Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;65(3):751-61.
doi: 10.1016/j.cardiores.2004.11.007.

Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels

Affiliations

Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels

Eric Dubuis et al. Cardiovasc Res. .

Abstract

Objective: We tested the hypothesis that inhalation of a low concentration of exogenous carbon monoxide (CO) attenuates the development of hypoxic pulmonary artery hypertension by activation of large-conductance voltage and Ca(2+)-activated K(+) channels (BK(Ca)).

Methods: The BK(Ca) activity was measured using whole-cell and inside-out patch clamp recordings in Wistar rat pulmonary artery (PA) myocytes. Pulmonary artery pressures were measured in vivo and membrane potentials were recorded in vitro in pressurized resistance arteries.

Results: Chronic CO inhalation slightly increases single-channel conductance of BK(Ca) channels and induces a large increase in the sensitivity of BK(Ca) channels to Ca(2+) of PA myocytes from normoxic and chronic hypoxic rats. Consequently, BK(Ca) currents are increased and play a more prominent role in controlling resting membrane potential of PA myocytes. Chronic CO inhalation also reduces hemodynamic changes induced by chronic hypoxia and attenuates hypoxic pulmonary artery hypertension.

Conclusion: Chronic inhalation of CO attenuates hypoxic pulmonary artery hypertension development presumably through activation of BK(Ca) channels. These results highlight the potential use of CO as a novel avenue for research on the treatment of pulmonary artery hypertension (PAHT) in a similar manner to another gasotransmitter, nitric oxide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources