Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1997 Oct;61(4):918–923. doi: 10.1086/514880

The gene for autosomal dominant craniometaphyseal dysplasia maps to chromosome 5p and is distinct from the growth hormone-receptor gene.

P Nürnberg 1, S Tinschert 1, M Mrug 1, J Hampe 1, C R Müller 1, E Fuhrmann 1, H S Braun 1, A Reis 1
PMCID: PMC1716005  PMID: 9382103

Abstract

Craniometaphyseal dysplasia (CMD) is an osteochondrodysplasia of unknown etiology characterized by hyperostosis and sclerosis of the craniofacial bones associated with abnormal modeling of the metaphyses. Sclerosis of the skull may lead to asymmetry of the mandible, as well as to cranial nerve compression, that finally may result in hearing loss and facial palsy. We have analyzed a large German kindred with autosomal dominant (AD) CMD and found tight linkage between the disorder and microsatellite markers on chromosome 5p (maximum two-point LOD score 4.82; theta = 0). Our results clearly establish the existence of a locus for AD CMD on central chromosome 5p (5p15.2-p14.1). This region overlaps with the mapping interval of the growth hormone-receptor (GHR) gene (5p14-p12), which is known to be involved in the mitogenic activation of osteoblasts. Therefore, we tested the GHR gene as a candidate gene. However, recombination events between the CMD locus and the GHR gene identified in two members of this family clearly exclude this candidate.

Full text

PDF
918

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amselem S., Duquesnoy P., Attree O., Novelli G., Bousnina S., Postel-Vinay M. C., Goossens M. Laron dwarfism and mutations of the growth hormone-receptor gene. N Engl J Med. 1989 Oct 12;321(15):989–995. doi: 10.1056/NEJM198910123211501. [DOI] [PubMed] [Google Scholar]
  2. Amselem S., Duquesnoy P., Duriez B., Dastot F., Sobrier M. L., Valleix S., Goossens M. Spectrum of growth hormone receptor mutations and associated haplotypes in Laron syndrome. Hum Mol Genet. 1993 Apr;2(4):355–359. doi: 10.1093/hmg/2.4.355. [DOI] [PubMed] [Google Scholar]
  3. Barnard R., Ng K. W., Martin T. J., Waters M. J. Growth hormone (GH) receptors in clonal osteoblast-like cells mediate a mitogenic response to GH. Endocrinology. 1991 Mar;128(3):1459–1464. doi: 10.1210/endo-128-3-1459. [DOI] [PubMed] [Google Scholar]
  4. Beighton P. Craniometaphyseal dysplasia (CMD), autosomal dominant form. J Med Genet. 1995 May;32(5):370–374. doi: 10.1136/jmg.32.5.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beighton P., Hamersma H., Horan F. Craniometaphyseal dysplasia--variability of expression within a large family. Clin Genet. 1979 Mar;15(3):252–258. doi: 10.1111/j.1399-0004.1979.tb00976.x. [DOI] [PubMed] [Google Scholar]
  6. Boehnke M. Allele frequency estimation from data on relatives. Am J Hum Genet. 1991 Jan;48(1):22–25. [PMC free article] [PubMed] [Google Scholar]
  7. Carnevale A., Grether P., del Castillo V., Takenaga R., Orzechowski A. Autosomal dominant craniometaphyseal dysplasia. Clinical variability. Clin Genet. 1983 Jan;23(1):17–22. doi: 10.1111/j.1399-0004.1983.tb00431.x. [DOI] [PubMed] [Google Scholar]
  8. Chumakov I. M., Rigault P., Le Gall I., Bellanné-Chantelot C., Billault A., Guillou S., Soularue P., Guasconi G., Poullier E., Gros I. A YAC contig map of the human genome. Nature. 1995 Sep 28;377(6547 Suppl):175–297. doi: 10.1038/377175a0. [DOI] [PubMed] [Google Scholar]
  9. Cole D. E., Cohen M. M., Jr A new look at craniometaphyseal dysplasia. J Pediatr. 1988 Apr;112(4):577–579. doi: 10.1016/s0022-3476(88)80172-0. [DOI] [PubMed] [Google Scholar]
  10. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  11. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  12. Erlebacher A., Filvaroff E. H., Gitelman S. E., Derynck R. Toward a molecular understanding of skeletal development. Cell. 1995 Feb 10;80(3):371–378. doi: 10.1016/0092-8674(95)90487-5. [DOI] [PubMed] [Google Scholar]
  13. Fanconi S., Fischer J. A., Wieland P., Giedion A., Boltshauser E., Olah A. J., Landolt A. M., Prader A. Craniometaphyseal dysplasia with increased bone turnover and secondary hyperparathyroidism: therapeutic effect of calcitonin. J Pediatr. 1988 Apr;112(4):587–591. doi: 10.1016/s0022-3476(88)80176-8. [DOI] [PubMed] [Google Scholar]
  14. Feinstein E., Druck T., Kastury K., Berissi H., Goodart S. A., Overhauser J., Kimchi A., Huebner K. Assignment of DAP1 and DAPK--genes that positively mediate programmed cell death triggered by IFN-gamma--to chromosome regions 5p12.2 and 9q34.1, respectively. Genomics. 1995 Sep 1;29(1):305–307. doi: 10.1006/geno.1995.1255. [DOI] [PubMed] [Google Scholar]
  15. Francomano C. A., McIntosh I., Wilkin D. J. Bone dysplasias in man: molecular insights. Curr Opin Genet Dev. 1996 Jun;6(3):301–308. doi: 10.1016/s0959-437x(96)80006-2. [DOI] [PubMed] [Google Scholar]
  16. Hodgkinson C. A., Moore K. J., Nakayama A., Steingrímsson E., Copeland N. G., Jenkins N. A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993 Jul 30;74(2):395–404. doi: 10.1016/0092-8674(93)90429-t. [DOI] [PubMed] [Google Scholar]
  17. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  18. JACKSON W. P., ALBRIGHT F., DREWRY G., HANELIN J., RUBIN M. I. Metaphyseal dysplasia, epiphyseal dysplasia, diaphyseal dysplasia, and related conditions. I. Familial metaphyseal dysplasia and craniometaphyseal dysplasia; their relation to leontiasis ossea and osteopetrosis; disorders of bone remodeling. AMA Arch Intern Med. 1954 Dec;94(6):871–885. doi: 10.1001/archinte.1954.00250060005001. [DOI] [PubMed] [Google Scholar]
  19. Jenkins E. P., Hsieh C. L., Milatovich A., Normington K., Berman D. M., Francke U., Russell D. W. Characterization and chromosomal mapping of a human steroid 5 alpha-reductase gene and pseudogene and mapping of the mouse homologue. Genomics. 1991 Dec;11(4):1102–1112. doi: 10.1016/0888-7543(91)90038-g. [DOI] [PubMed] [Google Scholar]
  20. Key L. L., Jr, Volberg F., Baron R., Anast C. S. Treatment of craniometaphyseal dysplasia with calcitriol. J Pediatr. 1988 Apr;112(4):583–587. doi: 10.1016/s0022-3476(88)80175-6. [DOI] [PubMed] [Google Scholar]
  21. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
  22. Lin H. Y., Harris T. L., Flannery M. S., Aruffo A., Kaji E. H., Gorn A., Kolakowski L. F., Jr, Lodish H. F., Goldring S. R. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science. 1991 Nov 15;254(5034):1022–1024. doi: 10.1126/science.1658940. [DOI] [PubMed] [Google Scholar]
  23. Morel G., Chavassieux P., Barenton B., Dubois P. M., Meunier P. J., Boivin G. Evidence for a direct effect of growth hormone on osteoblasts. Cell Tissue Res. 1993 Aug;273(2):279–286. doi: 10.1007/BF00312829. [DOI] [PubMed] [Google Scholar]
  24. Murray J. C., Buetow K. H., Weber J. L., Ludwigsen S., Scherpbier-Heddema T., Manion F., Quillen J., Sheffield V. C., Sunden S., Duyk G. M. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science. 1994 Sep 30;265(5181):2049–2054. doi: 10.1126/science.8091227. [DOI] [PubMed] [Google Scholar]
  25. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  26. Stengel D., Parma J., Gannagé M. H., Roeckel N., Mattei M. G., Barouki R., Hanoune J. Different chromosomal localization of two adenylyl cyclase genes expressed in human brain. Hum Genet. 1992 Sep-Oct;90(1-2):126–130. doi: 10.1007/BF00210755. [DOI] [PubMed] [Google Scholar]
  27. Taylor D. B., Sprague P. Dominant craniometaphyseal dysplasia--a family study over five generations. Australas Radiol. 1989 Feb;33(1):84–89. doi: 10.1111/j.1440-1673.1989.tb03242.x. [DOI] [PubMed] [Google Scholar]
  28. Vikkula M., Mariman E. C., Lui V. C., Zhidkova N. I., Tiller G. E., Goldring M. B., van Beersum S. E., de Waal Malefijt M. C., van den Hoogen F. H., Ropers H. H. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell. 1995 Feb 10;80(3):431–437. doi: 10.1016/0092-8674(95)90493-x. [DOI] [PubMed] [Google Scholar]
  29. Yamada H., Yamanaka T., Tanaka Y., Nakamura S. Cervical spinal deformity in craniometaphyseal dysplasia. Surg Neurol. 1987 Mar;27(3):284–290. doi: 10.1016/0090-3019(87)90044-9. [DOI] [PubMed] [Google Scholar]
  30. Yamamoto T., Kurihara N., Yamaoka K., Ozono K., Okada M., Yamamoto K., Matsumoto S., Michigami T., Ono J., Okada S. Bone marrow-derived osteoclast-like cells from a patient with craniometaphyseal dysplasia lack expression of osteoclast-reactive vacuolar proton pump. J Clin Invest. 1993 Jan;91(1):362–367. doi: 10.1172/JCI116194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES