Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies
- PMID: 20478892
- PMCID: PMC2880115
- DOI: 10.1098/rstb.2010.0063
Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies
Abstract
The fitness effects of mutations are central to evolution, yet have begun to be characterized in detail only recently. Site-directed mutagenesis is a powerful tool for achieving this goal, which is particularly suited for viruses because of their small genomes. Here, I discuss the evolutionary relevance of mutational fitness effects and critically review previous site-directed mutagenesis studies. The effects of single-nucleotide substitutions are standardized and compared for five RNA or single-stranded DNA viruses infecting bacteria, plants or animals. All viruses examined show very low tolerance to mutation when compared with cellular organisms. Moreover, for non-lethal mutations, the mean fitness reduction caused by single mutations is remarkably constant (0.10-0.13), whereas the fraction of lethals varies only modestly (0.20-0.41). Other summary statistics are provided. These generalizations about the distribution of mutational fitness effects can help us to better understand the evolution of RNA and single-stranded DNA viruses.
Figures


Similar articles
-
The fitness effects of synonymous mutations in DNA and RNA viruses.Mol Biol Evol. 2012 Jan;29(1):17-20. doi: 10.1093/molbev/msr179. Epub 2011 Jul 18. Mol Biol Evol. 2012. PMID: 21771719
-
The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages.PLoS Genet. 2009 Nov;5(11):e1000742. doi: 10.1371/journal.pgen.1000742. Epub 2009 Nov 26. PLoS Genet. 2009. PMID: 19956760 Free PMC article.
-
Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1.Genetics. 2010 Jun;185(2):603-9. doi: 10.1534/genetics.110.115162. Epub 2010 Apr 9. Genetics. 2010. PMID: 20382832 Free PMC article.
-
Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes.Annu Rev Virol. 2015 Nov;2(1):203-17. doi: 10.1146/annurev-virology-100114-055127. Epub 2015 Sep 2. Annu Rev Virol. 2015. PMID: 26958913 Review.
-
Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses.Curr Opin Virol. 2013 Oct;3(5):578-86. doi: 10.1016/j.coviro.2013.06.010. Epub 2013 Jul 10. Curr Opin Virol. 2013. PMID: 23850154 Review.
Cited by
-
Effect of host species on the distribution of mutational fitness effects for an RNA virus.PLoS Genet. 2011 Nov;7(11):e1002378. doi: 10.1371/journal.pgen.1002378. Epub 2011 Nov 17. PLoS Genet. 2011. PMID: 22125497 Free PMC article.
-
The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2.J Virol. 2020 Nov 9;94(23):e01246-20. doi: 10.1128/JVI.01246-20. Print 2020 Nov 9. J Virol. 2020. PMID: 32938769 Free PMC article.
-
Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing.PLoS Pathog. 2012;8(4):e1002654. doi: 10.1371/journal.ppat.1002654. Epub 2012 Apr 19. PLoS Pathog. 2012. PMID: 22532800 Free PMC article.
-
Quantifying the diversification of hepatitis C virus (HCV) during primary infection: estimates of the in vivo mutation rate.PLoS Pathog. 2012;8(8):e1002881. doi: 10.1371/journal.ppat.1002881. Epub 2012 Aug 23. PLoS Pathog. 2012. PMID: 22927817 Free PMC article. Clinical Trial.
-
A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus.PLoS Biol. 2018 Jun 28;16(6):e2006459. doi: 10.1371/journal.pbio.2006459. eCollection 2018 Jun. PLoS Biol. 2018. PMID: 29953453 Free PMC article.
References
-
- Agudelo-Romero P., de la Iglesia F., Elena S. F.2008The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infect. Genet. Evol. 8, 806–814 (doi:10.1016/j.meegid.2008.07.010) - DOI - PubMed
-
- Azevedo R. B., Lohaus R., Srinivasan S., Dang K. K., Burch C. L.2006Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440, 87–90 (doi:10.1038/nature04488) - DOI - PubMed
-
- Baba T., et al. 2006Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008 (doi:10.1038/msb4100050) - DOI - PMC - PubMed
-
- Belshaw R., Gardner A., Rambaut A., Pybus O. G.2008Pacing a small cage: mutation and RNA viruses. Trends Ecol. Evol. 23, 188–193 (doi:10.1016/j.tree.2007.11.010) - DOI - PMC - PubMed
-
- Bershtein S., Segal M., Bekerman R., Tokuriki N., Tawfik D. S.2006Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (doi:10.1038/nature05385) - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources