Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Mar;104(3):971-980.
doi: 10.1104/pp.104.3.971.

Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves

Affiliations

Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves

W. C. Hon et al. Plant Physiol. 1994 Mar.

Abstract

Apoplastic extracts of cold-acclimated winter rye (Secale cereale L. cv Musketeer) leaves were previously shown to exhibit antifreeze activity. The objectives of the present study were to identify and characterize individual antifreeze proteins present in the apoplastic extracts. The highest protein concentrations and antifreeze activity were obtained when the leaf apoplast was extracted with ascorbic acid and either CaCl2 or MgSO4. Seven major polypeptides were purified from these extracts by one-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis under nonreducing conditions. The five larger polypeptides, of 19, 26, 32, 34, and 36 kD, exhibited significant levels of antifreeze activity, whereas the 11- and 13-kD polypeptides showed only weak activity. Five of these polypeptides migrated with higher apparent molecular masses on SDS gels after treatment with 0.1 M dithiothreitol, which indicated the presence of intramolecular disulfide bonds. The apparent reduction of the disulfide bonds did not eliminate antifreeze activity in four of the polypeptides that contained intramolecular disulfide bonds and exhibited significant levels of antifreeze activity. The amino acid compositions of these polypeptides were similar in that they were all relatively enriched in the residues Asp/Asn, Glu/Gln, Ser, Thr, Gly, and Ala; they all lacked His, except for the 26-kD polypeptide, and they contained up to 5% Cys residues. These polypeptides were examined with antisera to other cystine-containing antifreeze proteins from fish and insects, and no common epitopes were detected. We conclude that cold-acclimated winter rye leaves produce multiple polypeptides with antifreeze activity that appear to be distinct from antifreezes produced by fish and insects.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Methods Enzymol. 1986;127:293-303 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochim Biophys Acta. 1992 May 22;1121(1-2):199-206 - PubMed
    1. Plant Physiol. 1992 Oct;100(2):593-6 - PubMed
    1. Science. 1993 Feb 19;259(5098):1154-7 - PubMed

LinkOut - more resources