.(2017)66:717-735.doi:10.1002/hep.29134);GSE101133(Yan F et al.Human embryonic stem cell-derived hepatitis are an optimal lineage stage for hepatitis C virus infection.Hepatology.(2017)66:717-735.doi:10.1002/hep.29134);

GSE75141(Wu H et al.Reversible transition between hepatocytes andliver progenitors for in vitro hepatocyte expansion.Cell Res.(2017)27:709-712.doi:10.1038/cr.2017.47);GSE75141(Wu H et al.Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion.Cell Res.(2017)27:709-712.doi:10.1038/cr.2017.47);

GSE105019(Fu GB et al.Expansion and differentiation of humanhepatocyte-derived liver progenitor-like cells and their use for the study ofhepatotropic pathogens.Cell Res.(2019)29:8-22.doi:10.1038/s41422-018-0103-x);和GSE105019(Fu GB et al.Expansion and differentiation of humanhepatocyte-derived liver progenitor-like cells and their use for the study ofhepatotropic pathogens.Cell Res.(2019)29:8-22.doi:10.1038/s41422-018-0103- x); and

GSE116113(Fu GB et al.Expansion and differentiation of humanhepatocyte-derived liver progenitor-like cells and their use for the study ofhepatotropic pathogens.Cell Res.(2019)29:8-22.doi:10.1038/s41422-018-0103-x)。GSE116113(Fu GB et al.Expansion and differentiation of humanhepatocyte-derived liver progenitor-like cells and their use for the study ofhepatotropic pathogens.Cell Res.(2019)29:8-22.doi:10.1038/s41422-018-0103- x).

其中,也包括来自其他来源的11个数据集:Among them, 11 datasets from other sources are also included:

GSE73114(Oikawa T et al.Model of fibrolamellar hepatocellularcarcinomas reveals striking enrichment in cancer stem cells.Nat Commun.(2015)6:8070.doi:10.1038/ncomms9070);GSE73114 (Oikawa T et al. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nat Commun. (2015) 6:8070.doi:10.1038/ncomms9070);

GSE114974(Dinh TA et al.MicroRNA-375Suppresses the Growth andInvasion of Fibrolamellar Carcinoma.Cell Mol Gastroenterol Hepatol.(2019)7:803-817.doi:10.1016/j.jcmgh.2019.01.008;Dinh TA et al.Hotspots of AberrantEnhancer Activity in Fibrolamellar Carcinoma Reveal Candidate OncogenicPathways and Therapeutic Vulnerabilities.Cell Rep.(2020)31:107509.doi:10.1016/j.celrep.2020.03.073);GSE114974 (Dinh TA et al.MicroRNA-375Suppresses the Growth and Invasion of Fibrolamellar Carcinoma.Cell Mol Gastroenterol Hepatol.(2019)7:803-817.doi:10.1016/j.jcmgh.2019.01.008; Dinh TA et al.Hotspots of AberrantEnhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Rep.(2020)31:107509.doi:10.1016/j.celrep.2020.03.073);

GSE57833(http://www.NCBI.NLM.NIH.gov/geo);GSE57833 (http://www.NCBI.NLM.NIH.gov/geo);

GSE57878(http://www.NCBI.NLM.NIH.gov/geo);GSE57878 (http://www.NCBI.NLM.NIH.gov/geo);

GSE90047(Yang et al.A single-cell transcriptomic analysis revealsprecise pathways and regulatory mechanisms underlying hepatoblastdifferentiation.Hepatology.(2017)66:1387-1401.doi:10.1002/hep.29353);GSE90047 (Yang et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatitis differentiation. Hepatology. (2017) 66:1387-1401.doi:10.1002/hep.29353);

GSE132034(Gong T et al.A time-resolved multi-omic atlas of thedeveloping mouse liver.Genome Res.(2020)30:263-275.doi:10.1101/gr.253328.119);GSE132034 (Gong T et al. A time-resolved multi-omic atlas of the developing mouse liver. Genome Res. (2020) 30:263-275. doi:10.1101/gr.253328.119);

GSE28892(Shin S et al.Foxl1-Cre-marked adult hepatic progenitors haveclonogenic and bilineage differentiation potential.Genes Dev.(2011)25:1185-1192.doi:10.1101/gad.2027811);GSE28892 (Shin S et al.Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential.Genes Dev.(2011)25:1185-1192.doi:10.1101/gad.2027811);

GSE56734(Ito K et al.Gene targeting study reveals unexpectedexpression of brain-expressed X-linked 2in endocrine and tissue stem/progenitor cells in mice.J Biol Chem.(2014)289:29892-29911.doi:10.1074/jbc.M114.580084);GSE56734(Ito K et al.Gene targeting study reveals unexpected expression of brain-expressed X-linked 2in endocrine and tissue stem/progenitor cells in mice.J Biol Chem.(2014)289:29892-29911.doi:10.1074/jbc.M114 .580084);

GSE25048(Kim et al.Identification of DNA methylation markers forlineage commitment of in vitro hepatogenesis.Hum Mol Genet.(2011)20:2722-2733.doi:10.1093/hmg/ddr171);GSE25048 (Kim et al. Identification of DNA methylation markers forlineage commitment of in vitro hepatogenesis. Hum Mol Genet. (2011) 20:2722-2733. doi:10.1093/hmg/ddr171);

GSE112330(Xie B et al.A two-step lineage reprogramming strategy togenerate functionally competent human hepatocytes from fibroblasts.Cell Res.(2019)29:696-710.doi:10.1038/s41422-019-0196-x);GSE112330 (Xie B et al. A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Res. (2019) 29:696-710. doi:10.1038/s41422-019-0196-x);

GSE124528(Wang Z et al.Generation of hepatic spheroids using humanhepatocyte-derived liver progenitor-like cells for hepatotoxicityscreening.Theranostics.(2019)9:6690-6705.doi:10.7150/thno.34520)。GSE124528 (Wang Z et al. Generation of hepatic spheroids using human hepatocyte-derived liver progenitor-like cells for hepatitis screening. Theranostics. (2019) 9:6690-6705. doi:10.7150/thno.34520).

所有数据进行常规测序数据分析流程进行质控、比对、计数、数据清洗和标准化后,使用pheatmap R软件包显示在热图中。All data were subjected to routine sequencing data analysis procedures for quality control, alignment, counting, data cleaning and normalization, and were displayed in a heat map using the pheatmap R software package.

表1中提供了有关这些数据集的详细信息。Details about these datasets are provided in Table 1.

表1、用于构建肝谱系调控网络的15个双组学数据集Table 1. Fifteen bi-omics datasets used to construct the regulatory network of the liver lineage

Figure BDA0003016752590000141
Figure BDA0003016752590000141

2、肿瘤基因组图谱数据库(TCGA)和人类蛋白质图谱数据库(HPA)(美国)2. Tumor Genome Atlas (TCGA) and Human Protein Atlas (HPA) (USA)

为了探索关键microRNA的作用,本发明人从TCGA下载了HCC患者的标准化microRNA序列数据和相应的临床信息。并进行差异表达分析和生存分析。“P<0.05”被认为是显著的。同时,在HPA数据库(https://www.proteinatlas.org)中也探索了23个基因在正常肝组织中的表达模式,本发明仅显示了中等或高表达的基因。To explore the role of key microRNAs, the inventors downloaded the normalized microRNA sequence data and corresponding clinical information of HCC patients from TCGA. Differential expression analysis and survival analysis were performed. "P<0.05" was considered significant. At the same time, the expression patterns of 23 genes in normal liver tissue were also explored in the HPA database (https://www.proteinatlas.org), and the present invention only showed moderately or highly expressed genes.

3、短时间序列表达分析(STEM)3. Short time series expression analysis (STEM)

根据STEM分析计算(默认参数)出的不同表达模式,mRNAs和microRNAs都被分层为不同的图谱。肝谱系的四个阶段(胆管树干细胞(hBTSCs)、肝干细胞(hHpSCs)、肝祖细胞(hHBs)和成熟肝细胞(hAHeps))被认为是不同的时间点。Both mRNAs and microRNAs are stratified into different profiles according to the different expression patterns calculated by STEM analysis (default parameters). Four stages of the hepatic lineage (biliary tree stem cells (hBTSCs), hepatic stem cells (hHpSCs), hepatic progenitors (hHBs) and mature hepatocytes (hAHeps)) are considered as distinct time points.

4、基因本体论(GO)和京都基因和基因组百科全书(KEGG)分析4. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

为了探索肝谱系特异性基因谱的生物学功能,使用聚类分析(ClusterProfiler)R包进行KEGG和GO富集分析(Yu G et al.clusterProfiler:an R package for comparingbiological themes among gene clusters.OMICS.(2012)16:284-287.doi:10.1089/omi.2011.0118)。为了了解microRNAs的潜在功能,在这项工作中还采用了DIANA-miRPathv3.0数据库,即microRNA途径分析网络服务器(http://SNF-515788.VM.okeanos.grnet.gr),因为它可以快速预测microRNAs的潜在目标,然后高效地运行KEGG途径分析(Vlachos IS et al.DIANA-miRPath v3.0:deciphering microRNAfunction with experimental support.Nucleic Acids Res.(2015)43:W460-466.doi:10.1093/nar/gkv403)。To explore the biological functions of liver lineage-specific gene profiles, KEGG and GO enrichment analyzes were performed using the ClusterProfiler R package (Yu G et al. clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS.( 2012) 16:284-287. doi:10.1089/omi.2011.0118). In order to understand the potential functions of microRNAs, the DIANA-miRPathv3.0 database, the microRNA pathway analysis web server (http://SNF-515788.VM.okeanos.grnet.gr), was also adopted in this work because it can quickly Predict potential targets of microRNAs and then efficiently run KEGG pathway analysis (Vlachos IS et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. (2015) 43:W460-466.doi:10.1093/nar /gkv403).

5、microRNA相关靶基因数据库5. MicroRNA-related target gene database

在本发明人目前的工作中,本发明人使用了3个数据库,包括microRNA靶基因预测数据库(miRDB)(Chen Y,Wang X.miRDB:an online database for prediction offunctional microRNA targets.Nucleic Acids Res.(2020)48:D127-D131.doi:10.1093/nar/gkz757),实验验证的microRNA-靶基因相互作用数据库(miRTarBase)(Chou CH etal.miRTarBase update 2018:a resource for experimentally validated microRNA-target interactions.Nucleic Acids Res.(2018)46:D296-D302.doi:10.1093/nar/gkx1067)和TargetScan(Lewis Bp et al.Prediction of mammalian microRNAtargets.Cell.(2003)115:787-798.doi:10.1016/s0092-8674(03)01018-3),来预测52个microRNA的目标,并且只有那些被它们重叠的目标可以用于进一步的研究。In the inventor's current work, the inventor used 3 databases, including the microRNA target gene prediction database (miRDB) (Chen Y, Wang X. miRDB: an online database for prediction offfunctional microRNA targets. Nucleic Acids Res. ( 2020)48:D127-D131.doi:10.1093/nar/gkz757), experimentally validated microRNA-target gene interaction database (miRTarBase) (Chou CH etal.miRTarBase update 2018:a resource for experimentally validated microRNA-target interactions.Nucleic Acids Res.(2018)46:D296-D302.doi:10.1093/nar/gkx1067) and TargetScan(Lewis Bp et al.Prediction of mammalian microRNAtargets.Cell.(2003)115:787-798.doi:10.1016/s0092- 8674(03)01018-3), to predict 52 microRNA targets, and only those targets overlapped by them can be used for further research.

随后,预测结果被2个全面和综合功能的microRNA数据库所证实,包括miRWalk(Sticht C et al.miRWalk:An online resource for prediction of microRNA bindingsites.PLoS One.(2018)13:e0206239.doi:10.1371/journal.pone.0206239)和DIANA-MicroT-CDS(Paraskevopoulou et al.,2013Paraskevopoulou MD,Georgakilas G,Kostoulas N,Vlachos IS,Vergoulis T,Reczko M,et al.DIANA-microT web serverv5.0:service integration into microRNA functional analysis workflows.NucleicAcids Res.(2013)41:W169-173.doi:10.1093/nar/gkt393)。P<0.05被认为具有统计学意义。Subsequently, the prediction results were confirmed by 2 comprehensive and comprehensive functional microRNA databases, including miRWalk (Sticht C et al. journal.pone.0206239) and DIANA-MicroT-CDS (Paraskevopoulou et al., 2013Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al. DIANA-microT web serverv5.0: service integration into microRNA functional analysis workflows. Nucleic Acids Res. (2013) 41:W169-173. doi:10.1093/nar/gkt393). P<0.05 was considered statistically significant.

6、建立“转录因子-microRNA-靶基因”调控网络6. Establish a "transcription factor-microRNA-target gene" regulatory network

从TransmiR v2.0数据库下载了实验支持的谱系相关microRNAs及其调节转录因子之间的相互作用,该数据库包含3730个实验支持的转录因子microRNAs调节,涵盖约623个转录因子,~785个MicroRNAs和1349个出版物(Tong Z,Cui Q,Wang J,Zhou Y.TransmiRv2.0:an updated transcription factor-microRNA regulation database.NucleicAcids Res.(2019)47:D253-D258.doi:10.1093/nar/gky1023))。肝谱系的“转录因子-microRNA-靶基因”调控网络的构建是通过cytoscape(Java 3.7.1)软件进行的(Shannon Pet al.Cytoscape:a software environment for integrated models of biomolecularinteraction networks.Genome Res.(2003)13:2498-2504.doi:10.1101/gr.1239303)。Experimentally supported interactions between lineage-associated microRNAs and their regulatory transcription factors were downloaded from the TransmiR v2.0 database, which contains 3730 experimentally supported transcription factor microRNAs regulation, covering about 623 transcription factors, ~785 MicroRNAs and 1349 publications (Tong Z, Cui Q, Wang J, Zhou Y. TransmiRv2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. (2019) 47:D253-D258.doi:10.1093/nar/gky1023) ). The construction of the "transcription factor-microRNA-target gene" regulatory network of the liver lineage was carried out by cytoscape (Java 3.7.1) software (Shannon Pet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. (2003 )13:2498-2504. doi:10.1101/gr.1239303).

7、主成分分析(PCA)和三维主成分分析(3D_PCA)7. Principal component analysis (PCA) and three-dimensional principal component analysis (3D_PCA)

对胆管树干细胞(hBTSCs)、肝干细胞(hHpSCs)、肝祖细胞(hHBs)和成熟肝细胞(hAHeps)的普通mRNA序列、microRNA序列进行3D_PCA分析(默认参数),以检查“23基因”标签的性能。3D_PCA analysis (default parameters) of common mRNA-seq, microRNA-seq of biliary tree stem cells (hBTSCs), hepatic stem cells (hHpSCs), hepatic progenitor cells (hHBs) and mature hepatocytes (hAHeps) to examine the performance.

主成分分析还显示了251个肝祖细胞/肝细胞的单细胞RNA-seq数据,以显示肝谱系的时间进程变化。Principal component analysis was also performed on single-cell RNA-seq data from 251 hepatic progenitors/hepatocytes to visualize time-course changes in hepatic lineages.

8、基因集富集分析(GSEA)和基因集变异分析(GSVA)8. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA)

用GSVA法对hBTSCs分化的RNA-seq数据和Dlk+肝祖细胞/肝细胞的总RNA-seq进行评分,每个样品/细胞接受一个GSVA评分(Hanzelmann S,Castelo R,Guinney J.GSVA:geneset variation analysis for microarray and RNA-seq data.BMC Bioinformatics.(2013)14:7.doi:10.1186/1471-2105-14-7)。所有与肝脏发育和细胞重编程相关的数据集都被用来进行GSVA评分,以验证“23基因”标签的谱系特异性特征。RNA-seq data of differentiation of hBTSCs and total RNA-seq of Dlk+ hepatic progenitors/hepatocytes were scored using GSVA, with each sample/cell receiving a GSVA score (Hanzelmann S, Castelo R, Guinney J. GSVA:geneset variation analysis for microarray and RNA-seq data. BMC Bioinformatics. (2013) 14:7. doi:10.1186/1471-2105-14-7). All datasets related to liver development and cellular reprogramming were used for GSVA scoring to validate the lineage-specific signature of the '23-gene' signature.

此外,GSEA分析被用来揭示PTEN/PIK3R1和肝脏相关单细胞的干细胞性之间的关系(Subramanian A et al.Gene set enrichment analysis:a knowledge-basedapproach for interpreting genome-wide expression profiles.Proc Natl Acad SciU S A.(2005)102:15545-15550.doi:10.1073/pnas.0506580102)。随机样本排列的数量参数设置为1000。Furthermore, GSEA analysis was used to reveal the relationship between PTEN/PIK3R1 and the stemness of liver-associated single cells (Subramanian A et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad SciU S A. (2005) 102:15545-15550. doi:10.1073/pnas.0506580102). The number of random sample permutations parameter was set to 1000.

9、相关性分析9. Correlation analysis

计算23个基因信号、干细胞和PI3K/AKT信号通路之间的相关性,以确定23个靶点、17个microRNA和1个信号通路之间的调控关系。在本发明人目前的研究中,P<0.05被认为具有统计学意义。由于不同的数据集来源和样本量,相关系数的阈值没有定义,具体数据都显示在图中。The correlation between 23 gene signals, stem cells and PI3K/AKT signaling pathway was calculated to determine the regulatory relationship among 23 targets, 17 microRNAs and 1 signaling pathway. In the present study by the inventors, P<0.05 was considered statistically significant. Due to different data set sources and sample sizes, the threshold of the correlation coefficient is not defined, and the specific data are shown in the figure.

实施例1、构建细胞谱系相关“转录因子-microRNA-靶基因”调控网络Example 1. Construction of cell lineage-related "transcription factor-microRNA-target gene" regulatory network

构建细胞发育成熟谱系过程中“转录因子-microRNA-靶基因”的调控网络的方法主要包括以下步骤(图1):The method for constructing the regulatory network of "transcription factor-microRNA-target gene" in the process of cell development and maturation lineage mainly includes the following steps (Figure 1):

1、获取细胞谱系不同阶段的细胞;进行microRNA测序和RNA-seq测序(对前述“1、同一谱系中不同时序阶段细胞的芯片和RNA-seq测序数据的准备”中15个公共数据库中GSE73114数据库和GSE114974数据库进行测序数据常规处理后获得);1. Obtain cells at different stages of cell lineage; perform microRNA sequencing and RNA-seq sequencing (GSE73114 database in 15 public databases in the aforementioned "1. Preparation of chips and RNA-seq sequencing data of cells at different time series stages in the same lineage" and GSE114974 database after routine processing of sequencing data);

2、通过主成分分析(PCA分析),证实细胞的发育确实具有时序特征;2. Through principal component analysis (PCA analysis), it is confirmed that the development of cells does have temporal characteristics;

3、通过短时间序列表达分析(STEM分析)获得计算出不同细胞状态时的不同表达模式,获得随时序变化的microRNA集和mRNA集;3. Obtain different expression patterns in different cell states through short-time sequence expression analysis (STEM analysis), and obtain microRNA sets and mRNA sets that change over time;

4、通过GO和KEGG等富集分析确保测序结果的可靠性;4. Ensuring the reliability of sequencing results through enrichment analysis such as GO and KEGG;

5、使用5个microRNA相关靶基因预测数据库(前述“5、microRNA相关数据库”)分析、获得随着时间发育表达水平逐渐发生变化的microRNA的靶基因,这些数据库包括miRDB,miRTarBase,TargetScan,miRWalk和DIANA-MicroT-CDS数据库;5. Use 5 microRNA-related target gene prediction databases (aforesaid "5. microRNA-related databases") to analyze and obtain the target genes of microRNA whose expression levels gradually change over time. These databases include miRDB, miRTarBase, TargetScan, miRWalk and DIANA-MicroT-CDS database;

6、与随着谱系发育表达水平发生变化的基因进行取交集,进而获得不仅是随着谱系发育逐渐变化并且具有互相作用的microRNA标签和靶基因标签;6. Intersect with genes whose expression level changes with lineage development, and then obtain microRNA tags and target gene tags that not only change gradually with lineage development but also interact;

7、进一步通过GO和KEGG富集分析、相关性分析、三维主成分分析(PCA)验证这些双组学标签结果的可靠性;7. Further verify the reliability of these dual-omics label results through GO and KEGG enrichment analysis, correlation analysis, and three-dimensional principal component analysis (PCA);

8、从TransmiR v2.0数据库下载实验支持的谱系相关microRNA及其调节转录因子之间的相互作用,获得能够调控microRNA标签的转录因子。8. Download experimentally supported lineage-associated microRNAs and their interactions between regulatory transcription factors from the TransmiR v2.0 database, and obtain transcription factors that can regulate microRNA tags.

9、通过cytoscape进行“转录因子-microRNA-靶基因”的调控网络的绘制。9. Draw the regulatory network of "transcription factor-microRNA-target gene" by cytoscape.

利用上述方法(构建阶段)获得“转录因子-microRNA-靶基因”调控网络后,进一步进入验证和应用阶段,包括如下:After the "transcription factor-microRNA-target gene" regulatory network is obtained using the above method (construction stage), it further enters the verification and application stage, including the following:

10、多维度验证方法1:获取本领域公知的的正常胚胎发育过程中的细胞谱系测序结果,通过GSEA或GSVA分析,验证调控网络结果的可靠性(数据资料在前述“1、芯片和RNA-seq测序数据的准备”中的公共数据库中);10. Multi-dimensional verification method 1: Obtain cell lineage sequencing results known in the art during normal embryonic development, and verify the reliability of the regulatory network results through GSEA or GSVA analysis (data in the aforementioned "1. Chip and RNA- seq sequencing data preparation" in the public database);

11、多维度验证方法2:获取领域本公知的谱系重编程过程中的细胞重编程测序结果,通过GSEA或GSVA分析,验证调控网络结果的可靠性(数据资料在前述“1、芯片和RNA-seq测序数据的准备”中的公共数据库中)。11. Multi-dimensional verification method 2: Obtain the sequencing results of cell reprogramming in the process of lineage reprogramming known in the field, and verify the reliability of the regulatory network results through GSEA or GSVA analysis (data in the aforementioned "1. Chip and RNA- seq sequencing data preparation" in the public database).

12、qRT-PCR实验验证基因标签和microRNA标签的可靠性和可应用性,并实现在对体外重编程、连续多次传代细胞的成熟度的监控;12. qRT-PCR experiments verify the reliability and applicability of gene tags and microRNA tags, and realize the monitoring of the maturity of in vitro reprogramming and continuous multiple passage cells;

上述过程参见图1所示的流程示意图。Refer to the schematic flowchart shown in FIG. 1 for the above process.

利用发明人构建的独特系统获得肝谱系相关“转录因子-microRNA-靶基因”调控网络如图2。Using the unique system constructed by the inventors to obtain the liver lineage-related "transcription factor-microRNA-target gene" regulatory network is shown in Figure 2.

17个microRNA分别如下:hsa-mir-181d-5p、hsa-mir-25-3p、hsa-mir-200c-3p、hsa-let-7a-5p、hsa-mir-181c-5p、hsa-mir-181a-5p、hsa-let-7e-5p、hsa-mir-221-3p、hsa-let-7i-5p、hsa-mir-502-3p、hsa-mir-222-3p、hsa-mir-181b-5p、hsa-mir-590-3p、hsa-mir-7-5p、hsa-mir-34a-5p、hsa-mir-26a-5p、hsa-let-7f-2-3p。The 17 microRNAs are as follows: hsa-mir-181d-5p, hsa-mir-25-3p, hsa-mir-200c-3p, hsa-let-7a-5p, hsa-mir-181c-5p, hsa-mir- 181a-5p, hsa-let-7e-5p, hsa-mir-221-3p, hsa-let-7i-5p, hsa-mir-502-3p, hsa-mir-222-3p, hsa-mir-181b- 5p, hsa-mir-590-3p, hsa-mir-7-5p, hsa-mir-34a-5p, hsa-mir-26a-5p, hsa-let-7f-2-3p.

23个基因分别如下:PIK3R1、PTEN、ACSL1、ANKRD46、CPEB3、CRY2、CSF1R、HAND2、HECW2、MEGF9、NHLRC3、NTF3、PAIP2、PDE4D、PGRMC1、PNRC1、RORA、SLC10A7、SLC8A1、SPRYD4、TIMP3、TMEM135、TMEM64。The 23 genes are as follows: PIK3R1, PTEN, ACSL1, ANKRD46, CPEB3, CRY2, CSF1R, HAND2, HECW2, MEGF9, NHLRC3, NTF3, PAIP2, PDE4D, PGRMC1, PNRC1, RORA, SLC10A7, SLC8A1, SPRYD4, TIMP3, TMEM135, TMEM64.

实施例2、17个microRNA和23个基因中大部分都具有负相关性,并验证“17microRNA”标签的准确性Example 2. Most of the 17 microRNAs and 23 genes are negatively correlated, and verify the accuracy of the "17microRNA" label

本发明人分析了17个microRNA和23个基因之间大部分都具有负相关性。The inventors analyzed that most of the 17 microRNAs and 23 genes have negative correlations.

根据图3A中PCA分析的结果,可以看到,四种细胞类型(胆管树干细胞(hBTSCs)、肝干细胞(hHPSCs)、肝祖细胞(hHBs)和成熟肝细胞(hAHEPs))具有非常明显的时序,因此该数据适用于本发明的“转录因子-microRNA-靶基因”网络构建方法。According to the results of PCA analysis in Fig. 3A, it can be seen that the four cell types (biliary tree stem cells (hBTSCs), hepatic stem cells (hHPSCs), hepatic progenitor cells (hHBs) and mature hepatocytes (hAHEPs)) have a very clear timing , so this data is suitable for the "transcription factor-microRNA-target gene" network construction method of the present invention.

通过对这公共数据构建好网络后,本发明人得到了17个microRNA和23个基因,它们不仅仅具有谱系时序性,还具有互相调控的关系。根据3D_PCA分析的结果可以看到,仅仅依靠基因标签或者microRNA标签,就可以发现这四种细胞类型的时序性和成熟度的不同(图3B和图3C)。After constructing a network on the public data, the inventors obtained 17 microRNAs and 23 genes, which not only have lineage timing, but also have mutual regulatory relationships. According to the results of 3D_PCA analysis, it can be seen that the differences in timing and maturity of these four cell types can be found only by gene tags or microRNA tags (Fig. 3B and Fig. 3C).

进一步使用相关性分析,可以明显看到17个microRNA和23个基因之间具有调控关系,主要为负调控(图3E和图3F)。Using further correlation analysis, it can be clearly seen that there is a regulatory relationship between 17 microRNAs and 23 genes, mainly negative regulation (Fig. 3E and Fig. 3F).

同时,也可以看到这17个microRNA确实在胚胎发育中的肝干细胞中呈现总体的高表达趋势(图3D)。At the same time, it can also be seen that these 17 microRNAs do show an overall high expression trend in embryonic developing liver stem cells (Fig. 3D).

实施例3、胚胎发育相关数据库验证“23基因”标签的准确性Example 3. Embryo development-related database verification of the accuracy of the "23 genes" label

为了分析23个基因标签(PIK3R1、PTEN、ACSL1、ANKRD46、CPEB3、CRY2、CSF1R、HAND2、HECW2、MEGF9、NHLRC3、NTF3、PAIP2、PDE4D、PGRMC1、PNRC1、RORA、SLC10A7、SLC8A1、SPRYD4、TIMP3、TMEM135、TMEM64)的准确性,本发明人分别利用以下的已经披露的胚胎发育相关数据库,从中获得处于不同谱系发育阶段的细胞,分析该23个基因标签的表达情况。To analyze 23 gene signatures (PIK3R1, PTEN, ACSL1, ANKRD46, CPEB3, CRY2, CSF1R, HAND2, HECW2, MEGF9, NHLRC3, NTF3, PAIP2, PDE4D, PGRMC1, PNRC1, RORA, SLC10A7, SLC8A1, SPRYD4, TIMP3, TMEM135 , TMEM64), the inventors used the following disclosed embryonic development-related databases to obtain cells at different lineage developmental stages, and analyzed the expression of the 23 gene signatures.

GSE90047:包括胚胎发育过程中从肝祖细胞(Hepatoblast)至肝细胞发育的细胞,胚胎第10.5天(E10.5)至胚胎第18.5天(E18.5);GSE90047: Including cells developed from hepatoblast to hepatocytes during embryonic development, embryonic day 10.5 (E10.5) to embryonic day 18.5 (E18.5);

GSE132034:包括各发育阶段的小鼠肝器官,胚胎E12.5→出生后第八周(W8);GSE132034: including mouse liver organs at various developmental stages, embryo E12.5 → eighth week after birth (W8);

GSE28892:包括三种细胞:成人肝祖细胞LPCs(Adult LPCs),分化成熟的肝细胞(Differentiated Heps),原代肝细胞(Primary Heps)。GSE28892: includes three types of cells: adult hepatic progenitor LPCs (Adult LPCs), differentiated mature hepatocytes (Differentiated Heps), and primary hepatocytes (Primary Heps).

GSE56734:包括两种细胞,胚胎第13天的肝祖细胞(Hepatoblast)和成熟肝细胞,E13→Adult。GSE56734: includes two kinds of cells, embryonic day 13 hepatic progenitor cells (Hepatoblast) and mature hepatocytes, E13→Adult.

GSE25048:包括两种细胞,内胚层干细胞和成熟肝细胞;Endoderm_Progenitors_1→Mature_Hepatocytes_4。GSE25048: Includes two types of cells, endoderm stem cells and mature hepatocytes; Endoderm_Progenitors_1→Mature_Hepatocytes_4.

GSE101133:包括四种细胞,肝干细胞HpSC,肝祖细胞Hepatoblast,肝前体细胞pre-hepatocyte和成熟肝细胞Hepatocyte。GSE101133: Including four kinds of cells, hepatic stem cells HpSC, hepatic progenitor cells Hepatoblast, hepatic precursor cells pre-hepatocyte and mature hepatocytes Hepatocyte.

GSE57878:包括两种细胞,肝祖细胞LPCs和成熟肝细胞mature_hepatocyte。GSE57878: Including two kinds of cells, hepatic progenitor LPCs and mature hepatocyte mature_hepatocyte.

结果如图4A-G,这些基因能够随着细胞发育成熟度的进展,总体趋势呈现逐渐升高趋势的基因表达。The results are shown in Fig. 4A-G, these genes can show a gradual increase in gene expression with the progress of cell development and maturity.

针对上述的各个库,将23个基因的表达数据进行GSVA基因集变异分析,从而获得“23基因”标签的表达情况,可见随着细胞发育成熟度的进展,基因标签表达明显上调的显著性(图4H)。因此,在胚胎发育相关数据库中,无论是通过23个基因的趋势分析,还是单标签分析,都能提示哪种细胞类型位于更成熟或更幼稚的状态。For each of the above-mentioned libraries, the expression data of 23 genes were subjected to GSVA gene set variation analysis to obtain the expression of the "23 gene" label. It can be seen that with the progress of cell development and maturity, the expression of gene labels is significantly up-regulated ( Figure 4H). Therefore, in the embryonic development-related database, whether through the trend analysis of 23 genes or single-label analysis, it can suggest which cell type is in a more mature or naive state.

实施例4、谱系重编程相关数据库验证“23基因”标签的准确性Example 4. Verification of the accuracy of the "23 gene" label by the lineage reprogramming related database

为了分析“23基因”标签(PIK3R1、PTEN、ACSL1、ANKRD46、CPEB3、CRY2、CSF1R、HAND2、HECW2、MEGF9、NHLRC3、NTF3、PAIP2、PDE4D、PGRMC1、PNRC1、RORA、SLC10A7、SLC8A1、SPRYD4、TIMP3、TMEM135、TMEM64)的准确性,本发明人分别利用以下的已经披露的谱系重编程相关数据库,从中获得处于不同谱系发育阶段的细胞,分析该23个基因的表达情况。To analyze the "23 genes" signature (PIK3R1, PTEN, ACSL1, ANKRD46, CPEB3, CRY2, CSF1R, HAND2, HECW2, MEGF9, NHLRC3, NTF3, PAIP2, PDE4D, PGRMC1, PNRC1, RORA, SLC10A7, SLC8A1, SPRYD4, TIMP3, TMEM135, TMEM64), the inventors used the following disclosed lineage reprogramming related databases to obtain cells at different lineage development stages, and analyzed the expression of the 23 genes.

GSE75141:包括三种细胞:重编程的可扩增肝细胞,通过可扩增肝细胞分化成熟的肝细胞和原代成熟肝细胞;GSE75141: includes three types of cells: reprogrammed expandable hepatocytes, mature hepatocytes differentiated by expandable hepatocytes and primary mature hepatocytes;

GSE105019:包括三种细胞:重编程的肝祖细胞样细胞,通过肝祖细胞样细胞分化成熟的肝细胞和原代肝细胞;GSE105019: includes three types of cells: reprogrammed hepatic progenitor-like cells, mature hepatocytes differentiated by hepatic progenitor-like cells and primary hepatocytes;

GSE124528:包括两种细胞:重编程的肝祖细胞样细胞和肝祖细胞分化成熟的肝细胞;GSE124528: includes two types of cells: reprogrammed hepatic progenitor-like cells and mature hepatocytes differentiated from hepatic progenitors;

GSE112330:包括两种细胞:重编程的肝祖细胞样细胞和通过肝祖细胞样细胞分化成熟的肝细胞;GSE112330: includes two types of cells: reprogrammed hepatic progenitor-like cells and mature hepatocytes differentiated by hepatic progenitor-like cells;

GSE116113;肝前体细胞单细胞测序的GSEA分析;GSE116113; GSEA analysis of single-cell sequencing of hepatic precursor cells;

GSE90047;肝谱系细胞单细胞测序的GSEA分析;GSE90047; GSEA analysis of single-cell sequencing of hepatic lineage cells;

结果如图5A-D,这些基因能够随着细胞发育成熟度的进展,总体呈现逐渐高表达的趋势。The results are shown in Figure 5A-D, these genes can show a trend of gradually high expression as the cell development maturity progresses.

如图5E和5F,通过对单细胞测序数据的分析,可以发现优选的PTEN和PIK3R1基因可以抑制干细胞相关通路,提示PTEN和PIK3R1与干性负相关,提示优选的PTEN和PIK3R1可能不仅仅是潜在的标志物,并且可能具有调控肝细胞成熟的功能。As shown in Figures 5E and 5F, through the analysis of single-cell sequencing data, it can be found that the preferred PTEN and PIK3R1 genes can inhibit stem cell-related pathways, suggesting that PTEN and PIK3R1 are negatively related to stemness, suggesting that preferred PTEN and PIK3R1 may not only be potential markers, and may have the function of regulating the maturation of hepatocytes.

针对上述的各个库,分别进行GSVA基因集变异分析从而获得“23基因”标签在各组中的表达情况,可见随着细胞发育成熟度的进展,基因标签表达提高的显著性(图5G)。因此,在重编程相关数据库中,无论是通过23个基因的趋势分析,还是单标签分析,都能提示哪种细胞类型位于更成熟或更幼稚的状态。For each of the above-mentioned libraries, GSVA gene set variation analysis was performed to obtain the expression of the "23 gene" label in each group. It can be seen that the expression of the gene label increases significantly with the progress of cell development and maturity (Figure 5G). Therefore, in the reprogramming-related database, whether through the trend analysis of 23 genes or single-label analysis, it can suggest which cell type is in a more mature or naive state.

实施例5、microRNA标签在体外细胞培养重编程中的应用Example 5. Application of microRNA tags in in vitro cell culture reprogramming

申请人前期在改良的小分子重编程培养体系中实现了人类原代肝细胞向肝前体样细胞的转化和扩增,并且这种无任何外源基因导入的原代肝细胞来源的肝前体样细胞(Hepatocyte-derived liver progenitor-like cells,HepLPCs)能快速分化为功能性肝细胞,实现“Hepatocyte-HepLPCs”之间的可逆转化(Cell Research 2019;29(1):8-22)。The applicant previously achieved the transformation and expansion of primary human hepatocytes into hepatic precursor-like cells in an improved small molecule reprogramming culture system, and this primary hepatocyte-derived hepatic progenitor without any foreign gene introduction Somatic-like cells (Hepatocyte-derived liver progenitor-like cells, HepLPCs) can rapidly differentiate into functional hepatocytes, achieving reversible transformation between "Hepatocyte-HepLPCs" (Cell Research 2019; 29(1):8-22).

本发明以原代肝细胞(Primary Heps,已知原代肝细胞各项代谢、分泌等功能正常,默认其细胞成熟度为100%)和从成熟肝细胞重编程获得的肝前体样细胞(HepLPCs P4,HepLPCs传代第4代细胞)为检测对象。也即,HepLPCs P4为比原代肝细胞更为幼稚(干性更强)的细胞。In the present invention, primary hepatocytes (Primary Heps, which are known to have normal functions such as metabolism and secretion, and whose cell maturity is 100% by default) and hepatic precursor-like cells obtained from reprogramming of mature hepatocytes ( HepLPCs P4, HepLPCs passage 4th generation cells) are the detection objects. That is, HepLPCs P4 are more immature (more stem) cells than primary hepatocytes.

通过qRT-PCR验证上述经大量筛选分析后获得的17个microRNA在不同阶段的细胞中的表达情况,从而实现对多次传代后细胞成熟度的预测和细胞状态的监控。The expression of the 17 microRNAs obtained after extensive screening and analysis in cells at different stages was verified by qRT-PCR, so as to realize the prediction of cell maturity after multiple passages and the monitoring of cell status.

采用miRcute增强型microRNA荧光定量检测试剂盒(SYBR Green)(EP411)(购自天根生化科技(北京)有限公司)。The miRcute enhanced microRNA fluorescence quantitative detection kit (SYBR Green) (EP411) (purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.) was used.

17个microRNA的特异性引物序列(采用加尾法构建)如表2所示。The specific primer sequences (constructed by tailing method) of 17 microRNAs are shown in Table 2.

表2Table 2

Figure BDA0003016752590000201
Figure BDA0003016752590000201

Figure BDA0003016752590000211
Figure BDA0003016752590000211

下游引物来自天根公司的检测试剂盒。The downstream primers were from the detection kit of Tiangen Company.

结果如图6,可见所获得的17个microRNA中有12个在HepLPCs P4肝前体样细胞中显著高表达(70.59%),其中多个microRNA为极显著地高表达。已超过10个microRNA相对于成熟肝细胞高表达,这从表观调控层面验证了成熟肝细胞确实已被重编程为肝前体样细胞,并且成功传到第四代。The results are shown in Figure 6. It can be seen that 12 of the 17 microRNAs obtained were significantly highly expressed (70.59%) in the HepLPCs P4 liver precursor-like cells, among which multiple microRNAs were extremely significantly highly expressed. More than 10 microRNAs are highly expressed relative to mature hepatocytes, which verifies that mature hepatocytes have indeed been reprogrammed into hepatic precursor-like cells from the level of epigenetic regulation, and have successfully passed to the fourth generation.

将17个microRNA的结果进行标签分析,通过中位值分析获得“17microRNA”标签的表达情况,显著性为****P<0.0001。通过标签分析也表明了HepLPCs P4为比原代肝细胞更为幼稚(干性更强)的细胞。The results of 17 microRNAs were subjected to label analysis, and the expression of the "17microRNA" label was obtained by median analysis, and the significance was ****P<0.0001. Label analysis also showed that HepLPCs P4 were more immature (stem) cells than primary hepatocytes.

因此,当将17个microRNA共同或一部分用于进行肝谱系细胞成熟程度分析时,可以作为显著性理想的标志物。Therefore, when the 17 microRNAs are jointly or partially used for the analysis of the maturity of hepatic lineage cells, they can be used as ideal markers of significance.

实施例6、基因标签在体外细胞培养重编程中的应用Example 6. Application of gene tags in in vitro cell culture reprogramming

以原代肝细胞(Primary Heps,已知其细胞成熟度为100%)、HepLPCs_P3(传代第3代)和HepLPCs_P4(传代第4代)细胞(已知两代细胞均是从成熟肝细胞中重编程获得,皆处于肝前体细胞阶段)为检测对象,通过qRT-PCR验证上述经大量筛选分析后获得的23个基因在不同阶段的细胞中的表达情况,实现在体外连续培养细胞中监测成熟度和预判细胞的状态。Primary hepatocytes (Primary Heps, whose cell maturity is known to be 100%), HepLPCs_P3 (passage 3) and HepLPCs_P4 (passage 4) cells (it is known that the two generations of cells are regenerated from mature hepatocytes) Programmed, all in the stage of liver precursor cells) as the detection object, through qRT-PCR to verify the expression of the above-mentioned 23 genes obtained after a large number of screening analyzes in different stages of cells, to realize the monitoring of maturation in continuous cultured cells in vitro degree and predict the state of cells.

采用PrimeScriptTM RT Master Mix(Perfect Real Time)反转录试剂盒和TB

Figure BDA0003016752590000212
Premix Ex TaqTM II荧光定量qRT-PCR检测试剂盒(购自TAKARA)。Using PrimeScriptTM RT Master Mix (Perfect Real Time) reverse transcription kit and TB
Figure BDA0003016752590000212
Premix Ex TaqTM II fluorescence quantitative qRT-PCR detection kit (purchased from TAKARA).

23个基因的特异性引物序列(采用加尾法构建)如表3所示。The specific primer sequences (constructed by tailing method) of 23 genes are shown in Table 3.

表3table 3

Figure BDA0003016752590000213
Figure BDA0003016752590000213

Figure BDA0003016752590000221
Figure BDA0003016752590000221

结果如图7,可见所获得的23个基因中有15个在HepLPCs P3肝前体细胞中显著低表达(65.22%),其中多个基因为极显著地低表达。23个基因中有16个在HepLPCs P4肝前体细胞中显著低表达(69.57%),其中多个基因为极显著地低表达。因此,在两组肝前体细胞组中已明显有超过10个的基因显著性低表达,这从转录水平侧面验证了确实已成功将成熟肝细胞重编程为肝前体细胞。The results are shown in Figure 7. It can be seen that 15 of the 23 genes obtained were significantly underexpressed (65.22%) in HepLPCs P3 liver precursor cells, and many of them were extremely significantly underexpressed. Among the 23 genes, 16 were significantly underexpressed (69.57%) in HepLPCs P4 hepatic precursor cells, and many of them were extremely significantly underexpressed. Therefore, more than 10 genes were significantly under-expressed in the two groups of hepatic precursor cells, which verified from the transcriptional level that mature hepatocytes had indeed been successfully reprogrammed into hepatic precursor cells.

将23个基因的结果采用中位值分析来进行基因标签分析,在HepLPCs P3细胞和HepLPCs P4细胞中均呈现显著的低表达。因此,单基因标签分析亦提示成熟肝细胞已重编程为肝前体细胞。因此,当这23个基因或者整体的基因标签共同或一部分用于进行肝谱系细胞成熟程度分析时,可以作为显著性理想的标志物。The results of 23 genes were analyzed by median value analysis for gene signature analysis, showing significant low expression in both HepLPCs P3 cells and HepLPCs P4 cells. Thus, single-gene signature analysis also suggested that mature hepatocytes had been reprogrammed into hepatic precursors. Therefore, when the 23 genes or the overall gene signature are jointly or partially used for the analysis of the maturity of hepatic lineage cells, they can be used as ideal markers of significance.

汇总前述关于17个microRNA所获得的表达结果,进行双标签联合分析,可见“23基因”标签的显著低表达与“17microRNA”的显著高表达呈现高度显著性。Summarizing the above-mentioned expression results obtained about 17 microRNAs and performing double-label joint analysis, it can be seen that the significantly low expression of the "23 gene" label and the significantly high expression of "17microRNA" are highly significant.

因此,无论是单组学标签分析还是双组学标签整合分析,都一致性的证实了原代肝成熟细胞已重编程为肝前体细胞,无论是体外扩增三代还是四代,依然能保持其干性,因此成功实现了使用本试剂盒对体外培养的肝前体细胞进行成熟度的快速预测和监控。Therefore, both single-omics signature analysis and dual-omics signature integration analysis have consistently confirmed that primary hepatic mature cells have been reprogrammed into hepatic precursor cells, and whether they are expanded in vitro for three or four generations, they can still maintain Due to its stemness, the rapid prediction and monitoring of the maturity of hepatic precursor cells cultured in vitro using this kit has been successfully realized.

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

序列表sequence listing

<110> 上海市东方医院(同济大学附属东方医院)<110> Shanghai Dongfang Hospital (Dongfang Hospital Affiliated to Tongji University)

<120> 评估肝谱系细胞成熟度的标志物、双组学试剂盒及构建方法<120> Markers, dual-omics kits and construction methods for assessing the maturity of hepatic lineage cells

<130> 212461<130> 212461

<160> 80<160> 80

<170> SIPOSequenceListing 1.0<170> SIP Sequence Listing 1.0

<210> 1<210> 1

<211> 23<211> 23

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 1<400> 1

aacauucauu guugucggug ggu 23aacauucauu guugucgggg ggu 23

<210> 2<210> 2

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 2<400> 2

cauugcacuu gucucggucu ga 22cauugcacuu gucucggucu ga 22

<210> 3<210> 3

<211> 23<211> 23

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 3<400> 3

uaauacugcc ggguaaugau gga 23uaauacugcc ggguaaugau gga 23

<210> 4<210> 4

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 4<400> 4

ugagguagua gguuguauag uu 22ugagguagua gguuguauag uu 22

<210> 5<210> 5

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 5<400> 5

aacauucaac cugucgguga gu 22aacauucaac cugucgguga gu 22

<210> 6<210> 6

<211> 23<211> 23

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 6<400> 6

aacauucaac gcugucggug agu 23aacauucaac gcugucggug agu 23

<210> 7<210> 7

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 7<400> 7

ugagguagga gguuguauag uu 22uggguagga gguuguauag uu 22

<210> 8<210> 8

<211> 23<211> 23

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 8<400> 8

agcuacauug ucugcugggu uuc 23agcuacauug ucugcugggu uuc 23

<210> 9<210> 9

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 9<400> 9

ugagguagua guuugugcug uu 22ugagguagua guuugugcug uu 22

<210> 10<210> 10

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 10<400> 10

aaugcaccug ggcaaggauu ca 22aaugcaccug ggcaaggauu ca 22

<210> 11<210> 11

<211> 21<211> 21

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 11<400> 11

agcuacaucu ggcuacuggg u 21agcuacaucu ggcuacuggg u 21

<210> 12<210> 12

<211> 23<211> 23

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 12<400> 12

aacauucauu gcugucggug ggu 23aacauucauu gcugucggug ggu 23

<210> 13<210> 13

<211> 21<211> 21

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 13<400> 13

uaauuuuaug uauaagcuag u 21uaauuuuaug uauaagcuag u 21

<210> 14<210> 14

<211> 24<211> 24

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 14<400> 14

uggaagacua gugauuuugu uguu 24uggaagacua gugauuuugu uguu 24

<210> 15<210> 15

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 15<400> 15

uggcaguguc uuagcugguu gu 22uggcaguguc uuagcugguu gu 22

<210> 16<210> 16

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 16<400> 16

uucaaguaau ccaggauagg cu 22uucaaguaau ccaggauagg cu 22

<210> 17<210> 17

<211> 22<211> 22

<212> RNA<212> RNA

<213> Homo sapiens<213> Homo sapiens

<400> 17<400> 17

cuauacaguc uacugucuuu cc 22cuauacaguc uacugucuuu cc 22

<210> 18<210> 18

<211> 24<211> 24

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 18<400> 18

caacattcat tgttgtcggt gggt 24caacattcat tgttgtcggt gggt 24

<210> 19<210> 19

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 19<400> 19

ccattgcact tgtctcggtc tg 22ccattgcact tgtctcggtc tg 22

<210> 20<210> 20

<211> 25<211> 25

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 20<400> 20

cctaatactg ccgggtaatg atgga 25cctaatactg ccgggtaatg atgga 25

<210> 21<210> 21

<211> 26<211> 26

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 21<400> 21

cgcgtgaggt agtaggttgt atagtt 26cgcgtgaggtagtaggttgt atagtt 26

<210> 22<210> 22

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 22<400> 22

caacattcaa cctgtcggtg agt 23caacattcaa cctgtcggtg agt 23

<210> 23<210> 23

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 23<400> 23

aacattcaac gctgtcggtg a 21aacattcaac gctgtcggtg a 21

<210> 24<210> 24

<211> 25<211> 25

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 24<400> 24

cgctgaggta ggaggttgta tagtt 25cgctgaggta ggaggttgta tagtt 25

<210> 25<210> 25

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 25<400> 25

agctacattg tctgctgggt ttc 23agctacattg tctgctgggt ttc 23

<210> 26<210> 26

<211> 25<211> 25

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 26<400> 26

ccgtgaggta gtagtttgtg ctgtt 25ccgtgaggta gtagtttgtg ctgtt 25

<210> 27<210> 27

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 27<400> 27

aatgcacctg ggcaaggatt 20aatgcacctgggcaaggatt 20

<210> 28<210> 28

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 28<400> 28

agctacatct ggctactggg t 21agctacatct ggctactggg t 21

<210> 29<210> 29

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 29<400> 29

aacattcatt gctgtcggtg gg 22aacattcatt gctgtcggtg gg 22

<210> 30<210> 30

<211> 26<211> 26

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 30<400> 30

ccgcgcgcgt aattttatgt ataagc 26ccgcgcgcgt aattttatgt ataagc 26

<210> 31<210> 31

<211> 27<211> 27

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 31<400> 31

cgctggaaga ctagtgattt tgttgtt 27cgctggaaga ctagtgattt tgttgtt 27

<210> 32<210> 32

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 32<400> 32

tggcagtgtc ttagctggtt g 21tggcagtgtc ttagctggtt g 21

<210> 33<210> 33

<211> 25<211> 25

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 33<400> 33

ccgttcaagt aatccaggat aggct 25ccgttcaagt aatccaggat aggct 25

<210> 34<210> 34

<211> 26<211> 26

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 34<400> 34

gccgctatac agtctactgt ctttcc 26gccgctatac agtctactgt ctttcc 26

<210> 35<210> 35

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 35<400> 35

cttatgggct tcggagcttt t 21cttatggggct tcggagcttt t 21

<210> 36<210> 36

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 36<400> 36

caagtagtgc ggatcttcgt g 21caagtagtgc ggatcttcgt g 21

<210> 37<210> 37

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 37<400> 37

taaattcggt gccgatcttc tg 22taaattcggt gccgatcttc tg 22

<210> 38<210> 38

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 38<400> 38

gagtgggttc ctctgttaaa tcc 23gagtgggttc ctctgttaaa tcc 23

<210> 39<210> 39

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 39<400> 39

gagtccagcg tatccgaagc 20gagtccagcg tatccgaagc 20

<210> 40<210> 40

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 40<400> 40

gagcggtgat tccatctgca t 21gagcggtgat tccatctgca t 21

<210> 41<210> 41

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 41<400> 41

ggtgtggaag tagtgacgga g 21ggtgtggaag tagtgacgga g 21

<210> 42<210> 42

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 42<400> 42

gtaggtctcg tcgtggttct c 21gtaggtctcg tcgtggttct c 21

<210> 43<210> 43

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 43<400> 43

gctactgctg ttgctgctct t 21gctactgctg ttgctgctct t 21

<210> 44<210> 44

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 44<400> 44

ttgccttcgt atctctcgat g 21ttgccttcgt atctctcgat g 21

<210> 45<210> 45

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 45<400> 45

cgccgacacc aaactctcc 19cgccgacacc aaactctcc 19

<210> 46<210> 46

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 46<400> 46

tcgccattct ggtcgtcct 19tcgccattct ggtcgtcct 19

<210> 47<210> 47

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 47<400> 47

ccagagttct tcaccgtgct 20ccagagttct tcaccgtgct 20

<210> 48<210> 48

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 48<400> 48

ttcaaagtgg tgggtgtccc 20ttcaaagtgg tgggtgtccc 20

<210> 49<210> 49

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 49<400> 49

gtgagtgtcg gccaggttat c 21gtgagtgtcg gccaggttat c 21

<210> 50<210> 50

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 50<400> 50

tgttgcacgg tatgctgaga g 21tgttgcacgg tatgctgaga g 21

<210> 51<210> 51

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 51<400> 51

ggttttgcat tcgcgttttt g 21ggttttgcat tcgcgttttt g 21

<210> 52<210> 52

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 52<400> 52

acatccagcc ggtaaagaat ttt 23acatccagcc ggtaaagaat ttt 23

<210> 53<210> 53

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 53<400> 53

aacgcgatgt aaggaagcca 20aacgcgatgt aaggaagcca 20

<210> 54<210> 54

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 54<400> 54

agtgctcgga cgtaggtttg 20agtgctcgga cgtaggtttg 20

<210> 55<210> 55

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 55<400> 55

tctcccacaa actatggacc a 21tctcccacaa actatggacc a 21

<210> 56<210> 56

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 56<400> 56

tgcatttgga ttcagattgc tct 23tgcatttgga ttcagattgc tct 23

<210> 57<210> 57

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 57<400> 57

ccacgatagc tgctcaaaca a 21ccacgatagc tgctcaaaca a 21

<210> 58<210> 58

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 58<400> 58

gtgccattgt ccacatcaaa a 21gtgccattgt ccacatcaaa a 21

<210> 59<210> 59

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 59<400> 59

gggctgctgc atgagatttt c 21gggctgctgc atgagatttt c 21

<210> 60<210> 60

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 60<400> 60

ccgcgcacga tcttgtaga 19ccgcgcacga tcttgtaga 19

<210> 61<210> 61

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 61<400> 61

aagaagttga acgagtggtt gg 22aagaagttga acgagtggtt gg 22

<210> 62<210> 62

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 62<400> 62

gccctgttta ctgctctccc 20gccctgttta ctgctctccc 20

<210> 63<210> 63

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 63<400> 63

tggccagctt gttcatggta 20tggccagctt gttcatggta 20

<210> 64<210> 64

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 64<400> 64

gaggtgatct tggttagtgg ca 22gaggtgatct tggttagtgg ca 22

<210> 65<210> 65

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 65<400> 65

tggattcgac ttagacttga cct 23tggattcgac ttagacttga cct 23

<210> 66<210> 66

<211> 23<211> 23

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 66<400> 66

ggtgggttat ggtcttcaaa agg 23ggtgggttat ggtcttcaaa agg 23

<210> 67<210> 67

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 67<400> 67

cttgccgtag ggatgtctcg 20cttgccgtag ggatgtctcg 20

<210> 68<210> 68

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 68<400> 68

gaagttccgt cagcccgtt 19gaagttccgt cagcccgtt 19

<210> 69<210> 69

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 69<400> 69

gctcatctac cacccagctc 20gctcatctac cacccagctc 20

<210> 70<210> 70

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 70<400> 70

gcttcactcc cttctgcctt 20gcttcactcc cttctgcctt 20

<210> 71<210> 71

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 71<400> 71

acaacatgcg gcgattaagt c 21acaacatgcg gcgattaagt c 21

<210> 72<210> 72

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 72<400> 72

gctctagcaa ttttgtcccc a 21gctctagcaa ttttgtcccc a 21

<210> 73<210> 73

<211> 21<211> 21

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 73<400> 73

tgatgatcgt tcctgggtgt t 21tgatgatcgt tcctgggtgt t 21

<210> 74<210> 74

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 74<400> 74

tggctgccca ataccctca 19tggctgccca ataccctca 19

<210> 75<210> 75

<211> 20<211> 20

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 75<400> 75

caggtcgcgt ctatgatggc 20caggtcgcgt ctatgatggc 20

<210> 76<210> 76

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 76<400> 76

aggtgatacc gatagttcag cc 22aggtgatacc gatagttcag cc 22

<210> 77<210> 77

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 77<400> 77

caagtccatc cctcataact gc 22caagtccatc cctcataact gc 22

<210> 78<210> 78

<211> 22<211> 22

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 78<400> 78

gcaatcaagt acagaggagc at 22gcaatcaagt acagaggagc at 22

<210> 79<210> 79

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 79<400> 79

tgggtggaga gccttgact 19tgggtggaga gccttgact 19

<210> 80<210> 80

<211> 19<211> 19

<212> DNA<212>DNA

<213> Primer<213> Primer

<400> 80<400> 80

gaaggtgccg atgaggacg 19gaaggtgccg atgaggacg 19

Claims (20)

  1. Use of a detection reagent of a microRNA signature or a gene signature or a combination thereof in the preparation of a kit or a detection device for assessing the maturity of cells of the hepatic lineage for distinguishing hepatic progenitor cells from mature hepatic cells, the microRNA signature comprising 10 to 17 microRNAs selected from the group consisting of:
    hsa-let-7a-5p,hsa-let-7e-5p,hsa-let-7i-5p,hsa-mir-7-5p,hsa-let-7f-2-3p,
    hsa-mir-181d-5p,hsa-mir-25-3p,hsa-mir-200c-3p,hsa-mir-181c-5p,hsa-mir-181a-5p,
    hsa-mir-221-3p,hsa-mir-502-3p,hsa-mir-222-3p,hsa-mir-181b-5p,hsa-mir-590-3p,
    hsa-mir-34a-5p,hsa-mir-26a-5p;
    the gene tag comprises 10 to 23 genes selected from the following group:
    PIK3R1,PTEN,ACSL1,ANKRD46,CPEB3,CRY2,
    CSF1R,HAND2,HECW2,MEGF9,NHLRC3,NTF3,
    PAIP2,PDE4D,PGRMC1,PNRC1,RORA,SLC10A7,
    SLC8A1,SPRYD4,TIMP3,TMEM135,TMEM64。
  2. 2. the use according to claim 1, wherein the 10 to 17microRNA tags comprise: 1-5 of hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7i-5p, hsa-mir-7-5p and hsa-let-7f-2-3p.
  3. 3. The use according to claim 2, wherein the 10 to 17microRNA tags comprise: 2-5 of hsa-let-7a-5p, hsa-let-7e-5p, hsa-let-7i-5p, hsa-mir-7-5p and hsa-let-7f-2-3p.
  4. 4. The use of claim 1, wherein the 10 to 23 gene signatures comprise PIK3R1 or PTEN.
  5. 5. The use according to any one of claims 1 to 4, wherein said assessing the maturity of cells of the hepatic lineage is carried out by detecting the expression of said microRNA signature or gene signature or a combination thereof within the cells; the obvious high expression level of the microRNA label indicates that the cell is a hepatic progenitor cell, and the obvious low expression level indicates that the cell is a mature hepatic cell; the significant high expression level of the gene label indicates that the cell is a mature hepatocyte, and the significant low expression level indicates that the cell is a hepatic progenitor cell.
  6. 6. The use of claim 1, wherein the detection reagent comprises: a PCR detection reagent, an in situ hybridization reagent or an immunodetection reagent aiming at the microRNA label or the gene label.
  7. 7. The use of claim 6, wherein the detection reagent comprises: specifically amplifying the microRNA label or the primer of the gene label, and specifically identifying the probe of the microRNA label or the gene label or the antibody specifically binding with the protein coded by the gene label.
  8. 8. The application of claim 7, wherein the detection reagent is a primer, the nucleotide sequence of the upstream primer for detecting the microRNA label is selected from the group consisting of SEQ ID NO 18-34, and the nucleotide sequence of the primer for detecting the gene label is selected from the group consisting of SEQ ID NO 35-80.
  9. 9. The use of claim 1, wherein said detecting means comprises: a chip, an electrophoresis device or a gene sequencing instrument.
  10. 10. A kit or test device for assessing the maturity of cells of the hepatic lineage that distinguish between hepatic progenitors and mature hepatocytes, comprising: the detection reagent aims at microRNA labels or gene labels or the combination thereof, wherein the microRNA labels comprise 10-17 microRNAs selected from the following group:
    hsa-let-7a-5p,hsa-let-7e-5p,hsa-let-7i-5p,hsa-mir-7-5p,hsa-let-7f-2-3p,
    hsa-mir-181d-5p,hsa-mir-25-3p,hsa-mir-200c-3p,hsa-mir-181c-5p,hsa-mir-181a-5p,
    hsa-mir-221-3p,hsa-mir-502-3p,hsa-mir-222-3p,hsa-mir-181b-5p,hsa-mir-590-3p,
    hsa-mir-34a-5p,hsa-mir-26a-5p;
    the gene tag comprises 10 to 23 genes selected from the following group:
    PIK3R1,PTEN,ACSL1,ANKRD46,CPEB3,CRY2,
    CSF1R,HAND2,HECW2,MEGF9,NHLRC3,NTF3,
    PAIP2,PDE4D,PGRMC1,PNRC1,RORA,SLC10A7,
    SLC8A1,SPRYD4,TIMP3,TMEM135,TMEM64。
  11. 11. the kit or test device of claim 10, wherein the test reagents comprise: PCR detection reagent, in situ hybridization reagent or immunity detection reagent.
  12. 12. A system for assessing the maturity of cells of the hepatic lineage that differentiate between hepatic progenitors and mature hepatocytes, comprising a detection unit and a data analysis unit;
    the detection unit includes: a detection reagent capable of measuring the expression level of the microRNA label or the gene label or the combination thereof, or a kit or a detection device containing the detection reagent; the detection reagent comprises: the detection reagent aims at microRNA labels or gene labels or the combination thereof, wherein the microRNA labels comprise 10-17 microRNAs selected from the following group:
    hsa-let-7a-5p,hsa-let-7e-5p,hsa-let-7i-5p,hsa-mir-7-5p,hsa-let-7f-2-3p,
    hsa-mir-181d-5p,hsa-mir-25-3p,hsa-mir-200c-3p,hsa-mir-181c-5p,hsa-mir-181a-5p,
    hsa-mir-221-3p,hsa-mir-502-3p,hsa-mir-222-3p,hsa-mir-181b-5p,hsa-mir-590-3p,
    hsa-mir-34a-5p,hsa-mir-26a-5p;
    the gene tag comprises 10 to 23 genes selected from the following group:
    PIK3R1,PTEN,ACSL1,ANKRD46,CPEB3,CRY2,
    CSF1R,HAND2,HECW2,MEGF9,NHLRC3,NTF3,
    PAIP2,PDE4D,PGRMC1,PNRC1,RORA,SLC10A7,
    SLC8A1,SPRYD4,TIMP3,TMEM135,TMEM64;
    the data analysis unit includes: and the processing unit is used for analyzing and processing the detection result of the detection unit, obtaining the evaluation result of the maturity of the liver lineage cells and distinguishing the liver progenitor cells from the mature liver cells.
  13. 13. The system of claim 12, wherein the detection reagent comprises: PCR detection reagent, in situ hybridization reagent or immunity detection reagent.
  14. 14. The system of claim 13, wherein the detection reagent comprises: specifically amplifying the microRNA label or the primer of the gene label, a probe specifically recognizing the microRNA label or the gene label, or an antibody specifically binding with the protein coded by the gene label.
  15. 15. The system of claim 14, wherein the detection reagent is a primer, the nucleotide sequence of the upstream primer for detecting the microRNA tag is selected from the group consisting of SEQ ID NO 18-34, and the nucleotide sequence of the primer for detecting the gene tag is selected from the group consisting of SEQ ID NO 35-80.
  16. 16. The system of claim 12, wherein said detecting means comprises: a chip, an electrophoresis device or a gene sequencing instrument.
  17. 17. A method of assessing the maturity of a cell of the hepatic lineage that distinguishes between hepatic progenitors and mature hepatocytes comprising: evaluating using the system of any one of claims 12-16; the method comprises the following steps: detecting the expression level of the microRNA label or the gene label or the combination thereof by using the detection unit, and analyzing and processing the detection result of the detection unit by using the data analysis unit to obtain a liver lineage cell maturity result; wherein,
    the obvious high expression level of the microRNA label indicates that the cell is a hepatic progenitor cell, and the obvious low expression level indicates that the cell is a mature hepatic cell;
    when the expression level of the gene label is obviously high, the cell is a mature liver cell, and when the expression level is obviously low, the cell is a liver progenitor cell.
  18. 18. The method of claim 17, comprising the steps of:
    (1) Obtaining a nucleic acid sample of a cell to be detected;
    (2) Detecting the expression level of a microRNA signature or a gene signature or a combination thereof of the cell;
    (3) The following expression significance difference analysis was performed:
    satisfying one or more of the following conditions, indicating that the cell is a mature hepatocyte:
    (1) the expression of all gene tags is statistically significant on the whole,
    (2) the expression of all microRNA labels has statistical significance to be reduced,
    (3) the gene label and the microRNA label are subjected to double-label integration difference analysis, namely the whole high expression of the gene label in an experimental group and the whole low expression of the microRNA label are also obviously different;
    satisfying one or more of the following conditions, indicating that the cell is a hepatic progenitor:
    (a) The expression of all gene signatures was statistically reduced as a whole,
    (b) The expression of all microRNA labels is statistically significant,
    (c) The gene label and the microRNA label are subjected to double-label integration difference analysis, namely the overall low expression of the gene label in an experimental group and the overall high expression of the microRNA label are obviously different.
  19. 19. The method of claim 17, wherein the method is used to rapidly determine whether there is a change in maturity or sternness during in vitro scale culture or reprogramming of cells to distinguish between hepatic progenitors and mature hepatocytes.
  20. 20. The method of claim 17, wherein the method is used to perform a maturity analysis of liver lineage cells at various states collected in different databases to distinguish between hepatic progenitors and mature hepatocytes.
CN202110391145.9A 2021-04-12 2021-04-12 Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity Active CN113106160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110391145.9A CN113106160B (en) 2021-04-12 2021-04-12 Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110391145.9A CN113106160B (en) 2021-04-12 2021-04-12 Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity

Publications (2)

Publication Number Publication Date
CN113106160A CN113106160A (en) 2021-07-13
CN113106160B true CN113106160B (en) 2022-11-01

Family

ID=76715776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110391145.9A Active CN113106160B (en) 2021-04-12 2021-04-12 Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity

Country Status (1)

Country Link
CN (1) CN113106160B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114748505A (en) * 2022-01-17 2022-07-15 桂林医学院 Application of bone marrow mesenchymal stem cell exosome

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042725A2 (en) * 2003-11-03 2005-05-12 Genenews, Inc. Liver cancer biomarkers
CN105925719A (en) * 2016-07-06 2016-09-07 北京泱深生物信息技术有限公司 Gene related to liver cancer differentiation and application of gene
CN107164527A (en) * 2017-06-29 2017-09-15 杭州观梓健康科技有限公司 It is a kind of to screen the method for participating in multipotential stem cell vitro directed differentiation regulatory factor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069005A (en) * 1991-08-07 2000-05-30 Albert Einstein College Of Medicine Of Yeshwa University Hapatoblasts and method of isolating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042725A2 (en) * 2003-11-03 2005-05-12 Genenews, Inc. Liver cancer biomarkers
CN105925719A (en) * 2016-07-06 2016-09-07 北京泱深生物信息技术有限公司 Gene related to liver cancer differentiation and application of gene
CN107164527A (en) * 2017-06-29 2017-09-15 杭州观梓健康科技有限公司 It is a kind of to screen the method for participating in multipotential stem cell vitro directed differentiation regulatory factor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"The PI3K regulatory subunit p85α can exert tumor suppressor properties through negative regulation of growth factor signalling";Cullen M. Taniguchi et al.;《Cancer Res.》;20100701;第70卷(第13期);第1-17页 *
"丁酸钠诱导体外培养的大鼠肝卵圆细胞分化为成熟肝细胞";王萍等;《中华肝脏病杂志》;20041231;第12卷(第12期);第718-721页 *
"肝脏细胞分化和成熟的分子调控机制";杨李等;《中国细胞生物学学报》;20191112;第41卷(第10期);第1853-1864页 *

Also Published As

Publication number Publication date
CN113106160A (en) 2021-07-13

Similar Documents

Publication Publication Date Title
Henry et al. A cellular anatomy of the normal adult human prostate and prostatic urethra
Villacampa et al. Genome-wide spatial expression profiling in formalin-fixed tissues
Machado et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells
Zhou et al. Comparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytes
US11365450B2 (en) Group classification and prognosis prediction system based on biological characteristics of gastric cancer
Leti et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease–related fibrosis
CN112004942A (en) Analysis and diagnosis method using RNA modification
US11587642B2 (en) Systems and methods for deconvolution of expression data
Meng et al. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose
Wang et al. Analysis of lncRNAs‐miRNAs‐mRNAs networks in periodontal ligament stem cells under mechanical force
Zhou et al. SCAPE: a mixture model revealing single-cell polyadenylation diversity and cellular dynamics during cell differentiation and reprogramming
Li et al. Identification and functional analysis of long intergenic noncoding RNA genes in porcine pre-implantation embryonic development
Hoff et al. DNA methylation profiling allows for characterization of atrial and ventricular cardiac tissues and hiPSC-CMs
Yan et al. Circulating extracellular RNA markers of liver regeneration
CN113106160B (en) Markers, dual-omics kits and construction methods for assessing hepatic lineage cell maturity
US20230079748A1 (en) Preparation method, product, and application of circulating tumor dna reference samples
Kirkegaard et al. Comprehensive analysis of soluble RNAs in human embryo culture media and blastocoel fluid
Knelangen et al. MicroRNA expression profile during adipogenic differentiation in mouse embryonic stem cells
Milenkovic et al. Epitranscriptomic rRNA fingerprinting reveals tissue-of-origin and tumor-specific signatures
Xiao et al. Integrative single cell atlas revealed intratumoral heterogeneity generation from an adaptive epigenetic cell state in human bladder urothelial carcinoma
CN118103504A (en) High spatial resolution epigenomic analysis
CN110628914B (en) LncRNA marker related to breast cancer, detection primer and application thereof
Pasquariello et al. Profiling bovine blastocyst microRNAs using deep sequencing
CN116356431A (en) A method for knockout library, knockout cell bank and screening target gene based on bovine genome-wide CRISPR-Cas9 knockout library
Chen et al. Exosomes—a potential indicator and mediator of cleft lip and palate: a narrative review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant