Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys
- PMID: 28813023
- PMCID: PMC5579878
- DOI: 10.3390/s17081889
Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys
Abstract
Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.
Keywords: IMU; airborne gamma-ray spectrometry; barometric sensors; low-cost GNSS; radar altimeter.
Conflict of interest statement
The authors declare no conflict of interest.
Figures















Similar articles
-
Low-Cost GNSS-R Altimetry on a UAV for Water-Level Measurements at Arbitrary Times and Locations.Sensors (Basel). 2019 Feb 26;19(5):998. doi: 10.3390/s19050998. Sensors (Basel). 2019. PMID: 30813630 Free PMC article.
-
Error Budget for Geolocation of Spectroradiometer Point Observations from an Unmanned Aircraft System.Sensors (Basel). 2018 Oct 15;18(10):3465. doi: 10.3390/s18103465. Sensors (Basel). 2018. PMID: 30326591 Free PMC article.
-
Radar and Visual Odometry Integrated System Aided Navigation for UAVS in GNSS Denied Environment.Sensors (Basel). 2018 Aug 23;18(9):2776. doi: 10.3390/s18092776. Sensors (Basel). 2018. PMID: 30142948 Free PMC article.
-
Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.J Environ Radioact. 2018 Feb;182:101-107. doi: 10.1016/j.jenvrad.2017.11.033. Epub 2017 Dec 6. J Environ Radioact. 2018. PMID: 29220714
-
On the Challenges and Potential of Using Barometric Sensors to Track Human Activity.Sensors (Basel). 2020 Nov 27;20(23):6786. doi: 10.3390/s20236786. Sensors (Basel). 2020. PMID: 33261064 Free PMC article. Review.
Cited by
-
Smartphone-Based 3D Indoor Pedestrian Positioning through Multi-Modal Data Fusion.Sensors (Basel). 2019 Oct 19;19(20):4554. doi: 10.3390/s19204554. Sensors (Basel). 2019. PMID: 31635127 Free PMC article.
-
Monitoring Aircraft Position Using EGNOS Data for the SBAS APV Approach to the Landing Procedure.Sensors (Basel). 2020 Mar 30;20(7):1945. doi: 10.3390/s20071945. Sensors (Basel). 2020. PMID: 32235680 Free PMC article.
-
Corrections of BDS Code Multipath Error in Geostationary Orbit Satellite and Their Application in Precise Data Processing.Sensors (Basel). 2019 Jun 18;19(12):2737. doi: 10.3390/s19122737. Sensors (Basel). 2019. PMID: 31216690 Free PMC article.
-
Development of a Robust Sensor Calibration for a Commercially Available Rising Platemeter to Estimate Herbage Mass on Temperate Seminatural Pastures.Sensors (Basel). 2024 Apr 5;24(7):2326. doi: 10.3390/s24072326. Sensors (Basel). 2024. PMID: 38610536 Free PMC article.
-
Feasibility Analysis of LTE-Based UAS Navigation in Deep Urban Areas and DSRC Augmentation.Sensors (Basel). 2019 Sep 27;19(19):4192. doi: 10.3390/s19194192. Sensors (Basel). 2019. PMID: 31569647 Free PMC article.
References
-
- Strati V., Baldoncini M., Bezzon G.P., Broggini C., Buso G.P., Caciolli A., Callegari I., Carmignani L., Colonna T., Fiorentini G., et al. Total natural radioactivity, Veneto (Italy) J. Maps. 2015;11:545–551. doi: 10.1080/17445647.2014.923348. - DOI
-
- Xhixha M.K., Albèri M., Baldoncini M., Bezzon G.P., Buso G.P., Callegari I., Casini L., Cuccuru S., Fiorentini G., Guastaldi E., et al. Uranium distribution in the Variscan Basement of Northeastern Sardinia. J. Maps. 2015:1–8. doi: 10.1080/17445647.2015.1115784. - DOI
-
- Wilford J., Minty B. Chapter 16 The Use of Airborne Gamma-ray Imagery for Mapping Soils and Understanding Landscape Processes. Dev. Soil Sci. 2006;31:207–610.
-
- Mohamud A.H., Cózar J.S., Rodrigo-Naharro J., Pérez del Villar L. Distribution of U and Th in an Iberian U-fertile granitic complex (NW, Spain): Airborne-radiometry, chemical and statistical approaches. J. Geochem. Explor. 2015;148:40–55. doi: 10.1016/j.gexplo.2014.07.022. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources