Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 20;91(26):12877-81.
doi: 10.1073/pnas.91.26.12877.

High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects

Affiliations

High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects

C M Rick et al. Proc Natl Acad Sci U S A. .

Abstract

A variant of Lycopersion esculentum var. cerasiforme is described that deviates from the typical form of the entire species, including cultivated tomatoes, in possessing high levels (500-5000 micrograms/g of dry weight) of the steroidal alkaloid alpha-tomatine in its ripe fruits. This biotype is restricted to a tiny enclave in the valley of Río Mayo, Department San Martín, Peru. Among 88 accessions of var. cerasiforme from its present distribution in the Andes, a 90% association was found between high tomatine and bitter flavor; within the Mayo watershed, all samples from the upper drainage had bitterness and high tomatine; the frequency of both traits decreased to low levels toward the lower end. Tomatine therefore probably is the source of bitterness. Throughout L. esculentum tomatine is present at very high concentrations in earliest stages of fruit development, thereafter decreasing rapidly to midperiod, and finally diminishing gradually to near zero at maturity as a result of catabolism to biologically inert compounds, except in the variant described here. High tomatine content does not appear to affect adversely either the natives, among whom the bitter types are popular, or individuals who sampled them in this survey. Genetic determination of high tomatine in ripe fruits is totally recessive and appears to be monogenic with interaction with genes of minor effect. The prevailing pattern of glycoalkaloid synthesis and degradation in development of solanaceous fruits suggests a mechanism to protect against predation prior to ripening but to permit it afterward as a device to promote dispersal. In consideration of the nondegradative nature of the variant, its genetic determination, and very restricted geographic distribution, mutation to this form appears to be a random event of doubtful evolutionary significance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Planta Med. 1981 Aug;42(8):409-11 - PubMed

LinkOut - more resources