Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Oct;41(4):271-7.
doi: 10.1016/s0197-0186(02)00013-x.

Astrocytes and manganese neurotoxicity

Affiliations
Review

Astrocytes and manganese neurotoxicity

Alan S Hazell. Neurochem Int. 2002 Oct.

Abstract

Increasing evidence suggests that astrocytes are the site of early dysfunction and damage in manganese neurotoxicity. Astrocytes accumulate manganese by a high affinity, high capacity, specific transport system. Chronic exposure to manganese leads to increased pallidal signal hyperintensities on T1-weighted magnetic resonance images and selective neuronal loss in basal ganglia structures together with characteristic astrocytic changes known as Alzheimer type II astrocytosis. Manganese is sequestered in mitochondria where it inhibits oxidative phosphorylation. Exposure of astrocytes to manganese results in important changes including (i) decreased uptake of glutamate; (ii) increased densities of binding sites for the "peripheral-type" benzodiazepine receptor (PTBR), a class of receptor localized to mitochondria of astrocytes and involved in oxidative metabolism, mitochondrial proliferation, and neurosteroid synthesis; (iii) increased gene expression and activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), known to be associated with apoptosis; (iv) increased uptake of L-arginine, a precursor of nitric oxide, together with increased expression of the inducible form of nitric oxide synthase (iNOS). Potential consequences of these alterations in astrocytic gene expression include failure of energy metabolism, production of reactive oxygen species (ROS), increased extracellular glutamate concentration and excitotoxicity which could play a key role in manganese-induced neuronal cell death as a direct result of impaired astrocytic-neuronal interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources