Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 6;9(2):e88170.
doi: 10.1371/journal.pone.0088170. eCollection 2014.

Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats

Affiliations

Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats

Camrin D Braun et al. PLoS One. .

Abstract

Recent successful efforts to increase protection for manta rays has highlighted the lack of basic ecological information, including vertical and horizontal movement patterns, available for these species. We deployed pop-up satellite archival transmitting tags on nine reef manta rays, Manta alfredi, to determine diving behaviors and vertical habitat use. Transmitted and archived data were obtained from seven tagged mantas over deployment periods of 102-188 days, including three recovered tags containing 2.6 million depth, temperature, and light level data points collected every 10 or 15 seconds. Mantas frequented the upper 10 m during daylight hours and tended to occupy deeper water throughout the night. Six of the seven individuals performed a cumulative 76 deep dives (>150 m) with one individual reaching 432 m, extending the known depth range of this coastal, reef-oriented species and confirming its role as an ecological link between epipelagic and mesopelagic habitats. Mean vertical velocities calculated from high-resolution dive data (62 dives >150 m) from three individuals suggested that mantas may use gliding behavior during travel and that this behavior may prove more efficient than continuous horizontal swimming. The behaviors in this study indicate manta rays provide a previously unknown link between the epi- and mesopelagic layers of an extremely oligotrophic marine environment and provide evidence of a third marine species that utilizes gliding to maximize movement efficiency.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Manta alfredi tagging locations and habitat characterization.
Locations for MA111 (orange) and MA112 (grey-green). Black oval indicates the locations characterized as “offshore” (>15 km from the coast). Green triangles indicate tagging locations for all individuals and red diamonds indicate pop-off locations for MA111 and MA112. Inset: Location of study site near Al Lith in the eastern Red Sea. Sources: Bing, U.S. Geological Survey, and ESRI.
Figure 2
Figure 2. Daily ambient water temperature and depth.
Daily ambient water temperature (indicated by color) and depth (y-axis) experienced by Manta alfredi for the duration of satellite tag deployment in 2011 near Al Lith, Saudi Arabia. (A) Manta identification number MA106 (B) MA102 (C) MA105 (D) MA104 (E) MA112 (F) MA111. Black points at the bottom of panels (E) and (F) indicate days for which the satellite tags resolved FastLoc GPS locations.
Figure 3
Figure 3. Percent daily time at depth.
Daily time-at-depth (indicated by color across y-axis) by Manta alfredi for the duration of satellite tag deployment in 2011 near Al Lith, KSA. (A) Manta identification number MA106 (B) MA102 (C) MA105 (D) MA104 (E) MA112 (F) MA111. Black points at the bottom of panels (E) and (F) indicate days for which the satellite tags resolved FastLoc GPS locations.
Figure 4
Figure 4. Vertical velocity during normal and deep diving.
Average vertical velocity (m.s−1) from three archival satellite tag datasets collected during normal (<150 m) (A) descent and (B) ascent and deep (>150 m) (C) descent and (D) ascent dive behavior of Manta alfredi. Zero velocities (no depth change) were dropped from plotting to facilitate visualization of non-zero values. White and black bars indicate day and night, respectively.
Figure 5
Figure 5. Gliding during deep dives.
(A) Consecutive deep diving behavior exhibited by MA006 initiated at 0900 on 22 May 2011 and (B) the corresponding mean vertical velocity histogram. Negative velocities describe descents. Red segments indicate descent velocity between depth points <0.1 m.s−1 which we suggest correspond to gliding behavior.
Figure 6
Figure 6. Coastal and offshore depth occupation.
Frequency histogram comparing coastal (left) and offshore (right) depth occupation over a diel cycle. Bars are in 10 m bins. White and black bars indicate day and night, respectively.
Figure 7
Figure 7. Coastal and offshore lunar regression.
Moon fraction regression with mean daily nighttime depth for both GPS-tagged mantas (MA111 = grey, MA112 = black) comparing (A) coastal and (B) offshore nocturnal depth occupation.
Figure 8
Figure 8. Coastal and offshore diel diving behavior.
Combined diel diving behavior for MA111 (grey) and MA112 (black) during coastal (A) and offshore (B) habitat occupation. Note y-axis is truncated in (B) to facilitate comparison.

Similar articles

Cited by

References

    1. Couturier LI, Marshall AD, Jaine FR, Kashiwagi T, Pierce SJ, et al. (2012) Biology, ecology and conservation of the Mobulidae. J Fish Biol 80: 1075–1119. - PubMed
    1. Cowen RK, Gawarkiewicz GG, Pineda J, Thorrold SR, Werner FE (2007) Population connectivity in marine systems: an overview. Oceanography 20: 14–21.
    1. Block B, Jonsen I, Jorgensen S, Winship A, Shaffer S, et al. (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475: 86–90. - PubMed
    1. Bonfil R, Meyer M, Scholl MC, Johnson R, O'Brien S, et al. (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310: 100–103. - PubMed
    1. Hueter RE, Tyminski JP, de la Parra R (2013) Horizontal Movements, Migration Patterns, and Population Structure of Whale Sharks in the Gulf of Mexico and Northwestern Caribbean Sea. PLoS One 8. - PMC - PubMed

Publication types

Grants and funding

Financial support was provided in part by KAUST baseline research funds (to MLB), KAUST award numbers USA00002 and KSA 00011 (to SRT), and the U.S. National Science Foundation (OCE 0825148 to SRT and GBS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

LinkOut - more resources