Phylogenetic analysis of Thecosomata Blainville, 1824 (holoplanktonic opisthobranchia) using morphological and molecular data
- PMID: 23593138
- PMCID: PMC3625178
- DOI: 10.1371/journal.pone.0059439
Phylogenetic analysis of Thecosomata Blainville, 1824 (holoplanktonic opisthobranchia) using morphological and molecular data
Abstract
Thecosomata is a marine zooplankton group, which played an important role in the carbonate cycle in oceans due to their shell composition. So far, there is important discrepancy between the previous morphological-based taxonomies, and subsequently the evolutionary history of Thecosomata. In this study, the remarkable planktonic sampling of TARA Oceans expedition associated with a set of various other missions allowed us to assess the phylogenetic relationships of Thecosomata using morphological and molecular data (28 S and COI genes). The two gene trees showed incongruities (e.g. Hyalocylis, Cavolinia), and high congruence between morphological and 28S trees (e.g. monophyly of Euthecosomata). The monophyly of straight shell species led us to reviving the Orthoconcha, and the split of Limacinidae led us to the revival of Embolus inflata replacing Limacina inflata. The results also jeopardized the Euthecosomata families that are based on plesiomorphic character state as in the case for Creseidae which was not a monophyletic group. Divergence times were also estimated, and suggested that the evolutionary history of Thecosomata was characterized by four major diversifying events. By bringing the knowledge of palaeontology, we propose a new evolutionary scenario for which macro-evolution implying morphological innovations were rhythmed by climatic changes and associated species turn-over that spread from the Eocene to Miocene, and were shaped principally by predation and shell buoyancy.
Conflict of interest statement
Figures







Similar articles
-
Molecular phylogeny of the brachyuran crab superfamily Majoidea indicates close congruence with trees based on larval morphology.Mol Phylogenet Evol. 2008 Sep;48(3):986-96. doi: 10.1016/j.ympev.2008.05.004. Epub 2008 May 11. Mol Phylogenet Evol. 2008. PMID: 18621552
-
From sea to land and beyond--new insights into the evolution of euthyneuran Gastropoda (Mollusca).BMC Evol Biol. 2008 Feb 25;8:57. doi: 10.1186/1471-2148-8-57. BMC Evol Biol. 2008. PMID: 18294406 Free PMC article.
-
Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding.PLoS One. 2013;8(1):e53889. doi: 10.1371/journal.pone.0053889. Epub 2013 Jan 15. PLoS One. 2013. PMID: 23335979 Free PMC article.
-
The long way to diversity--phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda).Mol Phylogenet Evol. 2010 Apr;55(1):60-76. doi: 10.1016/j.ympev.2009.09.019. Epub 2009 Sep 22. Mol Phylogenet Evol. 2010. PMID: 19778622
-
Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca).Mol Phylogenet Evol. 2007 Mar;42(3):717-37. doi: 10.1016/j.ympev.2006.10.009. Epub 2006 Oct 17. Mol Phylogenet Evol. 2007. PMID: 17127080
Cited by
-
The origin and diversification of pteropods precede past perturbations in the Earth's carbon cycle.Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25609-25617. doi: 10.1073/pnas.1920918117. Epub 2020 Sep 24. Proc Natl Acad Sci U S A. 2020. PMID: 32973093 Free PMC article.
-
Biological strategy for the fabrication of highly ordered aragonite helices: the microstructure of the cavolinioidean gastropods.Sci Rep. 2016 May 16;6:25989. doi: 10.1038/srep25989. Sci Rep. 2016. PMID: 27181457 Free PMC article.
-
Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito.Zookeys. 2013 Aug 15;(324):1-83. doi: 10.3897/zookeys.324.5827. eCollection 2013. Zookeys. 2013. PMID: 24003317 Free PMC article.
-
Global biogeography and evolution of Cuvierina pteropods.BMC Evol Biol. 2015 Mar 12;15:39. doi: 10.1186/s12862-015-0310-8. BMC Evol Biol. 2015. PMID: 25880735 Free PMC article.
-
The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous?PeerJ. 2018 Jan 9;6:e4219. doi: 10.7717/peerj.4219. eCollection 2018. PeerJ. 2018. PMID: 29333344 Free PMC article.
References
-
- Bednaršek N, Mozina J, Vuckovic M, Vogt M, O'Brien C, et al. (2012) Global distribution of pteropods representing carbonate functional type biomass. Earth Syst Sci Data Discuss 5: 317–350.
-
- Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP, et al. (2009) Impact of ocean acidification on a key Arctic pelagic mollusc(Limacina helicina). Biogeosciences 9: 1877–1882.
-
- Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2010) Response of the Artic Pteropod Limacina helicina to projected Future Environmental Conditions. PLoS ONE 5: e11362. Available: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0011362. Accessed 2010 Jun 29. - PMC - PubMed
-
- Lischka S, Buedenbender J, Boxhammer T, Riebesell U (2010) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences Discussions 6: 8177–8214.
-
- Roger LM, Richardson AJ, McKinnon AD, Knott B, Matear R, et al. (2011) Comparison of the shell structure of two tropical Thecosomata (Creseis acicula and Diacavolinia longirostris) from 1963 to 2009: potential implications of declining aragonite saturation. ICES J Mar Sci 69: 465–474.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases