Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 18;18(1):71.
doi: 10.1186/s12862-018-1155-8.

Phylogenomic analysis of Apoidea sheds new light on the sister group of bees

Affiliations

Phylogenomic analysis of Apoidea sheds new light on the sister group of bees

Manuela Sann et al. BMC Evol Biol. .

Abstract

Background: Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families.

Results: Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family "Crabronidae", which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees.

Conclusion: By combining transcriptomic sequences with those obtained via target DNA enrichment, we were able to include an unprecedented large number of apoid wasps in a phylogenetic study for tracing the phylogenetic origin of bees. Our results confirm the polyphyletic nature of the former wasp family Crabonidae, which we here suggest splitting into eight families. Of these, the family Ammoplanidae possibly represents the extant sister lineage of bees. Species of Ammoplanidae are known to hunt thrips, of which some aggregate on flowers and feed on pollen. The specific biology of Ammoplanidae as predators indicates how the transition from a predatory to pollen-collecting life style could have taken place in the evolution of bees. This insight plus the finding that (eu)social societies evolved exclusively in a single subordinated lineage of apoid wasps provides new perspectives for future comparative studies.

Keywords: Aculeata; Anthophila; Apoid wasps; Apoidea; Bees; Evolution; Hymenoptera; Phylogeny; Target enrichment.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Possible phylogenetic relationships of the major apoid wasp lineages and of bees (Anthophila) as inferred in the present investigation and by Peters et al. (2017). Members of the apoid wasp family “Crabronidae” are scattered across eight major clades, whereby we combine Crabronidae: Dinetinae and Crabroninae to one clade: Crabronidae (marked by an asterisk). Numbers in brackets represent the number of taxa inluded in the analyses. Highlighted group names of Astatinae (red), Bembicinae (yellow) and Mellininae (green) show unambiguous sister group relationships, resulting in a total of three alternative tree topologies: (a) inferred from analyzing 284,607 nucleotide sites and applying a combination of protein domain – and codonbased partitioning scheme by modeling 1st, 2nd and 3rd codon positions separately, (b) inferred from analyzing 284,607 nucleotide sites and applying a combination of protein domain – and codon-based partitioning scheme by modeling 1st and 2nd codon position separately - 3rd codon position excluded, (c) inferred from analyzing 94,869 amino acid sites and applying a protein domain-based partitioning scheme, (d) inferred by Peters et al. (2017) and (e) inferred, including bootstrap support values by Branstetter et al. (2017)
Fig. 2
Fig. 2
Maximum likelihood phylogenetic tree inferred from analyzing 284,607 nucleotide sites and applying a combination of protein domain – and codon-based partitioning scheme by modeling 1st, 2nd and 3rd codon positions separately. Support values are obtained from 100 bootstrap replicates. Species marked by an asterisk (*) indicate rogue taxa. Two asterisks (**) point to the misplaced species Ammatomus sp. I and (***) to the position of the Stenotritidae. Circled numbers (nodes) indicate taxonomic groups of special interest described in the main text. Former classification according to W. J. Pulawski’s Catalog of Sphecidae “sensu lato”

Similar articles

Cited by

References

    1. Michener CD (2000). The bees of the world. Johns Hopkins University Press, Baltimore and London, Vol. 1.
    1. Pulawski WJ (2016). Catalog of Sphecidae sensu lato (= Apoidea excluding Apidae). Available via http://www.calacademy.org/scientists/projects/catalog-of-sphecidae.
    1. Danforth BN, Sipes S, Fang J, Brady SG. The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci U S A. 2006;103:15118–15123. doi: 10.1073/pnas.0604033103. - DOI - PMC - PubMed
    1. Ohl M, Engel MS. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea) Denisia. 2007;20:687–700.
    1. Cardinal S, Straka J, Danforth BN. Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Natl Acad Sci U S A. 2010;107:16207–16211. doi: 10.1073/pnas.1006299107. - DOI - PMC - PubMed

Publication types