Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov:140:164-170.
doi: 10.1016/j.rvsc.2021.08.018. Epub 2021 Aug 28.

Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation

Affiliations

Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation

Cui-Yue Wang et al. Res Vet Sci. 2021 Nov.

Abstract

Manganese (Mn) is an essential trace element for bone growth, and its deficiency has been shown to increase the incidence of leg abnormalities in fast-growing broilers, such as tibial dyschondroplasia (TD). Proliferation and differentiation of growth plate chondrocyte are critical for tibia development, but their roles in Mn deficiency-induced TD remains to be elucidated. Thirty 1-day-old Arbor Acres chicks were randomly divided into two groups and fed with control diet (60 mg Mn/kg diet) and Mn-deficiency diet (22 mg Mn/kg diet) for 42 days, respectively. Mn deficiency-induced TD model was successfully established and samples from proximal tibia metaphysis and growth plate were collected for assays. Pathological observation showed that Mn deficiency induced morphological abnormality and irregular arrangement of chondrocytes in proliferative and hypertrophic zone of tibial growth plate. Also, Mn deficiency decreased mRNA and protein expression levels of type II collagen and type X collagen in tibial growth plate, indicating the impairment of proliferating and hypertrophic chondrocytes. Moreover, down-regulated gene expression levels of Sox9, Tgf-β, Ihh, Runx2, Mef2c and Bmp-2 were shown in tibial growth plate of Mn-deficiency group, demonstrating that Mn deficiency inhibited the transcription levels of key regulators to disrupt chondrocyte proliferation and differentiation. Collectively, these findings confirmed that Mn deficiency affected the proliferation and differentiation of chondrocytes in tibial growth plate via inhibiting related regulatory factors, leading to TD in broilers.

Keywords: Broiler; Manganese deficiency; Proliferation and differentiation; Tibial dyschondroplasia; Tibial growth plate.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources