Computational Modeling of Claudin Structure and Function
- PMID: 31979311
- PMCID: PMC7037046
- DOI: 10.3390/ijms21030742
Computational Modeling of Claudin Structure and Function
Abstract
Tight junctions form a barrier to control passive transport of ions and small molecules across epithelia and endothelia. In addition to forming a barrier, some of claudins control transport properties of tight junctions by forming charge- and size-selective ion channels. It has been suggested claudin monomers can form or incorporate into tight junction strands to form channels. Resolving the crystallographic structure of several claudins in recent years has provided an opportunity to examine structural basis of claudins in tight junctions. Computational and theoretical modeling relying on atomic description of the pore have contributed significantly to our understanding of claudin pores and paracellular transport. In this paper, we review recent computational and mathematical modeling of claudin barrier function. We focus on dynamic modeling of global epithelial barrier function as a function of claudin pores and molecular dynamics studies of claudins leading to a functional model of claudin channels.
Keywords: claudin; ion channel; ion transport; molecular dynamics; tight junction.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


Similar articles
-
Tight junctions of the proximal tubule and their channel proteins.Pflugers Arch. 2017 Aug;469(7-8):877-887. doi: 10.1007/s00424-017-2001-3. Epub 2017 Jun 9. Pflugers Arch. 2017. PMID: 28600680 Review.
-
Computational Models of Claudin Assembly in Tight Junctions and Strand Properties.Int J Mol Sci. 2024 Mar 16;25(6):3364. doi: 10.3390/ijms25063364. Int J Mol Sci. 2024. PMID: 38542338 Free PMC article. Review.
-
Model for the architecture of claudin-based paracellular ion channels through tight junctions.J Mol Biol. 2015 Jan 30;427(2):291-7. doi: 10.1016/j.jmb.2014.10.020. Epub 2014 Nov 4. J Mol Biol. 2015. PMID: 25451028
-
Conceptual barriers to understanding physical barriers.Semin Cell Dev Biol. 2015 Jun;42:13-21. doi: 10.1016/j.semcdb.2015.04.008. Epub 2015 May 21. Semin Cell Dev Biol. 2015. PMID: 26003050 Free PMC article. Review.
-
Charge-selective claudin channels.Ann N Y Acad Sci. 2012 Jun;1257:20-8. doi: 10.1111/j.1749-6632.2012.06555.x. Ann N Y Acad Sci. 2012. PMID: 22671585
Cited by
-
Interactive effect of dietary calcium and phytase on broilers challenged with subclinical necrotic enteritis: part 2. Gut permeability, phytate ester concentrations, jejunal gene expression, and intestinal morphology.Poult Sci. 2020 Oct;99(10):4914-4928. doi: 10.1016/j.psj.2020.06.030. Epub 2020 Jul 3. Poult Sci. 2020. PMID: 32988528 Free PMC article.
-
Multiscale modelling of claudin-based assemblies: A magnifying glass for novel structures of biological interfaces.Comput Struct Biotechnol J. 2022 Oct 28;20:5984-6010. doi: 10.1016/j.csbj.2022.10.038. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36382184 Free PMC article. Review.
-
Roles of the ACE/Ang II/AT1R pathway, cytokine release, and alteration of tight junctions in COVID-19 pathogenesis.Tissue Barriers. 2023 Apr 3;11(2):2090792. doi: 10.1080/21688370.2022.2090792. Epub 2022 Jun 21. Tissue Barriers. 2023. PMID: 35726726 Free PMC article.
-
The Epithelial Cell Leak Pathway.Int J Mol Sci. 2021 Jul 18;22(14):7677. doi: 10.3390/ijms22147677. Int J Mol Sci. 2021. PMID: 34299297 Free PMC article. Review.
-
Molecular mechanism of claudin-15 strand flexibility: A computational study.J Gen Physiol. 2022 Dec 5;154(12):e202213116. doi: 10.1085/jgp.202213116. Epub 2022 Nov 1. J Gen Physiol. 2022. PMID: 36318156 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources