
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Networking Services
Issue 4

[This page intentionally left blank]

X/Open CAE Specification

Networking Services, Issue 4

X/Open Company Ltd.

 September 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Networking Services, Issue 4

ISBN: 1-85912-049-0
X/Open Document Number: C438

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

Portions of this document are extracted from IEEE Std 1003.1-1990, copyright  1990 by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Portions of this document were extracted from IEEE Draft Standard P1003.2/D12, copyright 
1992 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the
IEEE. No further reproduction of this material is permitted without the written permission of
the publisher. IEEE Std 1003.2-1992, copyright  1992 by the Institute of Electrical and
Electronics Engineers, Inc., and ISO/IEC 9945-2: 1993, Information Technology — Portable
Operating System (POSIX) — Part 2: Shell and Utilities, are technically identical to IEEE Draft
Standard P1003.2/D12 in these areas.

Portions of this document are derived from copyrighted material owned by Hewlett-Packard
Company, International Business Machines Corporation, Novell Inc., The Open Software
Foundation, and Sun Microsystems, Inc.

ii X/Open CAE Specification (1994)

Contents

Chapter 1 Common Information.. 1
 1.1 Terminology... 1
 1.1.1 Shaded Text ... 2
 1.2 Use and Implementation of Interfaces ... 2
 1.2.1 C Language Definition.. 3
 1.3 The Compilation Environment.. 4
 1.3.1 X/Open UNIX Extension... 4
 1.3.2 The X/Open Name Space .. 5
 1.4 Relationship to the XSH Specification.. 7
 1.4.1 Error Numbers.. 7
 1.5 Relationship to Emerging Formal Standards.. 7

Chapter 2 General Introduction to the XTI ... 9

Chapter 3 Explanatory Notes for XTI.. 11
 3.1 Transport Endpoints... 11
 3.2 Transport Providers.. 11
 3.3 Association of a UNIX Process to an Endpoint.................................... 12
 3.4 Use of the Same Protocol Address .. 12
 3.5 Modes of Service ... 13
 3.6 Error Handling .. 13
 3.7 Synchronous and Asynchronous Execution Modes............................ 14
 3.8 Event Management... 16

Chapter 4 XTI Overview ... 17
 4.1 Overview of Connection-oriented Mode... 17
 4.1.1 Initialisation/De-initialisation Phase .. 18
 4.1.2 Overview of Connection Establishment ... 19
 4.1.3 Overview of Data Transfer .. 20
 4.1.4 Overview of Connection Release ... 22
 4.2 Overview of Connectionless Mode... 23
 4.2.1 Initialisation/De-initialisation Phase .. 23
 4.2.2 Overview of Data Transfer .. 23
 4.3 XTI Features ... 25
 4.3.1 XTI Functions versus Protocols .. 26

Chapter 5 States and Events in XTI.. 27
 5.1 Transport Interfaces States.. 28
 5.2 Outgoing Events ... 29
 5.3 Incoming Events ... 30
 5.4 Transport User Actions.. 31
 5.5 State Tables... 32

Networking Services, Issue 4 iii

Contents

 5.6 Events and TLOOK Error Indication.. 34

Chapter 6 The Use of Options in XTI ... 35
 6.1 Generalities .. 35
 6.2 The Format of Options... 36
 6.3 The Elements of Negotiation.. 37
 6.3.1 Multiple Options and Options Levels ... 37
 6.3.2 Illegal Options .. 37
 6.3.3 Initiating an Option Negotiation.. 38
 6.3.4 Responding to a Negotiation Proposal ... 39
 6.3.5 Retrieving Information about Options.. 40
 6.3.6 Privileged and Read-only Options... 41
 6.4 Option Management of a Transport Endpoint 42
 6.5 Supplements .. 44
 6.5.1 The Option Value T_UNSPEC .. 44
 6.5.2 The info Argument .. 44
 6.5.3 Summary ... 45
 6.6 Portability Aspects.. 46

Chapter 7 XTI Library Functions and Parameters 47
 7.1 How to Prepare XTI Applications... 47
 7.2 Key for Parameter Arrays ... 47
 7.3 Return of TLOOK Error... 47
 t_accept().. 48
 t_alloc () .. 51
 t_bind()... 53
 t_close() .. 56
 t_connect() ... 57
 t_error() .. 60
 t_free() .. 61
 t_getinfo ()... 63
 t_getprotaddr () .. 66
 t_getstate() ... 68
 t_listen() ... 69
 t_look () ... 71
 t_open() .. 73
 t_optmgmt() ... 76
 t_rcv()... 82
 t_rcvconnect() .. 84
 t_rcvdis() .. 86
 t_rcvrel() .. 88
 t_rcvudata () ... 89
 t_rcvuderr().. 91
 t_snd() .. 93
 t_snddis() ... 96
 t_sndrel().. 98
 t_sndudata ()... 99
 t_strerror() ... 101

iv X/Open CAE Specification (1994)

Contents

 t_sync()... 102
 t_unbind() .. 104

Chapter 8 Sockets Interfaces .. 105
 8.1 Sockets Overview ... 106
 accept() ... 107
 bind() .. 109
 close().. 111
 connect()... 112
 fcntl() .. 115
 fgetpos().. 116
 fsetpos() .. 117
 ftell () ... 118
 getpeername()... 119
 getsockname()... 120
 getsockopt () .. 121
 listen() .. 123
 lseek().. 124
 poll () ... 125
 read()... 126
 recv()... 127
 recvfrom()... 129
 recvmsg().. 132
 select()... 135
 send() .. 136
 sendmsg() ... 138
 sendto()... 141
 setsockopt ()... 144
 shutdown() ... 146
 socket().. 147
 socketpair ()... 149
 write() ... 151

Chapter 9 Sockets Headers.. 153
 <fcntl.h> .. 154
 <sys/socket.h>.. 155
 <sys/stat.h> ... 158
 <sys/un.h>... 159

Chapter 10 IP Address Resolution Interfaces... 161
 endhostent() ... 162
 endnetent() ... 164
 endprotoent().. 165
 endservent().. 166
 gethostbyaddr () .. 168
 gethostname()... 169
 getnetbyaddr().. 170
 getprotobynumber()... 171

Networking Services, Issue 4 v

Contents

 getservbyport()... 172
 h_errno .. 173
 htonl()... 174
 inet_addr() ... 175
 ntohl()... 177
 sethostent()... 178
 setnetent()... 179
 setprotoent() ... 180
 setservent() ... 181

Chapter 11 IP Address Resolution Headers .. 183
 <arpa/inet.h> .. 184
 <netdb.h>.. 185
 <netinet/in.h>... 187
 <unistd.h>... 188

Appendix A ISO Transport Protocol Information.. 189
 A.1 General.. 189
 A.2 Options.. 190
 A.2.1 Connection-mode Service .. 190
 A.2.1.1 Options for Quality of Service and Expedited Data...................... 190
 A.2.1.2 Management Options .. 192
 A.2.2 Connectionless-mode Service ... 194
 A.2.2.1 Options for Quality of Service ... 194
 A.2.2.2 Management Options .. 195
 A.3 Functions .. 196

Appendix B Internet Protocol-specific Information...................................... 199
 B.1 General.. 199
 B.2 Options.. 200
 B.2.1 TCP-level Options ... 200
 B.2.2 UDP-level Options... 201
 B.2.3 IP-level Options.. 202
 B.3 Functions .. 205

Appendix C Guidelines for Use of XTI... 207
 C.1 Transport Service Interface Sequence of Functions 207
 C.2 Example in Connection-oriented Mode... 208
 C.3 Example in Connectionless Mode... 210
 C.4 Writing Protocol-independent Software.. 211
 C.5 Event Management... 212
 C.5.1 Short-term Solution ... 212
 C.5.2 XTI Events ... 213
 C.6 The Poll Function .. 214
 poll () ... 215
 C.7 Use of Poll... 217
 C.8 The Select Function... 226
 select()... 227

vi X/Open CAE Specification (1994)

Contents

 C.9 Use of Select ... 229

Appendix D Use of XTI to Access NetBIOS... 239
 D.1 Introduction ... 239
 D.2 Objectives ... 239
 D.3 Scope.. 240
 D.4 Issues ... 241
 D.5 NetBIOS Names and Addresses.. 242
 D.6 NetBIOS Connection Release ... 243
 D.7 Options.. 244
 D.8 XTI Functions... 245

Appendix E XTI and TLI.. 251
 E.1 Restrictions Concerning the Use of XTI ... 251
 E.2 Relationship between XTI and TLI ... 252

Appendix F Headers and Definitions for XTI .. 253

Appendix G Abbreviations... 265

Appendix H Minimum OSI Functionality (Preliminary Specification)267
 H.1 General.. 267
 H.1.1 Rationale for using XTI-mOSI... 267
 H.1.2 Migrant Applications .. 267
 H.1.3 OSI Functionality ... 267
 H.1.4 mOSI API versus XAP .. 268
 H.1.5 Upper Layers Functionality Exposed via mOSI................................ 268
 H.1.5.1 Naming and Addressing Information used by mOSI................... 268
 H.1.5.2 XTI Options Specific to mOSI .. 268
 H.2 Options.. 270
 H.2.1 ACSE/Presentation Connection-oriented Service............................ 270
 H.2.2 ACSE/Presentation Connectionless Service...................................... 271
 H.2.3 Transport Service Options ... 272
 H.3 Functions .. 273
 H.4 Implementors) Notes ... 277
 H.4.1 Upper Layers FUs, Versions and Protocol Mechanisms.................. 277
 H.4.2 Mandatory and Optional Parameters.. 277
 H.4.3 Mapping XTI Functions to ACSE/Presentation Services................ 278
 H.4.3.1 Connection-oriented Services .. 278
 H.4.3.2 Connectionless Services .. 282
 H.5 Complements to <xti.h>.. 283
 H.6 XTI mOSI CR ... 287

Appendix I SNA Transport Provider... 293
 I.1 Introduction ... 293
 I.2 SNA Transport Protocol Information ... 294
 I.2.1 General... 294
 I.2.2 SNA Addresses .. 295

Networking Services, Issue 4 vii

Contents

 I.2.3 Options... 296
 I.2.3.1 Connection-Mode Service Options ... 296
 I.2.4 Functions ... 298
 I.3 Mapping XTI to SNA Transport Provider ... 301
 I.3.1 General Guidelines .. 302
 I.3.2 Flows Illustrating Full Duplex Mapping .. 303
 I.3.3 Full Duplex Mapping.. 312
 I.3.3.1 Parameter Mappings.. 314
 I.3.4 Half Duplex Mapping... 324
 I.3.5 Return Code to Event Mapping.. 325
 I.4 XTI SNA CR ... 326

Appendix J The Internet Protocols ... 327

 Glossary ... 329

 Index... 333

List of Figures

I-1 Active Connection Establishment, Blocking Version (1 of 2) 303
I-2 Active Connection Establishment, Non-blocking Version (2 of 2)...... 304
I-3 Passive Connection Establishment, Instantiation Version (1 of 3) 305
I-4 Passive Connection Establishment, Blocking Version (2 of 3).............. 306
I-5 Passive Connection Establishment, Non-blocking Version (3 of 3) 307
I-6 XTI Function to LU 6.2 Verb Mapping: Blocking t_snd 308
I-7 XTI Function to LU 6.2 Verb Mapping: Non-blocking t_snd............... 309
I-8 XTI Function to LU 6.2 Verb Mapping: Blocking t_rcv.......................... 310
I-9 Mapping from XTI Calls to LU 6.2 Verbs (Passive side)........................ 311

List of Tables

3-1 Events and t_look()... 15
4-1 Classification of the XTI Functions... 26
5-1 Transport Interface States ... 28
5-2 Transport Interface Outgoing Events... 29
5-3 Transport Interface Incoming Events... 30
5-4 Transport Interface User Actions .. 31
5-5 Initialisation/De-initialisation States... 32
5-6 Data Transfer States: Connectionless-mode Service 32
5-7 Connection/Release/Data Transfer States: Connection-mode Service.........33
7-1 XTI-level Options ... 79
A-1 Options for Quality of Service and Expedited Data 190
A-2 Management Options .. 192
A-3 Options for Quality of Service ... 194
A-4 Management Option.. 195
B-1 TCP-level Options .. 200
B-2 UDP-level Option... 201

viii X/Open CAE Specification (1994)

Contents

B-3 IP-level Options .. 202
C-1 Sequence of Transport Functions in Connection-oriented Mode........... 209
C-2 Sequence of Transport Functions in Connectionless Mode..................... 210
H-1 APCO-level Options .. 270
H-2 APCL-level Options... 271
H-3 Association Establishment ... 279
H-4 Data Transfer ... 280
H-5 Association Release.. 281
H-6 Connectionless-mode ACSE Service .. 282
I-1 SNA Options ... 297
I-2 Fields for info Parameter ... 298
I-3 Default Characteristics returned by t_open() ... 299
I-4 FDX LU 6.2 Verb Definitions.. 302
I-5 XTI Mapping to LU 6.2 Full Duplex Verbs.. 312
I-6 Relation Symbol Description ... 314
I-7 t_accept <--> FDX Verbs and Parameters ... 314
I-8 t_bind <--> FDX Verbs and Parameters .. 315
I-9 t_close <--> FDX Verbs and Parameters ... 315
I-10 t_connect <--> FDX Verbs and Parameters... 316
I-11 t_getprocaddr <--> FDX Verbs and Parameters ... 318
I-12 t_listen <--> FDX Verbs and Parameters .. 319
I-13 t_optmgmt <--> FDX Verbs and Parameters .. 319
I-14 t_rcv <--> FDX Verbs and Parameters .. 320
I-15 t_rcvconnect <--> FDX Verbs and Parameters ... 321
I-16 t_snd <--> FDX Verbs and Parameters ... 322
I-17 t_snddis (Existing Connection) <--> FDX Verbs and Parameters 323
I-18 t_snddis (Incoming Connect Req.) <--> FDX Verbs and Parameters...... 323
I-19 t_sndrel <--> FDX Verbs and Parameters ... 323
I-20 Mapping of XTI Events to SNA Events ... 325

Networking Services, Issue 4 ix

Contents

x X/Open CAE Specification (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Networking Services, Issue 4 xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). However, an appendix may be a CAE
Specification, a Preliminary Specification or a vehicle for conveying information to
implementors. In this regard, the introductory section in each appendix clearly identifies its
status.

This document centres around three sets of networking interfaces:

1. X/Open Transport Interface (XTI)

Chapter 2 through Chapter 7 define a transport-service interface that allows multiple users
to communicate at the transport level of the OSI reference model.

2. Sockets

Chapter 8 and Chapter 9 describe a set of interfaces to process-to-process communication
services.

3. IP Address Resolution

Chapter 10 and Chapter 11 describe a set of interfaces that obtain network information and
are usable in conjunction with both XTI and Sockets when using the Internet Protocol (IP).

This document incorporates XTI, Version 2 (September 1993)1.

1. X/Open CAE Specification, September 1993, X/Open Transport Interface (XTI), Version 2 (ISBN: 1-872630-97-9, C318).

Networking Services, Issue 4 xiii

Preface

Structure

• Chapter 1 contains information comparable to that in the XSH specification. It applies to the
Sockets and Address Resolution interfaces (see below) if the UNIX compilation environment
is in effect.

• Chapter 2 is a general introduction to the X/Open Transport Interface (XTI).

• Chapter 3 provides explanatory notes.

• Chapter 4 gives an overview for XTI.

• Chapter 5 describes the states and events in XTI.

• Chapter 6 describes the use of options.

• Chapter 7 contains reference manual pages for the XTI functions and parameters.

• Chapter 8 gives an overview and interfaces for Sockets.

• Chapter 9 defines the headers for Sockets.

• Chapter 10 gives an overview and interfaces for IP Address Resolution.

• Chapter 11 defines the headers for IP Address Resolution.

• Appendix A describes the protocol-specific information that is relevant for ISO transport
providers, including for ISO-over-TCP (RFC 1006).

• Appendix B describes the protocol-specific information that is relevant for TCP and UDP
transport providers.

• Appendix C gives guidelines for the use of XTI.

• Appendix D specifies a standard programming interface to NetBIOS transport providers in
X/Open-compliant systems, using XTI.

• Appendix E describes how XTI provides refinement of the Transport Level Interface (TLI).

• Appendix F presents a subset of the contents of the <xti.h> header file.

• Appendix G lists abbreviations used in this document.

• Appendix H provides a simple API exposing a minimum set of OSI Upper Layers
functionality (mOSI).

• Appendix I describes the protocol-specific information and mapping to XTI functions that is
relevant for Systems Network Architecture (SNA) transport providers.

• Appendix J contains a brief explanation of the Internet Protocols.

Revision History

The only changes to XTI from XTI, Version 2 (September 1993) are as follows:

• The new Chapter 1 contains information comparable to that in the XSH specification. It
applies to XTI if the UNIX compilation environment is in effect.

— The compilation environment is defined.

— Name space reservations are specified.

• The SYNOPSIS sections in the functional interfaces in Chapter 7 have been converted from
Common Usage C notation to standard C function prototypes, and function prototypes were
added to <xti.h>.

xiv X/Open CAE Specification (1994)

Preface

XTI (February 1992)2 merged the following earlier publications into a single document:

• Revised XTI (December 1990)3

• Addendum to Revised XTI (August 1991)4

In XTI, Version 2 (September 1993) the main body was unchanged. It contained additions as
follows:

• Chapter 2, Introduction has been extended to explain the role of the appendices in relation to
the main body of the XTI specification.

• Appendix A, ISO Transport Protocol Information has been extended to incorporate RFC 1006
(ISO Transport Service on Top of the TCP)

• A new Appendix — Appendix H, Minimum OSI Functionality — has been added.

• A new Appendix — Appendix I, SNA Transport Provider — has been added.

• Appendix I, Glossary of XTI (February 1992) has been retitled simply as Glossary, in
accordance with the latest X/Open house style for X/Open specifications.

Similarly, other minor restructuring has been carried out to align with the latest X/Open house
style.

The revisions to XTI between publication of the X/Open Portability Guide, Issue 3 (XPG3) and
XTI (February 1992) are summarised here in two stages:

1. Those which appeared in Revised XTI (December 1990):

These changes arose principally from implementation experience gathered by X/Open
member companies.

Delete optional functions
The concept of mandatory versus optional functions is contrary to the goal of
portability. Therefore, all XTI functions were made mandatory; [TNOTSUPPORT]
should be returned if the transport provider does not support the function requested.

Error messages
The format of messages produced by the t_error() function was clarified. See also the
additional function t_strerror().

Multiple use of addresses
More stringent recommendations about multiple use of addresses were made. This
enhanced portability across different transport providers.

State behaviour
The state machine behaviour of XTI was clarified by the addition of a T_UNBND
column in Table 5-7 of Chapter 5, States and Events in XTI, and by the identification of
a number of additional cases where asynchronous events resulted in the return of the
TLOOK error.

2. X/Open CAE Specification, February 1992, X/Open Transport Interface (XTI) (ISBN: 1-872630-29-4, C196 or XO/CAE/91/600).
3. X/Open Developers’ Specification, December 1990, Revised XTI (X/Open Transport Interface) (ISBN: 1-872630-05-7, D060 or

XO/DEV/90/060).
4. X/Open Addendum, August 1991, Addendum to Revised XTI (ISBN: 1-872630-21-9, A110 or XO/AD/91/010).

Networking Services, Issue 4 xv

Preface

Zero-length TSDUs and TSDU fragments
The extent of support for zero-length TSDUs and zero-length TSDU fragments was set
out more clearly. See the descriptions of functions t_snd() and t_getinfo () in Chapter 7,
XTI Library Functions and Parameters.

T_MORE
The significance of the T_MORE flag for asynchronously received data was clarified.
See the description of t_rcv() in Chapter 7, XTI Library Functions and Parameters.

Protocol options
The description of protocol options for both OSI and TCP was much enhanced (see
Appendix A, ISO Transport Protocol Information and Appendix B, Internet Protocol-
specific Information).

Options and management structures
These were extensively revised, especially those covering connection-oriented OSI
(see Appendix F, Headers and Definitions).

Expedited Data
The different significance of expedited data in the OSI and TCP cases was clarified.

Connect semantics
Differences in underlying protocol semantics between OSI and TCP at connection
establishment were clarified. See Appendix B, Internet Protocol-specific Information
and the descriptions of t_accept() and t_listen() in Chapter 7, XTI Library Functions
and Parameters.

Add function t_getprotaddr()
This function yields the local and remote protocol addresses currently associated with
a transport endpoint.

Add function t_strerror()
This function maps an error number into a language-dependent error message string.
The functionality corresponds to the error message changes in the t_error() function.

Add Valid States to function descriptions
All function descriptions were revised to include an indication of the interface states
for which they are valid.

Add new error codes
A number of new error codes were added (see Appendix F, Headers and Definitions).

A number of minor changes were also made, including:

— clarification of the use of the term socket in the TCP case

— clarification of support for automatic generation of addresses

— clarification of the management of flow control

— clarification of the significant differences between transport providers

— clarification of the issue of non-guaranteed delivery of data at connection close

— clarification of the ways in which error indications may be received in connectionless
working

— enhancement of t_optmgmt() to allow retrieval of current value of transport provider
options

xvi X/Open CAE Specification (1994)

Preface

— addition of extern definitions for all XTI functions in Appendix F, Headers and
Definitions.

2. Those which appeared in Addendum to Revised XTI (August 1991):

These changes were consolidated into XTI (February 1992). The revisions listed below
refer to chapter, section and appendix references in Revised XTI (December 1990).

Section 2.9.1
The Protocol options and Options and management structures paragraphs were deleted
and replaced with the following:

Option management
The management and usage of options were completely revised. The changes
affected Chapter 5, the t_optmgmt() manual pages in Chapter 6, Appendix A,
Appendix B and Appendix F.

Section 4.5
The row for optmgmt was deleted from Figure 5, and a new row added to Figure 7 for
the event optmgmt, as follows:

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBND

Chapter 5
Chapter 5, Transport Protocol-specific Options was renamed The Use of Options, and
previous text replaced with new text.

Chapter 6, t_accept()
In the second paragraph, the phrase protocol-specific parameters was replaced with
options.

In the sixth paragraph, the sentence ‘‘The values of parameters specified by opt and
the syntax of those values are protocol-specific.’’ was removed.

In the seventh paragraph, the phrase protocol-specific option was replaced with option.

Chapter 6, t_connect()
In the sixth paragraph, ‘‘If used, sndcall->opt.buf must point to the corresponding
options structures (isoco_options or tcp_options);’’ was replaced with ‘‘If used,
sndcall->opt.buf must point to a buffer with the corresponding options;’’.

Chapter 6, t_listen()
In the second paragraph, protocol-specific parameters was replaced with options.

Chapter 6, t_optmgmt()
The manual pages for t_optmgmt() in Chapter 6 were completely replaced with new
text.

Chapter 6, t_rcvconnect()
In the third paragraph, protocol-specific information was replaced with options.

Chapter 6, t_rcvudata() and t_rcvuderr()
In the third paragraph, protocol-specific options was replaced with options.

Chapter 6, t_sndudata()
In the second paragraph, protocol-specific options was replaced with options.

Appendix A
The text in Appendix A, ISO Transport Protocol Information was replaced with new
text.

Networking Services, Issue 4 xvii

Preface

Appendix B
The text in Appendix B, Internet Protocol-specific Information was replaced with new
text.

Appendix F
The text in Appendix F, Headers and Definitions was replaced with new text.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C
external variables, C function family names, utility names, command operands or
command option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

xviii X/Open CAE Specification (1994)

Trade Marks

AT&T is a registered trade mark of AT&T in the U.S.A. and other countries.

HP is a registered trade mark of Hewlett-Packard.

OSFTM is a trade mark of The Open Software Foundation, Inc.

SNA is a product of International Business Machines Corporation.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

/usr/group is a registered trade mark of UniForum, the International Network of UNIX
System Users.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Networking Services, Issue 4 xix

Acknowledgements

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted IEEE Std 1003.2/D12, which have since become the corresponding
portions of IEEE Std 1003.2-1992 and ISO/IEC 9945-2: 1993, and also for permission to
reproduce portions of IEEE Std P1003.1g/D4.

• The IEEE Computer Society’s Portable Applications Standards Committee (PASC), whose
Standards contributed to our work.

• The UniForum (formerly /usr/group) Technical Committee’s Internationalization
Subcommittee for work on internationalised regular expressions.

• The ANSI X3J11 Committees.

• Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems, Inc., for their work in developing the
Single X/Open UNIX Extension and sponsoring it through the X/Open Direct Review (Fast-
track) process.

xx X/Open CAE Specification (1994)

Referenced Documents

The following documents are referenced in this specification:

ACSE

ISO 8649
ISO 8649: 1988 Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element, together with:

Technical Corrigendum 1: 1990 to ISO 8649: 1988
Amendment 1: 1990 to ISO 8649: 1988
Authentication during association establishment.
Amendment 2: 1991 to ISO 8649: 1988
Connectionless-mode ACSE Service.

ISO 8650
ISO 8650: 1988 Information Processing Systems — Open Systems Interconnection —
Protocol specification for the Association Control Service Element, together with:

Technical Corrigendum 1: 1990 to ISO 8650: 1988
Amendment 1: 1990 to ISO 8650: 1988
Authentication during association establishment.

ISO/IEC 10035
ISO/IEC 10035: 1991, Information Technology — Open Systems Interconnection —
Connectionless ACSE Protocol Specification.

Presentation

ISO 8822
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISO 8824
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825:1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

ISO/IEC 9576
ISO/IEC 9576: 1991, Information Technology — Open Systems Interconnection —
Connectionless Presentation Protocol Specification.

Networking Services, Issue 4 xxi

Referenced Documents

Session

ISO 8326
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Service Definition.

ISO 8327
ISO 8327: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Protocol Specification.

Amendment 3: 1992 to ISO 8327: 1987 — Additional Synchronization Functionality.

Other References

Minimal OSI
ISO/IEC DISP 11188-3, International Standardized Profile — Common Upper Layer
Requirements — Part 3: Minimal OSI Upper Layers Facilities, 1994-04-14.

ISO 7498
ISO 7498: 1984, Information Processing Systems — Open Systems Interconnection — Basic
Reference Model.

ISO Transport

Connection-Oriented Connectionless
Protocol Definition IS 8073-1986 IS 8602
Service Definition IS 8072-1986 IS 8072/Add.1-1986

TCP
Transmission Control Protocol, RFC 793 (Defense Communication Agency, DDN Protocol
Handbook, Volume II, DARPA Internet Protocols, (December 1985). Also see TCP,
Transmission Control Protocol, Military Standard, Mil-std-1778, Defense Communication
Agency, DDN Protocol Handbook, Volume I, DOD Military Standard Protocols (December
1985).

UDP
User Datagram Protocol, RFC 768 (Defense Communication Agency, DDN Protocol
Handbook, Volume II, DARPA Internet Protocols, December 1985).

TLI Specifications
Networking Services Extension, draft version of SVID Issue 2, Volume III, 1986.

NetBIOS
Mappings of NetBIOS services to OSI and IPS transport protocols are provided in the
X/Open CAE Specification, October 1992, Protocols for X/Open PC Interworking: SMB,
Version 2 (ISBN: 1-872630-45-6, C209).

SNA
SNA National Registry, IBM document G325-6025-0.

CURL
Common Upper Layer Requirements, Part 3: Minimal OSI Upper Layer Facilities —
OIW/EWOS working document.

XSH, Issue 4, Version 2
X/Open CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

xxii X/Open CAE Specification (1994)

Referenced Documents

XCU, Issue 4, Version 2
X/Open CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2 (ISBN:
1-85912-034-2, C436).

Networking Services, Issue 4 xxiii

Referenced Documents

xxiv X/Open CAE Specification (1994)

Chapter 1

Common Information1

2 This chapter provides general information that applies to the XTI, Sockets and IP Address
3 Resolution interfaces defined in this volume.

4 1.1 Terminology
5 The information in this section applies only to the Sockets and IP Address Resolution interfaces.

6 The following terms are used in this specification:

7 can
8 This describes a permissible optional feature or behaviour available to the user or application; all
9 systems support such features or behaviour as mandatory requirements.

10 implementation-dependent
11 The value or behaviour is not consistent across all implementations. The provider of an
12 implementation normally documents the requirements for correct program construction and
13 correct data in the use of that value or behaviour. When the value or behaviour in the
14 implementation is designed to be variable or customisable on each instantiation of the system,
15 the provider of the implementation normally documents the nature and permissible ranges of
16 this variation. Applications that are intended to be portable must not rely on implementation-
17 dependent values or behaviour.

18 may
19 With respect to implementations, the feature or behaviour is optional. Applications should not
20 rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
21 need not , instead of may not .

22 must
23 This describes a requirement on the application or user.

24 obsolescent
25 Certain features are obsolescent , which means that they may be considered for withdrawal in
26 future revisions of this document. They are retained in this version because of their widespread
27 use. Their use in new applications is discouraged.

28 should
29 With respect to implementations, the feature is recommended, but it is not mandatory.
30 Applications should not rely on the existence of the feature.

31 With respect to users or applications, the word means recommended programming practice that
32 is necessary for maximum portability.

33 undefined
34 A value or behaviour is undefined if this document imposes no portability requirements on
35 applications for erroneous program constructs or erroneous data. Implementations may specify
36 the result of using that value or causing that behaviour, but such specifications are not
37 guaranteed to be consistent across all implementations. An application using such behaviour is
38 not fully portable to all systems.

39 unspecified
40 A value or behaviour is unspecified if this document imposes no portability requirements on
41 applications for correct program construct or correct data. Implementations may specify the

Networking Services, Issue 4 1

Terminology Common Information

42 result of using that value or causing that behaviour, but such specifications are not guaranteed
43 to be consistent across all implementations. An application requiring a specific behaviour,
44 rather than tolerating any behaviour when using that functionality, is not fully portable to all
45 systems.

46 will
47 This means that the behaviour described is a requirement on the implementation and
48 applications can rely on its existence.

49 1.1.1 Shaded Text

50 Shaded text in this document is qualified by a code in the left margin. The code and its meaning
51 is as follows:

52 UX X/Open UNIX Extension
53 The material relates to interfaces included to provide portability for applications originally
54 written to be compiled on UNIX and UNIX-based operating systems. Therefore, the features
55 described may not be present on systems that conform to XPG4 or to earlier XPG releases. The
56 relevant reference manual pages may provide additional or more specific portability warnings
57 about use of the material.

58 If an entire SYNOPSIS section is shaded and marked with one UX, all the functionality described
59 in that entry is an extension.

60 The material on pages labelled X/OPEN UNIX and the material flagged with the UX margin
61 legend is available only in cases where the _XOPEN_UNIX version test macro is defined.

62 1.2 Use and Implementation of Interfaces
63 UX The requirements in the remainder of this chapter are in effect only if the application has defined
64 XOPEN_SOURCE_EXTENDED = 1.

65 Each of the following statements applies unless explicitly stated otherwise in the detailed
66 descriptions that follow. If an argument to a function has an invalid value (such as a value
67 outside the domain of the function, or a pointer outside the address space of the program, or a
68 null pointer), the behaviour is undefined. Any function declared in a header may also be
69 implemented as a macro defined in the header, so a library function should not be declared
70 explicitly if its header is included. Any macro definition of a function can be suppressed locally
71 by enclosing the name of the function in parentheses, because the name is then not followed by
72 the left parenthesis that indicates expansion of a macro function name. For the same syntactic
73 reason, it is permitted to take the address of a library function even if it is also defined as a
74 macro. The use of the C-language #undef construct to remove any such macro definition will
75 also ensure that an actual function is referred to. Any invocation of a library function that is
76 implemented as a macro will expand to code that evaluates each of its arguments exactly once,
77 fully protected by parentheses where necessary, so it is generally safe to use arbitrary
78 expressions as arguments. Likewise, those function-like macros described in the following
79 sections may be invoked in an expression anywhere a function with a compatible return type
80 could be called.

81 Provided that a library function can be declared without reference to any type defined in a
82 header, it is also permissible to declare the function, either explicitly or implicitly, and use it
83 without including its associated header. If a function that accepts a variable number of
84 arguments is not declared (explicitly or by including its associated header), the behaviour is
85 undefined.

2 X/Open CAE Specification (1994) (Draft March 15, 1995)

Common Information Use and Implementation of Interfaces

86 As a result of changes in this issue of this document, application writers are only required to
87 include the minimum number of headers. Implementations of XSI-conformant systems will
88 make all necessary symbols visible as described in the Headers section of this document.

89 1.2.1 C Language Definition

90 The C language that is the basis for the synopses and code examples in this document is ISO C,
91 as specified in the referenced ISO C standard. Common Usage C, which refers to the C language
92 before standardisation, was the basis for previous editions of the XTI specification.

Networking Services, Issue 4 3

The Compilation Environment Common Information

93 1.3 The Compilation Environment
94 Applications should ensure that the feature test macro _XOPEN_SOURCE is defined before
95 inclusion of any header. This is needed to enable the functionality described in this document
96 (but see also Section 1.3.1), and possibly to enable functionality defined elsewhere in the
97 Common Applications Environment.

98 The _XOPEN_SOURCE macro may be defined automatically by the compilation process, but to
99 ensure maximum portability, applications should make sure that _XOPEN_SOURCE is defined
100 by using either compiler options or #define directives in the source files, before any #include
101 directives. Identifiers in this document may be undefined using the #undef directive as
102 described in Section 1.2 on page 2 or Section 1.3.2 on page 5. These #undef directives must
103 follow all #include directives of any XSI headers.

104 Most strictly conforming POSIX and ISO C applications will compile on systems compliant to
105 this specification. However, an application which uses any of the items marked as an extension
106 to POSIX and ISO C, for any purpose other than that shown here, may not compile. In such
107 cases, it may be necessary to alter those applications to use alternative identifiers.

108 Since this document is aligned with the ISO C standard, and since all functionality enabled by
109 having _POSIX_C_SOURCE set equal to 2 should be enabled by _XOPEN_SOURCE, there
110 should be no need to define either _POSIX_SOURCE or _POSIX_C_SOURCE if
111 _XOPEN_SOURCE is defined. Therefore, if _XOPEN_SOURCE is defined and
112 _POSIX_SOURCE is defined, or _POSIX_C_SOURCE is set equal to 1 or 2, the behaviour is the
113 same as if only _XOPEN_SOURCE is defined. However, should _POSIX_C_SOURCE be set to a
114 value greater than 2, the behaviour is undefined.

115 The c89 and cc utilities recognise the additional −l operand for standard libraries:

116 −l xnet If the implementation defines _XOPEN_UNIX, this operand makes visible all
117 functions referenced in this document. An implementation may search this library
118 in the absence of this operand.

119 It is unspecified whether the library libxnet.a exists as a regular file.

120 If the implementation supports the utilities marked DEVELOPMENT in the XCU specification,
121 the lint utility recognises the additional −l operand for standard libraries:

122 −l xnet Names the library llib−lxnet.ln, which will contain functions specified in this
123 document.

124 It is unspecified whether the library llib−lxnet.ln exists as a regular file.

125 1.3.1 X/Open UNIX Extension

126 An application that relies on any portion of this specification must define
127 _XOPEN_SOURCE_EXTENDED = 1 in each source file or as part of its compilation
128 environment. When _XOPEN_SOURCE_EXTENDED = 1 is defined in a source file in addition
129 to _XOPEN_SOURCE, it must appear before any header is included. The compilation
130 environment will not automatically define the _XOPEN_SOURCE_EXTENDED macro.

4 X/Open CAE Specification (1994) (Draft March 15, 1995)

Common Information The Compilation Environment

131 1.3.2 The X/Open Name Space

132 All identifiers in this document are defined in at least one of the headers, as shown in Chapter 9,
133 Chapter 11 and Appendix F. When _XOPEN_SOURCE is defined, each header defines or
134 declares some identifiers, potentially conflicting with identifiers used by the application. The set
135 of identifiers visible to the application consists of precisely those identifiers from the header
136 pages of the included headers, as well as additional identifiers reserved for the implementation.
137 In addition, some headers may make visible identifiers from other headers as indicated on the
138 relevant header pages.

139 The identifiers reserved for use by the implementation are described below.

140 1. Each identifier with external linkage described in the header section is reserved for use as
141 an identifier with external linkage if the header is included.

142 2. Each macro name described in the header section is reserved for any use if the header is
143 included.

144 3. Each identifier with file scope described in the header section is reserved for use as an
145 identifier with file scope in the same name space if the header is included.

146 If any header in the following table is included, identifiers with the following prefixes or suffixes
147 shown are reserved for any use by the implementation.

148
149 Header Prefix Suffix
150 <arpa/inet.h> in_, inet_
151 <errno.h> E
152 <netdb.h> h_, n_, p_, s_
153 <netinet/in.h> in_, s_, sin_
154 <sys/socket.h> sa_, if_, ifc_, ifru_, infu_, ifra_, msg_, cmsg_, l_
155 <sys/un.h> sun_
156 <xti.h> l_, t_, T
157 ANY header _t

158 If any header in the following table is included, macros with the prefixes shown may be defined.
159 After the last inclusion of a given header, an application may use identifiers with the
160 corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
161 corresponding macro.

162
163 Header Prefix
164 <netinet/in.h> IMPLINK_, IN_, INADDR_, IP_, IPPORT_, IPPROTO_, SOCK_
165 <sys/socket.h> AF_, MSG_, PF_, SO
166 <xti.h> INET_, IP_, ISO_, OPT_, T_, TCL_, TCP_, TCO_, XTI_

167 The following identifiers are reserved regardless of the inclusion of headers:

168 1. All identifiers that begin with an underscore and either an upper-case letter or another
169 underscore are always reserved for any use by the implementation.

170 2. All identifiers that begin with an underscore are always reserved for use as identifiers with
171 file scope in both the ordinary identifier and tag name spaces.

Networking Services, Issue 4 5

The Compilation Environment Common Information

172 3. All identifiers in the table below are reserved for use as identifiers with external linkage.

173
174 XTI:
175 t_accept t_error t_look t_rcvrel t_sndudata
176 t_alloc t_free t_open t_rcvudata t_strerror
177 t_bind t_getinfo t_optmgmt t_rcvuderr t_sync
178 t_close t_getprotaddr t_rcv t_snd t_unbind
179 t_connect t_getstate t_rcvconnect t_snddis
180 t_errno t_listen t_rcvdis t_sndrel
181 Sockets:
182 accept getsockname recvfrom sendto socketpair
183 bind getsockopt recvmsg setsockopt
184 connect listen send shutdown
185 getpeername recv sendmsg socket
186 IP Address Resolution:
187 endhostent inet_lnaof endservent h_errno gethostent
188 getprotoent sethostent getnetbyname inet_network getprotobynumber
189 inet_addr endprotoent getservent setservent htons
190 ntohs getnetbyaddr inet_netof gethostbyname ntohl
191 endnetent getservbyport setprotoent getprotobyname
192 gethostname inet_makeaddr gethostbyaddr htonl
193 getservbyname setnetent getnetent inet_ntoa

194 All the identifiers defined in this document that have external linkage are always reserved for
195 use as identifiers with external linkage.

196 No other identifiers are reserved.

197 Applications must not declare or define identifiers with the same name as an identifier reserved
198 in the same context. Since macro names are replaced whenever found, independent of scope and
199 name space, macro names matching any of the reserved identifier names must not be defined if
200 any associated header is included.

201 Headers may be included in any order, and each may be included more than once in a given
202 scope, with no difference in effect from that of being included only once.

203 If used, a header must be included outside of any external declaration or definition, and it must
204 be first included before the first reference to any type or macro it defines, or to any function or
205 object it declares. However, if an identifier is declared or defined in more than one header, the
206 second and subsequent associated headers may be included after the initial reference to the
207 identifier. Prior to the inclusion of a header, the program must not define any macros with
208 names lexically identical to symbols defined by that header.

6 X/Open CAE Specification (1994) (Draft March 15, 1995)

Common Information Relationship to the XSH Specification

209 1.4 Relationship to the XSH Specification

210 1.4.1 Error Numbers

211 Some functions provide an error number in errno, which is either a variable or macro defined in
212 <errno.h>; the macro expands to a modifiable lvalue of type int.

213 A list of valid values for errno and advice to application writers on the use of errno appears in the
214 XSH specification.

215 1.5 Relationship to Emerging Formal Standards
216 The IEEE 1003.8 standards committee is also developing interfaces to XTI and Sockets. X/Open
217 is actively involved in the work of this committee.

Networking Services, Issue 4 7

Common Information

8 X/Open CAE Specification (1994) (Draft March 15, 1995)

218

Chapter 2

General Introduction to the XTI

219 The X/Open Transport Interface (XTI) specification defines an independent transport-service
220 interface that allows multiple users to communicate at the transport level of the OSI reference
221 model. The specification describes transport-layer characteristics that are supported by a wide
222 variety of transport-layer protocols. Supported characteristics include:

223 • connection establishment

224 • state change support

225 • event handling

226 • data transfer

227 • option manipulation.

228 Although all transport-layer protocols support these characteristics, they vary in their level of
229 support and/or their interpretation and format. For example, there are transport-level options
230 which remain constant across all transport providers while there are other options which are
231 transport-provider specific or have different values/names for different transport providers.

232 The main Chapters in this specification describe interfaces, parameters and semantics constant
233 across all transport providers. The remainder of the document consists of appendices that
234 provide valuable information that is not an integral part of the main body since it is either
235 descriptive or applies only to some transport providers.

236 Some appendices provide information pertinent to writing XTI applications over specific
237 transport providers. The transport providers fall into three classes:

238 • Those corresponding to traditional transport providers, such as:

239 — ISO Transport (connection-oriented or connectionless)

240 — TCP

241 — UDP

242 — NetBIOS.

243 • Those corresponding to commonly used subsets of higher-layer protocols that provide
244 transport-like services, such as:

245 — minimal functionality OSI (mOSI), that is, OSI ACSE/Presentation with the kernel and
246 duplex functional units

247 — SNA LU6.2 subset.

248 • Mixed-protocol providers that provide the appearance of one protocol over a different
249 protocol such as:

250 — ISO transport appearance (connection-oriented) over TCP.

251 The ISO appendix (Appendix A) also describes a transport provider that uses RFC 1006 to
252 compensate for the differences between ISO transport and TCP so that a TCP provider
253 can present an ISO transport appearance.

Networking Services, Issue 4 9

General Introduction to the XTI

254 While XTI gives transport users considerable independence from the underlying transport
255 provider, the differences between providers are not entirely hidden. Appendix C includes
256 guidelines for writing transport-provider-independent software, which can be done primarily by
257 using only functions supported by all providers, avoiding option management, and using a
258 provider-independent means of acquiring addresses.

259 While the transport-provider-specific appendices are intended mostly for transport users, they
260 are also used by implementors of transport providers. For the purposes of the implementors,
261 some of the appendices show how XTI services can be mapped to primitives associated with the
262 specific providers. These are provided as guidance only and do not dictate anything about a
263 given implementation.

264 Some of the appendices to the XTI specification are included as vehicles for communicating
265 information needed by implementors, or guidelines to the use of the specification in question.
266 The Guidelines for the use of XTI (Appendix C), Minimum OSI Functionality (Appendix H),
267 SNA Transport provider (Appendix I) and comparison of XTI to TLI (Appendix E) belong to this
268 category.

269 Some other appendices, however, have evolved into a prescriptive specification, as in the case of
270 Appendix A for the ISO transport provider, Appendix B for the Internet transport provider and
271 Appendix D for the NetBIOS transport provider. Since not every XTI implementor would find it
272 relevant to implement the functionality of all of these appendices, they have been kept separate
273 from the main XTI specification, thus becoming brandable XTI options. Support for these
274 transport providers is declared by vendors through the XTI Conformance Statement
275 Questionnaire.

276 An appendix may have a different status from the overall XTI specification. Thus the appendix
277 for a particular transport provider may be a Preliminary Specification while the document is a
278 CAE specification. When this is the case, the status of the appendix is clearly identified in its
279 own introduction.

280 Topics beyond the scope of the XTI specification include:

281 • Address parameters

282 Several functions have parameters for addresses. The structure of these addresses is beyond
283 the scope of this document. Specific implementations specify means for transport users to get
284 or construct addresses.

285 • Event management

286 In order for applications to use XTI in a fully asynchronous manner, it will be necessary for
287 the application to include facilities of an Event Management (EM) interface. Such EM facility
288 may allow the application to be notified of a number of events over a range of active
289 transport connections. For example, one event may denote a connection is flow-controlled.
290 While Appendix C provides some guidelines for using EM in XTI applications, a complete
291 specification defining an EM interface is beyond the scope of this document.

10 X/Open CAE Specification (1994) (Draft March 15, 1995)

292

Chapter 3

Explanatory Notes for XTI

293 3.1 Transport Endpoints
294 A transport endpoint specifies a communication path between a transport user and a specific
295 transport provider, which is identified by a local file descriptor (fd). When a user opens a
296 transport provider identifier, a local file descriptor fd is returned which identifies the transport
297 endpoint. A transport provider is defined to be the transport protocol that provides the services
298 of the transport layer. All requests to the transport provider must pass through a transport
299 endpoint. The file descriptor fd is returned by the function t_open() and is used as an argument
300 to the subsequent functions to identify the transport endpoint. A transport endpoint (fd and
301 local address) can support only one established transport connection at a time.

302 To be active, a transport endpoint must have a transport address associated with it by the
303 t_bind() function. A transport connection is characterised by the association of two active
304 endpoints, made by using the functions of establishment of transport connection. The fd is a
305 communication path to a transport provider. There is no direct assignation of the processes to
306 the transport provider, so multiple processes, which obtain the fd by open(), fork () or dup()
307 operations, may access a given communication path. Note that the open() function will work
308 only if the opened character string is a pathname.

309 Note that in order to guarantee portability, the only operations which the applications may
310 perform on any fd returned by t_open() are those defined by XTI and fcntl(), dup() or dup2().
311 Other operations are permitted but these will have system-dependent results.

312 3.2 Transport Providers
313 The transport layer may comprise one or more transport providers at the same time. The
314 identifier parameter of the transport provider passed to the t_open() function determines the
315 required transport provider. To keep the applications portable, the identifier parameter of the
316 transport provider should not be hard-coded into the application source code.

317 An application which wants to manage multiple transport providers must call t_open() for each
318 provider. For example, a server application which is waiting for incoming connect indications
319 from several transport providers must open a transport endpoint for each provider and listen for
320 connect indications on each of the associated file descriptors.

Networking Services, Issue 4 11

Association of a UNIX Process to an Endpoint Explanatory Notes for XTI

321 3.3 Association of a UNIX Process to an Endpoint
322 One process can simultaneously open several fds. However, in synchronous mode, the process
323 must manage the different actions of the associated transport connections sequentially.
324 Conversely, several processes can share the same fd (by fork () or dup() operations) but they have
325 to synchronise themselves so as not to issue a function that is unsuitable to the current state of
326 the transport endpoint.

327 It is important to remember that the transport provider treats all users of a transport endpoint as
328 a single user. If multiple processes are using the same endpoint, they should coordinate their
329 activities so as not to violate the state of the provider. The t_sync() function returns the current
330 state of the provider to the user, thereby enabling the user to verify the state before taking
331 further action. This coordination is only valid among cooperating processes; it is possible that a
332 process or an incoming event could change the provider’s state after a t_sync() is issued.

333 A process can listen for an incoming connect indication on one fd and accept the connection on a
334 different fd which has been bound with the qlen parameter (see t_bind()) set to zero. This
335 facilitates the writing of a listener application whereby the listener waits for all incoming
336 connect indications on a given Transport Service Access Point (TSAP). The listener will accept
337 the connection on a new fd , and fork () a child process to service the request without blocking
338 other incoming connect indications.

339 3.4 Use of the Same Protocol Address
340 If several endpoints are bound to the same protocol address, only one at the time may be
341 listening for incoming connections. However, others may be in data transfer state or
342 establishing a transport connection as initiators.

12 X/Open CAE Specification (1994) (Draft March 15, 1995)

Explanatory Notes for XTI Modes of Service

343 3.5 Modes of Service
344 The transport service interface supports two modes of service: connection mode and
345 connectionless mode. A single transport endpoint may not support both modes of service
346 simultaneously.

347 The connection-mode transport service is circuit-oriented and enables data to be transferred
348 over an established connection in a reliable, sequenced manner. This service enables the
349 negotiation of the parameters and options that govern the transfer of data. It provides an
350 identification mechanism that avoids the overhead of address transmission and resolution
351 during the data transfer phase. It also provides a context in which successive units of data,
352 transferred between peer users, are logically related. This service is attractive to applications
353 that require relatively long-lived, datastream-oriented interactions.

354 In contrast, the connectionless-mode transport service is message-oriented and supports data
355 transfer in self-contained units with no logical relationship required among multiple units.
356 These units are also known as datagrams. This service requires a pre-existing association
357 between the peer users involved, which determines the characteristics of the data to be
358 transmitted. No dynamic negotiation of parameters and options is supported by this service.
359 All the information required to deliver a unit of data (for example, destination address) is
360 presented to the transport provider, together with the data to be transmitted, in a single service
361 access which need not relate to any other service access. Also, each unit of data transmitted is
362 entirely self-contained, and can be independently routed by the transport provider. This service
363 is attractive to applications that involve short-term request/response interactions, exhibit a high
364 level of redundancy, are dynamically reconfigurable or do not require guaranteed, in-sequence
365 delivery of data.

366 3.6 Error Handling
367 Two levels of error are defined for the transport interface. The first is the library error level.
368 Each library function has one or more error returns. Failures are indicated by a return value of
369 −1. An external integer, t_errno, which is defined in the header <xti.h>, holds the specific error
370 number when such a failure occurs. This value is set when errors occur but is not cleared on
371 successful library calls, so it should be tested only after an error has been indicated. If
372 implemented, a diagnostic function, t_error(), prints out information on the current transport
373 error. The state of the transport provider may change if a transport error occurs.

374 The second level of error is the operating system service routine level. A special library level
375 error number has been defined called [TSYSERR] which is generated by each library function
376 when an operating system service routine fails or some general error occurs. When a function
377 sets t_errno to [TSYSERR], the specific system error may be accessed through the external
378 variable errno.

379 For example, a system error can be generated by the transport provider when a protocol error
380 has occurred. If the error is severe, it may cause the file descriptor and transport endpoint to be
381 unusable. To continue in this case, all users of the fd must close it. Then the transport endpoint
382 may be re-opened and initialised.

Networking Services, Issue 4 13

Synchronous and Asynchronous Execution Modes Explanatory Notes for XTI

383 3.7 Synchronous and Asynchronous Execution Modes
384 The transport service interface is inherently asynchronous; various events may occur which are
385 independent of the actions of a transport user. For example, a user may be sending data over a
386 transport connection when an asynchronous disconnect indication arrives. The user must
387 somehow be informed that the connection has been broken.

388 The transport service interface supports two execution modes for handling asynchronous
389 events: synchronous mode and asynchronous mode. In the synchronous mode of operation, the
390 transport primitives wait for specific events before returning control to the user. While waiting,
391 the user cannot perform other tasks. For example, a function that attempts to receive data in
392 synchronous mode will wait until data arrives before returning control to the user. Synchronous
393 mode is the default mode of execution. It is useful for user processes that want to wait for
394 events to occur, or for user processes that maintain only a single transport connection. Note that
395 if a signal arrives, blocking calls are interrupted and return a negative return code with t_errno
396 set to [TSYSERR] and errno set to [EINTR]. In this case the call will have no effect.

397 The asynchronous mode of operation, on the other hand, provides a mechanism for notifying a
398 user of some event without forcing the user to wait for the event. The handling of networking
399 events in an asynchronous manner is seen as a desirable capability of the transport interface.
400 This would enable users to perform useful work while expecting a particular event. For
401 example, a function that attempts to receive data in asynchronous mode will return control to
402 the user immediately if no data is available. The user may then periodically poll for incoming
403 data until it arrives. The asynchronous mode is intended for those applications that expect long
404 delays between events and have other tasks that they can perform in the meantime or handle
405 multiple connections concurrently.

406 The two execution modes are not provided through separate interfaces or different functions.
407 Instead, functions that process incoming events have two modes of operation: synchronous and
408 asynchronous. The desired mode is specified through the O_NONBLOCK flag, which may be
409 set when the transport provider is initially opened, or before any specific function or group of
410 functions is executed using the fcntl() operating system service routine. The effect of this flag is
411 local to this process and is completely specified in the description of each function.

412 Nine (only eight if the orderly release is not supported) asynchronous events are defined in the
413 transport service interface to cover both connection-mode and connectionless-mode service.
414 They are represented as separate bits in a bit-mask using the following defined symbolic names:

415 • T_LISTEN

416 • T_CONNECT

417 • T_DATA

418 • T_EXDATA

419 • T_DISCONNECT

420 • T_ORDREL

421 • T_UDERR

422 • T_GODATA

423 • T_GOEXDATA.

424 These are described in Section 3.8 on page 16.

425 A process that issues functions in synchronous mode must still be able to recognise certain
426 asynchronous events and act on them if necessary. This is handled through a special transport

14 X/Open CAE Specification (1994) (Draft March 15, 1995)

Explanatory Notes for XTI Synchronous and Asynchronous Execution Modes

427 error [TLOOK] which is returned by a function when an asynchronous event occurs. The
428 t_look () function is then invoked to identify the specific event that has occurred when this error
429 is returned.

430 Another means to notify a process that an asynchronous event has occurred is polling. The
431 polling capability enables processes to do useful work and periodically poll for one of the above
432 asynchronous events. This facility is provided by setting O_NONBLOCK for the appropriate
433 primitive(s).

434 Events and t_look()

435 All events that occur at a transport endpoint are stored by XTI. These events are retrievable one
436 at the time via the t_look () function. If multiple events occur, it is implementation-dependent in
437 what order t_look () will return the events. An event is outstanding on a transport endpoint until
438 it is consumed. Every event has a corresponding consuming function which handles the event
439 and clears it. Both T_DATA and T_EXDATA events are consumed when the corresponding
440 consuming function has read all the corresponding data associated with that event. The
441 intention of this is that T_DATA should always indicate that there is data to receive. Two events,
442 T_GODATA and T_GOEXDATA, are also cleared as they are returned by t_look (). Table 3-1
443 summarises this.
444
445 Event Cleared on t_look()? Consuming XTI functions
446 T_LISTEN No t_listen()
447 T_CONNECT No t_{rcv}connect()*
448 T_DATA No t_rcv{udata}()
449 T_EXDATA No t_rcv()
450 T_DISCONNECT No t_rcvdis()
451 T_UDERR No t_rcvuderr()
452 T_ORDREL No t_rcvrel()
453 T_GODATA Yes t_snd{udata}()
454 T_GOEXDATA Yes t_snd()

455 Table 3-1 Events and t_look()

456 __________________

*457 In the case of the t_connect() function the T_CONNECT event is both generated and consumed by the execution of the function
458 and is therefore not visible to the application.

Networking Services, Issue 4 15

Event Management Explanatory Notes for XTI

459 3.8 Event Management
460 Each XTI call deals with one transport endpoint at a time. It is not possible to wait for several
461 events from different sources, particularly from several transport connections at a time. We
462 recognise the need for this functionality which may be available today in a system-dependent
463 fashion.

464 Throughout the document we refer to an event management service called Event Management
465 (EM) which provides those functions useful to XTI. This Event Management will allow a
466 process to be notified of the following events:

467 T_LISTEN A connect request from a remote user was received by a transport
468 provider (connection-mode service only); this event may occur under the
469 following conditions:

470 1. The file descriptor is bound to a valid address.

471 2. No transport connection is established at this time.

472 T_CONNECT In connection mode only; a connect response was received by the
473 transport provider; occurs after a t_connect() has been issued.

474 T_DATA Normal data (whole or part of Transport Service Data Unit (TSDU)) was
475 received by the transport provider.

476 T_EXDATA Expedited data was received by the transport provider.

477 T_DISCONNECT In connection mode only; a disconnect request was received by the
478 transport provider. It may be reported on both data transfer functions
479 and connection establishment functions and on the t_snddis() function.

480 T_ORDREL An orderly release request was received by a transport provider
481 (connection mode with orderly release only).

482 T_UDERR In connectionless mode only; an error was found in a previously sent
483 datagram. It may be notified on the t_rcvudata () or t_unbind() function
484 calls.

485 T_GODATA Flow control restrictions on normal data flow that led to a [TFLOW] error
486 have been lifted. Normal data may be sent again.

487 T_GOEXDATA Flow control restrictions on expedited data flow that led to a [TFLOW]
488 error have been lifted. Expedited data may be sent again.

16 X/Open CAE Specification (1994) (Draft March 15, 1995)

489

Chapter 4

XTI Overview

490 4.1 Overview of Connection-oriented Mode
491 The connection-mode transport service consists of four phases of communication:

492 • Initialisation/De-initialisation

493 • Connection Establishment

494 • Data Transfer

495 • Connection Release.

496 A state machine is described in Section C.1 on page 207, and the figure in Section C.2 on page
497 208, which defines the legal sequence in which functions from each phase may be issued.

498 In order to establish a transport connection, a user (application) must:

499 1. supply a transport provider identifier for the appropriate type of transport provider (using
500 t_open()); this establishes a transport endpoint through which the user may communicate
501 with the provider

502 2. associate (bind) an address with this endpoint (using t_bind())

503 3. use the appropriate connection functions (using t_connect(), or t_listen() and t_accept()) to
504 establish a transport connection; the set of functions depends on whether the user is an
505 initiator or responder

506 4. once the connection is established, normal, and if authorised, expedited data can be
507 exchanged; of course, expedited data may be exchanged only if:

508 • the provider supports it

509 • its use is not precluded by the selection of protocol characteristics; for example, the use
510 of Class 0

511 • negotiation as to its use has been agreed between the two peer transport providers.

512 The semantics of expedited data may be quite different for different transport providers.
513 XTI’s notion of expedited data has been defined as the lowest reasonable common
514 denominator.

515 The transport connection can be released at any time by using the disconnect functions. Then
516 the user can either de-initialise the transport endpoint by closing the file descriptor returned by
517 t_open() (thereby freeing the resource for future use), or specify a new local address (after the old
518 one has been unbound) or reuse the same address and establish a new transport connection.

Networking Services, Issue 4 17

Overview of Connection-oriented Mode XTI Overview

519 4.1.1 Initialisation/De-initialisation Phase

520 The functions that support initialisation/de-initialisation tasks are described below. All such
521 functions provide local management functions; no information is sent over the network.

522 t_open() This function creates a transport endpoint and returns protocol-specific
523 information associated with that endpoint. It also returns a file descriptor that
524 serves as the local identifier of the endpoint.

525 t_bind() This function associates a protocol address with a given transport endpoint,
526 thereby activating the endpoint. It also directs the transport provider to begin
527 accepting connect indications if so desired.

528 t_optmgmt() This function enables the user to get or negotiate protocol options with the
529 transport provider.

530 t_unbind() This function disables a transport endpoint such that no further request
531 destined for the given endpoint will be accepted by the transport provider.

532 t_close() This function informs the transport provider that the user is finished with the
533 transport endpoint, and frees any local resources associated with that
534 endpoint.

535 The following functions are also local management functions, but can be issued during any
536 phase of communication:

537 t_getprotaddr() This function returns the addresses (local and remote) associated with the
538 specified transport endpoint.

539 t_getinfo() This function returns protocol-specific information associated with the
540 specified transport endpoint.

541 t_getstate() This function returns the current state of the transport endpoint.

542 t_sync() This function synchronises the data structures managed by the transport
543 library with the transport provider.

544 t_alloc() This function allocates storage for the specified library data structure.

545 t_free() This function frees storage for a library data structure that was allocated by
546 t_alloc ().

547 t_error() This function prints out a message describing the last error encountered
548 during a call to a transport library function.

549 t_look() This function returns the current event(s) associated with the given transport
550 endpoint.

551 t_strerror() This function maps an XTI error into a language-dependent error message
552 string.

18 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Overview Overview of Connection-oriented Mode

553 4.1.2 Overview of Connection Establishment

554 This phase enables two transport users to establish a transport connection between them. In the
555 connection establishment scenario, one user is considered active and initiates the conversation,
556 while the second user is passive and waits for a transport user to request a connection.

557 In connection mode:

558 • The user has first to establish an endpoint; that is, to open a communications path between
559 the application and the transport provider.

560 • Once established, an endpoint must be bound to an address and more than one endpoint
561 may be bound to the same address. A transport user can determine the addresses associated
562 with a connection using the t_getprotaddr () function.

563 • An endpoint can be associated with one, and only one, established transport connection.

564 • It is possible to use an endpoint to receive and enqueue incoming connect indications (only if
565 the provider is able to accept more than one outstanding connect indication; this mode of
566 operation is declared at the time of calling t_bind() by setting qlen greater than 0). However,
567 if more than one endpoint is bound to the same address, only one of them may be used in
568 this way.

569 • The t_listen() function is used to look for an enqueued connect indication; if it finds one (at
570 the head of the queue), it returns details of the connect indication, and a local sequence
571 number which uniquely identifies this indication, or it may return a negative value with
572 t_errno set to [TNODATA]. The number of outstanding connect requests to dequeue is
573 limited by the value of the qlen parameter accepted by the transport provider on the t_bind()
574 call.

575 • If the endpoint has more than one connect indication enqueued, the user should dequeue all
576 connect indications (and disconnect indications) before accepting or rejecting any or all of
577 them. The number of outstanding connect indications is limited by the value of the qlen
578 parameter accepted by the transport provider on the call to t_bind().

579 • When accepting a connect indication, the transport service user may issue the accept on the
580 same (listening) endpoint or on a different endpoint.

581 If the same endpoint is used, the listening endpoint can no longer be used to receive and
582 enqueue incoming connect indications. The bound protocol address will be found to be busy
583 for the duration of the active transport endpoint. No other transport endpoints may be
584 bound for listening to the same protocol address while the listening endpoint is in the data
585 transfer or disconnect phase (that is, until a t_unbind() call is issued).

586 If a different endpoint is used, the listening endpoint can continue to receive and enqueue
587 incoming connect requests.

588 • If the user issues a t_connect() on a listening endpoint, again, that endpoint can no longer be
589 used to receive and enqueue incoming connect requests.

590 • A connect attempt failure will result in a value -1 returned from either the t_connect() or
591 t_rcvconnect() call, with t_errno set to [TLOOK] indicating that a [T_DISCONNECT] event
592 has arrived. In this case, the reason for the failure may be identified by issuing a t_rcvdis()
593 call.

594 The functions that support these operations of connection establishment are:

595 t_connect() This function requests a connection to the transport user at a specified
596 destination and waits for the remote user’s response. This function may be
597 executed in either synchronous or asynchronous mode. In synchronous

Networking Services, Issue 4 19

Overview of Connection-oriented Mode XTI Overview

598 mode, the function waits for the remote user’s response before returning
599 control to the local user. In asynchronous mode, the function initiates
600 connection establishment but returns control to the local user before a
601 response arrives.

602 t_rcvconnect() This function enables an active transport user to determine the status of a
603 previously sent connect request. If the request was accepted, the connection
604 establishment phase will be complete on return from this function. This
605 function is used in conjunction with t_connect() to establish a connection in an
606 asynchronous manner.

607 t_listen() This function enables the passive transport user to receive connect indications
608 from other transport users.

609 t_accept() This function is issued by the passive user to accept a particular connect
610 request after an indication has been received.

611 4.1.3 Overview of Data Transfer

612 Once a transport connection has been established between two users, data may be transferred
613 back and forth over the connection in a full duplex way. Two functions have been defined to
614 support data transfer in connection mode as follows:

615 t_snd() This function enables transport users to send either normal or expedited data
616 over a transport connection.

617 t_rcv() This function enables transport users to receive either normal or expedited
618 data on a transport connection.

619 In data transfer phase, the occurrence of the [T_DISCONNECT] event implies an unsuccessful
620 return from the called function (t_snd() or t_rcv()) with t_errno set to [TLOOK]. The user must
621 then issue a t_look () call to get more details.

622 Receiving Data

623 If data (normal or expedited) is immediately available, then a call to t_rcv() returns data. If the
624 transport connection no longer exists, then the call returns immediately, indicating failure. If
625 data is not immediately available and the transport connection still exists, then the result of a call
626 to t_rcv() depends on the mode:

627 • Asynchronous Mode

628 The call returns immediately, indicating failure. The user must continue to ‘‘poll’’ for
629 incoming data, either by issuing repeated call to t_rcv(), or by using the t_look () or the EM
630 interface.

631 • Synchronous Mode

632 The call is blocked until one of the following conditions becomes true:

633 — Data (normal or expedited) is received.

634 — A disconnect indication is received.

635 — A signal has arrived.

636 The user may issue a t_look () or use EM calls, to determine if data is available.

637 If a normal TSDU is to be received in multiple t_rcv() calls, then its delivery may be interrupted
638 at any time by the arrival of expedited data. The application can detect this by checking the flags
639 field on return from a call to t_rcv(); this will be indicated by t_rcv() returning:

20 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Overview Overview of Connection-oriented Mode

640 • data with T_EXPEDITED flag not set and T_MORE set (this is a fragment of normal data)

641 • data with T_EXPEDITED set (and T_MORE set or unset); this is an expedited message
642 (whole or part of, depending on the setting of T_MORE). The provider will continue to
643 return the expedited data (on this and subsequent calls to t_rcv()) until the end of the
644 Extended Transport Service Data Unit (ETSDU) is reached, at which time it will continue to
645 return normal data. It is the user’s responsibility to remember that the receipt of normal data
646 has been interrupted in this way.

647 Sending Data

648 If the data can be accepted immediately by the provider, then it is accepted, and the call returns
649 the number of octets accepted. If the data cannot be accepted because of a permanent failure
650 condition (for example, transport connection lost), then the call returns immediately, indicating
651 failure. If the data cannot be accepted immediately because of a transient condition (for
652 example, lack of buffers, flow control in effect), then the result of a call to t_snd() depends on the
653 execution mode:

654 • Asynchronous Mode

655 The call returns immediately indicating failure. If the failure was due to flow control
656 restrictions, then it is possible that only part of the data will actually be accepted by the
657 transport provider. In this case t_snd() will return a value that is less than the number of
658 octets requested to be sent. The user may either retry the call to t_snd() or first receive
659 notification of the clearance of the flow control restriction via either t_look () or the EM
660 interface, then retry the call. The user may retry the call with the data remaining from the
661 original call or with more (or less) data, and with the T_MORE flag set appropriately to
662 indicate whether this is now the end of the TSDU.

663 • Synchronous Mode

664 The call is blocked until one of the following conditions becomes true:

665 — The flow control restrictions are cleared and the transport provider is able to accept a new
666 data unit. The t_snd() function then returns successfully.

667 — A disconnect indication is received. In this case the t_snd() function returns
668 unsuccessfully with t_errno set to [TLOOK]. The user can issue a t_look () function to
669 determine the cause of the error. For this particular case t_look () will return a
670 T_DISCONNECT event. Data that was being sent will be lost.

671 — An internal problem occurs. In this case the t_snd() function returns unsuccessfully with
672 t_errno set to [TSYSERR]. Data that was being sent will be lost.

673 For some transport providers, normal data and expedited data constitute two distinct flows of
674 data. If either flow is blocked, the user may nevertheless continue using the other one, but in
675 synchronous mode a second process is needed. The user may send expedited data between the
676 fragments of a normal TSDU, that is, a t_snd() call with the T_EXPEDITED flag set may follow a
677 t_snd() with the T_MORE flag set and the T_EXPEDITED flag not set.

678 Note that XTI supports two modes of sending data, record-oriented and stream-oriented. In the
679 record-oriented mode, the concept of TSDU is supported, that is, message boundaries are
680 preserved. In stream-oriented mode, message boundaries are not preserved and the concept of a
681 TSDU is not supported. A transport user can determine the mode by using the t_getinfo ()
682 function, and examining the tsdu field. If tsdu is greater than zero, this indicates that record-
683 oriented mode is supported and the return value indicates the maximum TSDU size. If tsdu is
684 zero, this indicates that stream-oriented transfer is supported. For more details see t_getinfo () on
685 page 63.

Networking Services, Issue 4 21

Overview of Connection-oriented Mode XTI Overview

686 4.1.4 Overview of Connection Release

687 The ISO Connection-oriented Transport Service Definition supports only the abortive release.
688 However, the TCP Transport Service Definition also supports an orderly release. Some XTI
689 implementations may support this orderly release.

690 An abortive release may be invoked from either the connection establishment phase or the data
691 transfer phase. When in the connection establishment phase, a transport user may use the
692 abortive release to reject a connect request. In the data transfer phase, either user may abort a
693 connection at any time. The abortive release is not negotiated by the transport users and it takes
694 effect immediately on request. The user on the other side of the connection is notified when a
695 connection is aborted. The transport provider may also initiate an abortive release, in which
696 case both users are informed that the connection no longer exists. There is no guarantee of
697 delivery of user data once an abortive release has been initiated.

698 Whatever the state of a transport connection, its user(s) will be informed as soon as possible of
699 the failure of the connection through a disconnect event or an unsuccessful return from a
700 blocking t_snd() or t_rcv() call. If the user wants to prevent loss of data by notifying the remote
701 user of an imminent connection release, it is the user’s responsibility to use an upper level
702 mechanism. For example, the user may send specific (expedited) data and wait for the response
703 of the remote user before issuing a disconnect request.

704 The orderly release capability is an optional feature of TCP. If supported by the TCP transport
705 provider, orderly release may be invoked from the data transfer phase to enable two users to
706 gracefully release a connection. The procedure for orderly release prevents the loss of data that
707 may occur during an abortive release.

708 The functions that support connection release are:

709 t_snddis() This function can be issued by either transport user to initiate the abortive
710 release of a transport connection. It may also be used to reject a connect
711 request during the connection establishment phase.

712 t_rcvdis() This function identifies the reason for the abortive release of a connection,
713 where the connection is released by the transport provider or another
714 transport user.

715 t_sndrel() This function can be called by either transport user to initiate an orderly
716 release. The connection remains intact until both users call this function and
717 t_rcvrel().

718 t_rcvrel() This function is called when a user is notified of an orderly release request, as
719 a means of informing the transport provider that the user is aware of the
720 remote user’s actions.

22 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Overview Overview of Connectionless Mode

721 4.2 Overview of Connectionless Mode
722 The connectionless-mode transport service consists of two phases of communication:
723 initialisation/de-initialisation and data transfer. A brief description of each phase and its
724 associated functions is presented below. A state machine is described in Section C.1 on page
725 207, and the figure in Section C.3 on page 210, that defines the legal sequence in which functions
726 from each phase may be issued.

727 In order to permit the transfer of connectionless data, a user (application) must:

728 1. supply a transport endpoint for the appropriate type of provider (using t_open()); this
729 establishes a transport endpoint through which the user may communicate with the
730 provider

731 2. associate (bind) an address with this transport endpoint (using t_bind())

732 3. the user may then send and/or receive connectionless data, as required, using the
733 functions t_sndudata () and t_rcvudata (). Once the data transfer phase is finished, the
734 application may either directly close the file descriptor returned by t_open() (using
735 t_close()), thereby freeing the resource for future use, or start a new exchange of data after
736 disassociating the old address and binding a new one.

737 4.2.1 Initialisation/De-initialisation Phase

738 The functions that support the initialisation/de-initialisation tasks are the same functions used
739 in the connection-mode service.

740 4.2.2 Overview of Data Transfer

741 Once a transport endpoint has been activated, a user is free to send and receive data units
742 through that endpoint in connectionless mode as follows:

743 t_sndudata() This function enables transport users to send a self-contained data unit to the
744 user at the specified protocol address.

745 t_rcvudata() This function enables transport users to receive data units from other users.

746 t_rcvuderr() This function enables transport users to retrieve error information associated
747 with a previously sent data unit.

748 The only possible events reported to the user are [T_UDERR], [T_DATA] and [T_GODATA].
749 Expedited data cannot be used with a connectionless transport provider.

750 Receiving Data

751 If data is available (a datagram or a part), the t_rcvudata () call returns immediately indicating
752 the number of octets received. If data is not immediately available, then the result of the
753 t_rcvudata () call depends on the chosen mode:

754 • Asynchronous Mode

755 The call returns immediately indicating failure. The user must either retry the call
756 repeatedly, or ‘‘poll’’ for incoming data by using the EM interface or the t_look () function so
757 as not to be blocked.

758 • Synchronous Mode

759 The call is blocked until one of the following conditions becomes true:

Networking Services, Issue 4 23

Overview of Connectionless Mode XTI Overview

760 — A datagram is received.

761 — An error is detected by the transport provider.

762 — A signal has arrived.

763 The application may use the t_look () function or the EM mechanism to know if data is
764 available instead of issuing a t_rcvudata () call which may be blocking.

765 Sending Data

766 • Synchronous Mode

767 In order to maintain some flow control, the t_sndudata () function returns when sending a
768 new datagram becomes possible again. A process which sends data in synchronous mode
769 may be blocked for some time.

770 • Asynchronous Mode

771 The transport provider may refuse to send a new datagram for flow control restrictions. In
772 this case, the t_sndudata () call fails returning a negative value and setting t_errno to
773 [TFLOW]. The user may retry later or use the t_look () function or EM interface to be
774 informed of the flow control restriction removal.

775 If t_sndudata () is called before the destination user has activated its transport endpoint, the data
776 unit may be discarded.

24 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Overview XTI Features

777 4.3 XTI Features
778 The following functions, which correspond to the subset common to connection- oriented and
779 connectionless services, are always implemented:

780 t_bind()
781 t_close()
782 t_look ()
783 t_open()
784 t_sync()
785 t_unbind()

786 If a Connection-oriented Transport Service is provided, then the following functions are always
787 implemented:

788 t_accept()
789 t_connect()
790 t_listen()
791 t_rcv()
792 t_rcvconnect()
793 t_rcvdis()
794 t_snd()
795 t_snddis()

796 If XTI supports the access to the Connectionless Transport Service, the following three functions
797 are always implemented:

798 t_rcvudata ()
799 t_rcvuderr()
800 t_sndudata ()

801 Mandatory mechanisms:

802 • synchronous mode

803 • asynchronous mode.

804 Utility functions:

805 t_alloc ()
806 t_free()
807 t_error()
808 t_getprotaddr ()
809 t_getinfo ()
810 t_getstate()
811 t_optmgmt()
812 t_strerror()

813 The orderly release mechanism (using t_sndrel() and t_rcvrel()), is supported only for
814 T_COTS_ORD type providers. Use with other providers will cause the [TNOTSUPPORT] error
815 to be returned. The use of orderly release is definitely not recommended in order to make
816 applications using TCP portable onto the ISO Transport Layer.

817 Optional mechanisms:

818 • the ability to manage (enqueue) more than one incoming connect indication at any one time

819 • the address of the caller passed with t_accept() may optionally be checked by an XTI
820 implementation.

Networking Services, Issue 4 25

XTI Features XTI Overview

821 4.3.1 XTI Functions versus Protocols

822 Table 4-1 presents all the functions defined in XTI. The character ‘‘x’’ indicates that the mapping
823 of that function is possible onto a Connection-oriented or Connectionless Transport Service. The
824 table indicates the type of utility functions as well.

825
826 Necessary for Protocol Utility Functions
827 ConnectionFunctions
828 Oriented

Connectionless General Memory

829 t_accept() x
830 t_alloc() x
831 t_bind() x x
832 t_close() x x
833 t_connect() x
834 t_error() x
835 t_free() x
836 t_getprotaddr() x
837 t_getinfo() x
838 t_getstate() x
839 t_listen() x
840 t_look() x x
841 t_open() x x
842 t_optmgmt() x
843 t_rcv() x
844 t_rcvconnect() x
845 t_rcvdis() x
846 t_rcvrel() x
847 t_rcvudata() x
848 t_rcvuderr() x
849 t_snd() x
850 t_snddis() x
851 t_sndrel() x
852 t_sndudata() x
853 t_strerror() x
854 t_sync() x
855 t_unbind() x x

856 Table 4-1 Classification of the XTI Functions

26 X/Open CAE Specification (1994) (Draft March 15, 1995)

857

Chapter 5

States and Events in XTI

858 Table 5-1 through Table 5-7 are included to describe the possible states of the transport provider
859 as seen by the transport user, to describe the incoming and outgoing events that may occur on
860 any connection, and to identify the allowable sequence of function calls. Given a current state
861 and event, the transition to the next state is shown as well as any actions that must be taken by
862 the transport user.

863 The allowable sequence of functions is described in Table 5-5, Table 5-6 and Table 5-7. The
864 support functions, t_getprotaddr (), t_getstate(), t_getinfo (), t_alloc (), t_free(), t_look () and
865 t_sync(), are excluded from the state tables because they do not affect the state of the interface.
866 Each of these functions may be issued from any state except the uninitialised state. Similarly,
867 the t_error() and t_strerror() functions have been excluded from the state table because they do
868 not affect the state of the interface.

Networking Services, Issue 4 27

Transport Interfaces States States and Events in XTI

869 5.1 Transport Interfaces States
870 XTI manages a transport endpoint by using at most 8 states:

871 • T_UNINIT

872 • T_UNBND

873 • T_IDLE

874 • T_OUTCON

875 • T_INCON

876 • T_DATAXFER

877 • T_INREL

878 • T_OUTREL.

879 The states T_OUTREL and T_INREL are significant only if the optional orderly release function
880 is both supported and used.

881 Table 5-1 describes all possible states of the transport provider as seen by the transport user. The
882 service type may be connection mode, connection mode with orderly release or connectionless
883 mode.
884
885 State Description Service Type
886 T_UNINIT uninitialised - initial T_COTS
887 and final state of interface T_CLTS
888 T_COTS_ORD
889 T_UNBND unbound T_COTS
890 T_COTS_ORD
891 T_CLTS
892 T_IDLE no connection established T_COTS
893 T_COTS_ORD
894 T_CLTS
895 T_OUTCON outgoing connection pending T_COTS
896 for active user T_COTS_ORD
897 T_INCON incoming connection pending T_COTS
898 for passive user T_COTS_ORD
899 T_DATAXFER data transfer T_COTS
900 T_COTS_ORD
901 T_OUTREL outgoing orderly release T_COTS_ORD
902 (waiting for orderly release indication)
903 T_INREL incoming orderly release T_COTS_ORD
904 (waiting to send orderly release request)

905 Table 5-1 Transport Interface States

28 X/Open CAE Specification (1994) (Draft March 15, 1995)

States and Events in XTI Outgoing Events

906 5.2 Outgoing Events
907 The following outgoing events correspond to the successful return or error return of the
908 specified user-level transport functions causing XTI to change state, where these functions send
909 a request or response to the transport provider. In Table 5-2, some events (for example, accept1,
910 accept2 and accept3) are distinguished by the context in which they occur. The context is based
911 on the values of the following:

912 ocnt Count of outstanding connect indications (connect indications passed to the user
913 but not accepted or rejected).

914 fd File descriptor of the current transport endpoint.

915 resfd File descriptor of the transport endpoint where a connection will be accepted.
916
917 Event Description Service Type
918 opened successful return of t_open() T_COTS, T_COTS_ORD, T_CLTS
919 bind successful return of t_bind() T_COTS, T_COTS_ORD, T_CLTS
920 optmgmt successful return of t_optmgmt() T_COTS, T_COTS_ORD, T_CLTS
921 unbind successful return of t_unbind() T_COTS, T_COTS_ORD, T_CLTS
922 closed successful return of t_close() T_COTS, T_COTS_ORD, T_CLTS
923 connect1 successful return of t_connect() T_COTS, T_COTS_ORD
924 in synchronous mode
925 connect2 TNODATA error on t_connect() T_COTS, T_COTS_ORD
926 in asynchronous mode, or TLOOK
927 error due to a disconnect indication
928 arriving on the transport endpoint,
929 or TSYSERR error and errno set to EINTR.
930 accept1 successful return of t_accept() T_COTS, T_COTS_ORD
931 with ocnt == 1, fd == resfd
932 accept2 successful return of t_accept() T_COTS, T_COTS_ORD
933 with ocnt == 1, fd != resfd
934 accept3 successful return of t_accept() T_COTS, T_COTS_ORD
935 with ocnt > 1
936 snd successful return of t_snd() T_COTS, T_COTS_ORD
937 snddis1 successful return of t_snddis() T_COTS, T_COTS_ORD
938 with ocnt <= 1
939 snddis2 successful return of t_snddis() T_COTS, T_COTS_ORD
940 with ocnt > 1
941 sndrel successful return of t_sndrel() T_COTS_ORD
942 sndudata successful return of t_sndudata() T_CLTS

943 Table 5-2 Transport Interface Outgoing Events

944 Note: ocnt is only meaningful for the listening transport endpoint (fd).

Networking Services, Issue 4 29

Incoming Events States and Events in XTI

945 5.3 Incoming Events
946 The following incoming events correspond to the successful return of the specified user-level
947 transport functions, where these functions retrieve data or event information from the transport
948 provider. One incoming event is not associated directly with the return of a function on a given
949 transport endpoint:

950 pass_conn Occurs when a user transfers a connection to another transport endpoint. This
951 event occurs on the endpoint that is being passed the connection, despite the fact
952 that no function is issued on that endpoint. The event pass_conn is included in the
953 state tables to describe what happens when a user accepts a connection on another
954 transport endpoint.

955 In Table 5-3, the rcvdis events are distinguished by the context in which they occur. The context
956 is based on the value of ocnt , which is the count of outstanding connect indications on the
957 current transport endpoint.
958
959 Incoming
960 Event Description Service Type
961 listen successful return of t_listen() T_COTS
962 T_COTS_ORD
963 rcvconnect successful return of t_rcvconnect() T_COTS
964 T_COTS_ORD
965 rcv successful return of t_rcv() T_COTS
966 T_COTS_ORD
967 rcvdis1 successful return of t_rcvdis() T_COTS
968 with ocnt == 0 T_COTS_ORD
969 rcvdis2 successful return of t_rcvdis() T_COTS
970 with ocnt == 1 T_COTS_ORD
971 rcvdis3 successful return of t_rcvdis() T_COTS
972 with ocnt > 1 T_COTS_ORD
973 rcvrel successful return of t_rcvrel() T_COTS_ORD
974 rcvudata successful return of t_rcvudata() T_CLTS
975 rcvuderr successful return of t_rcvuderr() T_CLTS
976 pass_conn receive a passed connection T_COTS
977 T_COTS_ORD

978 Table 5-3 Transport Interface Incoming Events

30 X/Open CAE Specification (1994) (Draft March 15, 1995)

States and Events in XTI Transport User Actions

979 5.4 Transport User Actions
980 Some state transitions are accompanied by a list of actions the transport user must take. These
981 actions are represented by the notation [n], where n is the number of the specific action as
982 described in Table 5-4.
983
984 [1] Set the count of outstanding connect indications to zero.

985 [2] Increment the count of outstanding connect indications.

986 [3] Decrement the count of outstanding connect indications.

987 [4] Pass a connection to another transport endpoint as indicated
988 in t_accept().

989 Table 5-4 Transport Interface User Actions

Networking Services, Issue 4 31

State Tables States and Events in XTI

990 5.5 State Tables
991 Table 5-5, Table 5-6 and Table 5-7 describe the possible next states, given the current state and
992 event. The state is that of the transport provider as seen by the transport user.

993 The contents of each box represent the next state given the current state (column) and the
994 current incoming or outgoing event (row). An empty box represents a state/event combination
995 that is invalid. Along with the next state, each box may include an action list (as specified in
996 Table 5-4 on page 31). The transport user must take the specific actions in the order specified in
997 the state table.

998 A separate table is shown for initialisation/de-initialisation, data transfer in connectionless
999 mode and connection/release/data transfer in connection mode.
1000
1001 state
1002 event

T_UNINIT T_UNBND T_IDLE

1003 opened T_UNBND
1004 bind T_IDLE [1]
1005 unbind T_UNBND
1006 closed T_UNINIT T_UNINIT

1007 Table 5-5 Initialisation/De-initialisation States

1008
1009 state
1010 event

T_IDLE

1011 sndudata T_IDLE
1012 rcvudata T_IDLE
1013 rcvuderr T_IDLE

1014 Table 5-6 Data Transfer States: Connectionless-mode Service

32 X/Open CAE Specification (1994) (Draft March 15, 1995)

States and Events in XTI State Tables

1015
state

1016 event
T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBND

1017 connect1 T_DATAXFER

1018 connect2 T_OUTCON

1019 rcvconnect T_DATAXFER

1020 listen T_INCON[2] T_INCON[2]

1021 accept1 T_DATAXFER[3]

1022 accept2 T_IDLE[3][4]

1023 accept3 T_INCON[3][4]

1024 snd T_DATAXFER T_INREL

1025 rcv T_DATAXFER T_OUTREL

1026 snddis1 T_IDLE T_IDLE[3] T_IDLE T_IDLE T_IDLE

1027 snddis2 T_INCON[3]

1028 rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLE

1029 rcvdis2 T_IDLE[3]

1030 rcvdis3 T_INCON[3]

1031 sndrel T_OUTREL T_IDLE

1032 rcvrel T_INREL T_IDLE

1033 pass_conn T_DATAXFER T_DATAXFER

1034 optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBIND

1035 closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT

1036 Table 5-7 Connection/Release/Data Transfer States: Connection-mode Service

Networking Services, Issue 4 33

Events and TLOOK Error Indication States and Events in XTI

1037 5.6 Events and TLOOK Error Indication
1038 The following list describes the asynchronous events which cause an XTI call to return with a
1039 [TLOOK] error:

1040 t_accept() T_DISCONNECT, T_LISTEN

1041 t_connect() T_DISCONNECT, T_LISTEN1

1042 t_listen() T_DISCONNECT2

1043 t_rcv() T_DISCONNECT, T_ORDREL3

1044 t_rcvconnect() T_DISCONNECT

1045 t_rcvrel() T_DISCONNECT

1046 t_rcvudata() T_UDERR

1047 t_snd() T_DISCONNECT, T_ORDREL

1048 t_sndudata() T_UDERR

1049 t_unbind() T_LISTEN, T_DATA4

1050 t_sndrel() T_DISCONNECT

1051 t_snddis() T_DISCONNECT

1052 Once a [TLOOK] error has been received on a transport endpoint via an XTI function,
1053 subsequent calls to that and other XTI functions, to which the same [TLOOK] error applies, will
1054 continue to return [TLOOK] until the event is consumed. An event causing the [TLOOK] error
1055 can be determined by calling t_look () and then can be consumed by calling the corresponding
1056 consuming XTI function as defined in Table 3-1.

1057 __________________

1.1058 This occurs only when a t_connect is done on an endpoint which has been bound with a qlen > 0 and for which a connect
1059 indication is pending.

2.1060 This event indicates a disconnect on an outstanding connect indication.
3.1061 This occurs only when all pending data has been read.
4.1062 T_DATA may only occur for the connectionless mode.

34 X/Open CAE Specification (1994) (Draft March 15, 1995)

1063

Chapter 6

The Use of Options in XTI

1064 6.1 Generalities
1065 The functions t_accept(), t_connect(), t_listen(), t_optmgmt(), t_rcvconnect(), t_rcvudata (),
1066 t_rcvuderr() and t_sndudata () contain an opt argument of type struct netbuf as an input or
1067 output parameter. This argument is used to convey options between the transport user and the
1068 transport provider.

1069 There is no general definition about the possible contents of options. There are general XTI
1070 options and those that are specific for each transport provider. Some options allow the user to
1071 tailor his communication needs, for instance by asking for high throughput or low delay. Others
1072 allow the fine-tuning of the protocol behaviour so that communication with unusual
1073 characteristics can be handled more effectively. Other options are for debugging purposes.

1074 All options have default values. Their values have meaning to and are defined by the protocol
1075 level in which they apply. However, their values can be negotiated by a transport user. This
1076 includes the simple case where the transport user can simply enforce its use. Often, the
1077 transport provider or even the remote transport user may have the right to negotiate a value of
1078 lesser quality than the proposed one, that is, a delay may become longer, or a throughput may
1079 become lower.

1080 It is useful to differentiate between options that are association-related5 and those that are not.
1081 Association-related options are intimately related to the particular transport connection or
1082 datagram transmission. If the calling user specifies such an option, some ancillary information is
1083 transferred across the network in most cases. The interpretation and further processing of this
1084 information is protocol-dependent. For instance, in an ISO connection-oriented communication,
1085 the calling user may specify quality-of-service parameters on connection establishment. These
1086 are first processed and possibly lowered by the local transport provider, then sent to the remote
1087 transport provider that may degrade them again, and finally conveyed to the called user that
1088 makes the final selection and transmits the selected values back to the caller.

1089 Options that are not association-related do not contain information destined for the remote
1090 transport user. Some have purely local relevance, for example, an option that enables
1091 debugging. Others influence the transmission, for instance the option that sets the IP time-to-live
1092 field, or TCP_NODELAY (see Appendix B on page 199). Local options are negotiated solely
1093 between the transport user and the local transport provider. The distinction between these two
1094 categories of options is visible in XTI through the following relationship: on output, the
1095 functions t_listen() and t_rcvudata () return association-related options only. The functions
1096 t_rcvconnect() and t_rcvuderr() may return options of both categories. On input, options of both
1097 categories may be specified with t_accept() and t_sndudata (). The functions t_connect() and
1098 t_optmgmt() can process and return both categories of options.

1099 The transport provider has a default value for each option it supports. These defaults are
1100 sufficient for the majority of communication relations. Hence, a transport user should only
1101 request options actually needed to perform the task, and leave all others at their default value.

1102 __________________

5.1103 The term ‘‘association’’ is used to denote a pair of communicating transport users.

Networking Services, Issue 4 35

Generalities The Use of Options in XTI

1104 This chapter describes the general framework for the use of options. This framework is
1105 obligatory for all transport providers. The specific options that are legal for use with a specific
1106 transport provider are described in the provider-specific appendices (see Appendix A on page
1107 189 and Appendix B on page 199). General XTI options are described in t_optmgmt() on page 76.

1108 6.2 The Format of Options
1109 Options are conveyed via an opt argument of struct netbuf. Each option in the buffer specified is
1110 of the form struct t_opthdr possibly followed by an option value.

1111 A transport provider embodies a stack of protocols. The level field of struct t_opthdr identifies
1112 the XTI level or a protocol of the transport provider as TCP or ISO 8073:1986. The name field
1113 identifies the option within the level, and len contains its total length, that is, the length of the
1114 option header t_opthdr plus the length of the option value. The status field is used by the XTI
1115 level or the transport provider to indicate success or failure of a negotiation (see Section 6.3.5 on
1116 page 40 and t_optmgmt() on page 76).

1117 Several options can be concatenated. The transport user has, however, to ensure that each
1118 option starts at a long-word boundary. The macro OPT_NEXTHDR(pbuf, buflen, poption) can
1119 be used for that purpose. The parameter pbuf denotes a pointer to an option buffer opt.buf , and
1120 buflen is its length. The parameter poption points to the current option in the option buffer.
1121 OPT_NEXTHDR returns a pointer to the position of the next option, or returns a null pointer if
1122 the option buffer is exhausted. The macro is helpful for writing and reading. See <xti.h> in
1123 Appendix F on page 253 for the exact definition.

1124 The option buffer thus has the following form (unsigned long is abbreviated to u_long):

1125 len
1126

level name status / /value len

u_long u_long u_long u_long

1127 opt.buf alignment characters

first option second option

1128 The length of the option buffer is given by opt.len .

36 X/Open CAE Specification (1994) (Draft March 15, 1995)

The Use of Options in XTI The Elements of Negotiation

1129 6.3 The Elements of Negotiation
1130 This section describes the general rules governing the passing and retrieving of options and the
1131 error conditions that can occur. Unless explicitly restricted, these rules apply to all functions
1132 that allow the exchange of options.

1133 6.3.1 Multiple Options and Options Levels

1134 When multiple options are specified in an option buffer on input, different rules apply to the
1135 levels that may be specified, depending on the function call. Multiple options specified on input
1136 to t_optmgmt() must address the same option level. Options specified on input to t_connect(),
1137 t_accept() and t_sndudata () can address different levels.

1138 6.3.2 Illegal Options

1139 Only legal options can be negotiated; illegal options cause failure. An option is illegal if the
1140 following applies:

1141 • The length specified in t_opthdr.len exceeds the remaining size of the option buffer (counted
1142 from the beginning of the option).

1143 • The option value is illegal. The legal values are defined for each option. (See t_optmgmt() on
1144 page 76, Appendix A on page 189 and Appendix B on page 199.)

1145 If an illegal option is passed to XTI, the following will happen:

1146 • A call to t_optmgmt() fails with [TBADOPT].

1147 • t_accept() or t_connect() fail either with [TBADOPT], or the connection establishment aborts,
1148 depending on the implementation and the time the illegal option is detected. If the
1149 connection aborts, a T_DISCONNECT event occurs, and a synchronous call to t_connect()
1150 fails with [TLOOK]. It depends on timing and implementation conditions whether a
1151 t_accept() call still succeeds or fails with [TLOOK] in that case.

1152 • A call to t_sndudata () either fails with [TBADOPT], or it successfully returns, but a T_UDERR
1153 event occurs to indicate that the datagram was not sent.

1154 If the transport user passes multiple options in one call and one of them is illegal, the call fails as
1155 described above. It is, however, possible that some or even all of the submitted legal options
1156 were successfully negotiated. The transport user can check the current status by a call to
1157 t_optmgmt() with the T_CURRENT flag set (see t_optmgmt() on page 76).

1158 Specifying an option level unknown to the transport provider does not cause failure in calls to
1159 t_connect(), t_accept() or t_sndudata (); the option is discarded in these cases. The function
1160 t_optmgmt() fails with [TBADOPT].

1161 Specifying an option name that is unknown to or not supported by the protocol selected by the
1162 option level does not cause failure. The option is discarded in calls to t_connect(), t_accept() or
1163 t_sndudata (). The function t_optmgmt() returns T_NOTSUPPORT in the level field of the option.

Networking Services, Issue 4 37

The Elements of Negotiation The Use of Options in XTI

1164 6.3.3 Initiating an Option Negotiation

1165 A transport user initiates an option negotiation when calling t_connect(), t_sndudata () or
1166 t_optmgmt() with the flag T_NEGOTIATE set.

1167 The negotiation rules for these functions depend on whether an option request is an absolute
1168 requirement or not. This is explicitly defined for each option (see t_optmgmt() on page 76,
1169 Appendix A on page 189 and Appendix B on page 199). In case of an ISO transport provider, for
1170 example, the option that requests use of expedited data is not an absolute requirement. On the
1171 other hand, the option that requests protection could be an absolute requirement.

1172 Note: The notion ‘‘absolute requirement’’ originates from the quality-of-service parameters in
1173 ISO 8072:1986. Its use is extended here to all options.

1174 If the proposed option value is an absolute requirement, three outcomes are possible:

1175 • The negotiated value is the same as the proposed one. When the result of the negotiation is
1176 retrieved, the status field in t_opthdr is set to T_SUCCESS.

1177 • The negotiation is rejected if the option is supported but the proposed value cannot be
1178 negotiated. This leads to the following behaviour:

1179 — t_optmgmt() successfully returns, but the returned option has its status field set to
1180 T_FAILURE.

1181 — Any attempt to establish a connection aborts; a T_DISCONNECT event occurs, and a
1182 synchronous call to t_connect() fails with [TLOOK].

1183 — t_sndudata () fails with [TLOOK] or successfully returns, but a T_UDERR event occurs to
1184 indicate that the datagram was not sent.

1185 If multiple options are submitted in one call and one of them is rejected, XTI behaves as just
1186 described. Although the connection establishment or the datagram transmission fails,
1187 options successfully negotiated before some option was rejected retain their negotiated
1188 values. There is no roll-back mechanism (see Section 6.4 on page 42).

1189 The function t_optmgmt() attempts to negotiate each option. The status fields of the returned
1190 options indicate success (T_SUCCESS) or failure (T_FAILURE).

1191 • If the local transport provider does not support the option at all, t_optmgmt() reports
1192 T_NOTSUPPORT in the status field. The functions t_connect() and t_sndudata () ignore this
1193 option.

1194 If the proposed option value is not an absolute requirement, two outcomes are possible:

1195 • The negotiated value is of equal or lesser quality than the proposed one (for example, a delay
1196 may become longer).

1197 When the result of the negotiation is retrieved, the status field in t_opthdr is set to
1198 T_SUCCESS if the negotiated value equals the proposed one, or set to T_PARTSUCCESS
1199 otherwise.

1200 • If the local transport provider does not support the option at all, t_optmgmt() reports
1201 T_NOTSUPPORT in the status field. The functions t_connect() and t_sndudata () ignore this
1202 option.

1203 Unsupported options do not cause functions to fail or a connection to abort, since different
1204 vendors possibly implement different subsets of options. Furthermore, future enhancements of
1205 XTI might encompass additional options that are unknown to earlier implementations of
1206 transport providers. The decision whether or not the missing support of an option is acceptable
1207 for the communication is left to the transport user.

38 X/Open CAE Specification (1994) (Draft March 15, 1995)

The Use of Options in XTI The Elements of Negotiation

1208 The transport provider does not check for multiple occurrences of the same option, possibly
1209 with different option values. It simply processes the options in the option buffer one after the
1210 other. However, the user should not make any assumption about the order of processing.

1211 Not all options are independent of one another. A requested option value might conflict with
1212 the value of another option that was specified in the same call or is currently effective (see
1213 Section 6.4 on page 42). These conflicts may not be detected at once, but later they might lead to
1214 unpredictable results. If detected at negotiation time, these conflicts are resolved within the
1215 rules stated above. The outcomes may thus be quite different and depend on whether absolute
1216 or non-absolute requests are involved in the conflict.

1217 Conflicts are usually detected at the time a connection is established or a datagram is sent. If
1218 options are negotiated with t_optmgmt(), conflicts are usually not detected at this time, since
1219 independent processing of the requested options must allow for temporal inconsistencies.

1220 When called, the functions t_connect() and t_sndudata () initiate a negotiation of all association-
1221 related options according to the rules of this section. Options not explicitly specified in the
1222 function calls themselves are taken from an internal option buffer that contains the values of a
1223 previous negotiation (see Section 6.4 on page 42).

1224 6.3.4 Responding to a Negotiation Proposal

1225 In connection-oriented communication, some protocols give the peer transport users the
1226 opportunity to negotiate characteristics of the transport connection to be established. These
1227 characteristics are association-related options. With the connect indication, the called user
1228 receives (via t_listen()) a proposal about the option values that should be effective for this
1229 connection. The called user can accept this proposal or weaken it by choosing values of lower
1230 quality (for example, longer delays than proposed). The called user can, of course, refuse the
1231 connection establishment altogether.

1232 The called user responds to a negotiation proposal via t_accept(). If the called transport user
1233 tries to negotiate an option of higher quality than proposed, the outcome depends on the
1234 protocol to which that option applies. Some protocols may reject the option, some protocols
1235 take other appropriate action described in protocol-specific appendices. If an option is rejected,
1236 the following error occurs:

1237 The connection fails; a T_DISCONNECT event occurs. It depends on timing and
1238 implementation conditions whether the t_accept() call still succeeds or fails with
1239 [TLOOK].

1240 If multiple options are submitted with t_accept() and one of them is rejected, the connection fails
1241 as described above. Options that could be successfully negotiated before the erroneous option
1242 was processed retain their negotiated value. There is no roll-back mechanism (see Section 6.4 on
1243 page 42).

1244 The response options can either be specified with the t_accept() call, or can be preset for the
1245 responding endpoint (not the listening endpoint!) resfd in a t_optmgmt() call (action
1246 T_NEGOTIATE) prior to t_accept() (see Section 6.4 on page 42). Note that the response to a
1247 negotiation proposal is activated when t_accept() is called. A t_optmgmt() call with erroneous
1248 option values as described above will succeed; the connection aborts at the time t_accept() is
1249 called.

1250 The connection also fails if the selected option values lead to contradictions.

1251 The function t_accept() does not check for multiple specification of an option (see Section 6.3.3
1252 on page 38). Unsupported options are ignored.

Networking Services, Issue 4 39

The Elements of Negotiation The Use of Options in XTI

1253 6.3.5 Retrieving Information about Options

1254 This section describes how a transport user can retrieve information about options. To be
1255 explicit, a transport user must be able to:

1256 • know the result of a negotiation (for example, at the end of a connection establishment)

1257 • know the proposed option values under negotiation (during connection establishment)

1258 • retrieve option values sent by the remote transport user for notification only (for example, IP
1259 options)

1260 • check option values currently effective for the transport endpoint.

1261 To this end, the functions t_connect(), t_listen(), t_optmgmt(), t_rcvconnect(), t_rcvudata () and
1262 t_rcvuderr() take an output argument opt of struct netbuf. The transport user has to supply a
1263 buffer where the options shall be written to; opt.buf must point to this buffer, and opt.maxlen
1264 must contain the buffer’s size. The transport user can set opt.maxlen to zero to indicate that no
1265 options are to be retrieved.

1266 Which options are returned depend on the function call involved:

1267 t_connect() (synchronous mode) and t_rcvconnect()
1268 The functions return the values of all association-related options that were
1269 received with the connection response and the negotiated values of those non-
1270 association-related options that had been specified on input. However, options
1271 specified on input in the t_connect() call that are not supported or refer to an
1272 unknown option level are discarded and not returned on output.

1273 The status field of each option returned with t_connect() or t_rcvconnect() indicates
1274 if the proposed value (T_SUCCESS) or a degraded value (T_PARTSUCCESS) has
1275 been negotiated. The status field of received ancillary information (for example, IP
1276 options) that is not subject to negotiation is always set to T_SUCCESS.

1277 t_listen() The received association-related options are related to the incoming connection
1278 (identified by the sequence number), not to the listening endpoint. (However, the
1279 option values currently effective for the listening endpoint can affect the values
1280 retrieved by t_listen(), since the transport provider might be involved in the
1281 negotiation process, too.) Thus, if the same options are specified in a call to
1282 t_optmgmt() with action T_CURRENT, will usually not return the same values.

1283 The number of received options may be variable for subsequent connect
1284 indications, since many association-related options are only transmitted on explicit
1285 demand by the calling user (for example, IP options or ISO 8072:1986 throughput).
1286 It is even possible that no options at all are returned.

1287 The status field is irrelevant.

1288 t_rcvudata() The received association-related options are related to the incoming datagram, not
1289 to the transport endpoint fd . Thus, if the same options are specified in a call to
1290 t_optmgmt() with action T_CURRENT, t_optmgmt() will usually not return the
1291 same values.

1292 The number of options received may vary from call to call.

1293 The status field is irrelevant.

1294 t_rcvuderr() The returned options are related to the options input at the previous t_sndudata ()
1295 call that produced the error. Which options are returned and which values they
1296 have depend on the specific error condition.

40 X/Open CAE Specification (1994) (Draft March 15, 1995)

The Use of Options in XTI The Elements of Negotiation

1297 The status field is irrelevant.

1298 t_optmgmt() This call can process and return both categories of options. It acts on options
1299 related to the specified transport endpoint, not on options related to a connect
1300 indication or an incoming datagram. A detailed description is given in
1301 t_optmgmt() on page 76.

1302 6.3.6 Privileged and Read-only Options

1303 Privileged options or option values are those that may be requested by privileged users only. The
1304 meaning of privilege is hereby implementation-defined.

1305 Read-only options serve for information purposes only. The transport user may be allowed to
1306 read the option value but not to change it. For instance, to select the value of a protocol timer or
1307 the maximum length of a protocol data unit may be too subtle to leave to the transport user,
1308 though the knowledge about this value might be of some interest. An option might be read-only
1309 for all users or solely for non-privileged users. A privileged option might be inaccessible or
1310 read-only for non-privileged users.

1311 An option might be negotiable in some XTI states and read-only in other XTI states. For
1312 instance, the ISO quality-of-service options are negotiable in the states T_IDLE and T_INCON
1313 and read-only in all other states (except T_UNINIT).

1314 If a transport user requests negotiation of a read-only option, or a non-privileged user requests
1315 illegal access to a privileged option, the following outcomes are possible:

1316 • t_optmgmt() successfully returns, but the returned option has its status field set to
1317 T_NOTSUPPORT if a privileged option was requested illegally, and to T_READONLY if
1318 modification of a read-only option was requested.

1319 • If negotiation of a read-only option is requested, t_accept() or t_connect() either fail with
1320 [TACCES], or the connection establishment aborts and a T_DISCONNECT event occurs. If
1321 the connection aborts, a synchronous call to t_connect() fails with [TLOOK]. If a privileged
1322 option is illegally requested, the option is quietly ignored. (A non-privileged user shall not
1323 be able to select an option which is privileged or unsupported.) It depends on timing and
1324 implementation conditions whether a t_accept() call still succeeds or fails with [TLOOK].

1325 • If negotiation of a read-only option is requested, t_sndudata () may return [TLOOK] or
1326 successfully return, but a T_UDERR event occurs to indicate that the datagram was not sent.
1327 If a privileged option is illegally requested, the option is quietly ignored. (A non-privileged
1328 user shall not be able to select an option which is privileged or unsupported.)

1329 If multiple options are submitted to t_connect(), t_accept() or t_sndudata () and a read-only
1330 option is rejected, the connection or the datagram transmission fails as described. Options that
1331 could be successfully negotiated before the erroneous option was processed retain their
1332 negotiated values. There is no roll-back mechanism (see also Section 6.4 on page 42).

Networking Services, Issue 4 41

Option Management of a Transport Endpoint The Use of Options in XTI

1333 6.4 Option Management of a Transport Endpoint
1334 This section describes how option management works during the lifetime of a transport
1335 endpoint.

1336 Each transport endpoint is (logically) associated with an internal option buffer. When a
1337 transport endpoint is created, this buffer is filled with a system default value for each supported
1338 option. Depending on the option, the default may be ‘OPTION ENABLED’, ‘OPTION
1339 DISABLED’ or denote a time span, etc. These default settings are appropriate for most uses.
1340 Whenever an option value is modified in the course of an option negotiation, the modified value
1341 is written to this buffer and overwrites the previous one. At any time, the buffer contains all
1342 option values that are currently effective for this transport endpoint.

1343 The current value of an option can be retrieved at any time by calling t_optmgmt() with the flag
1344 T_CURRENT set. Calling t_optmgmt() with the flag T_DEFAULT set yields the system default
1345 for the specified option.

1346 A transport user can negotiate new option values by calling t_optmgmt() with the flag
1347 T_NEGOTIATE set. The negotiation follows the rules described in Section 6.3 on page 37.

1348 Some options may be modified only in specific XTI states and are read-only in other XTI states.
1349 Many association-related options, for instance, may not be changed in the state T_DATAXFER,
1350 and an attempt to do so will fail (see Section 6.3.6 on page 41). The legal states for each option
1351 are specified with its definition.

1352 As usual, association-related options take effect at the time a connection is established or a
1353 datagram is transmitted. This is the case if they contain information that is transmitted across
1354 the network or determine specific transmission characteristics. If such an option is modified by
1355 a call to t_optmgmt(), the transport provider checks whether the option is supported and
1356 negotiates a value according to its current knowledge. This value is written to the internal
1357 option buffer.

1358 The final negotiation takes place if the connection is established or the datagram is transmitted.
1359 This can result in a degradation of the option value or even in a negotiation failure. The
1360 negotiated values are written to the internal option buffer.

1361 Some options may be changed in the state T_DATAXFER, for example, those specifying buffer
1362 sizes. Such changes might affect the transmission characteristics and lead to unexpected side
1363 effects (for example, data loss if a buffer size was shortened) if the user does not care.

1364 The transport user can explicitly specify both categories of options on input when calling
1365 t_connect(), t_accept() or t_sndudata (). The options are at first locally negotiated option-by-
1366 option, and the resulting values written to the internal option buffer. The modified option buffer
1367 is then used if a further negotiation step across the network is required, as for instance in
1368 connection-oriented ISO communication. The newly negotiated values are then written to the
1369 internal option buffer.

1370 At any stage, a negotiation failure can lead to an abort of the transmission. If a transmission
1371 aborts, the option buffer will preserve the content it had at the time the failure occurred.
1372 Options that could be negotiated just before the error occurred are written back to the option
1373 buffer, whether the XTI call fails or succeeds.

1374 It is up to the transport user to decide which options it explicitly specifies on input when calling
1375 t_connect(), t_accept() or t_sndudata (). The transport user need not pass options at all, by setting
1376 the len field of the function’s input opt argument to zero. The current content of the internal
1377 option buffer is then used for negotiation without prior modification.

42 X/Open CAE Specification (1994) (Draft March 15, 1995)

The Use of Options in XTI Option Management of a Transport Endpoint

1378 The negotiation procedure for options at the time of a t_connect(), t_accept() or t_sndudata () call
1379 always obeys the rules in Section 6.3.3 on page 38 and Section 6.3.4 on page 39, whether the
1380 options were explicitly specified during the call or implicitly taken from the internal option
1381 buffer.

1382 The transport user should not make assumptions about the order in which options are processed
1383 during negotiation.

1384 A value in the option buffer is only modified as a result of a successful negotiation of this option.
1385 It is, in particular, not changed by a connection release. There is no history mechanism that
1386 would restore the buffer state existing prior to the connection establishment or the datagram
1387 transmission. The transport user must be aware that a connection establishment or a datagram
1388 transmission may change the internal option buffer, even if each option was originally initialised
1389 to its default value.

Networking Services, Issue 4 43

Supplements The Use of Options in XTI

1390 6.5 Supplements
1391 This section contains supplementary remarks and a short summary.

1392 6.5.1 The Option Value T_UNSPEC

1393 Some options may not have a fully specified value all the time. An ISO transport provider, for
1394 instance, that supports several protocol classes, might not have a preselected preferred class
1395 before a connection establishment is initiated. At the time of the connection request, the
1396 transport provider may conclude from the destination address, quality-of-service parameters
1397 and other locally available information which preferred class it should use. A transport user
1398 asking for the default value of the preferred class option in state T_IDLE would get the value
1399 T_UNSPEC. This value indicates that the transport provider did not yet select a value. The
1400 transport user could negotiate another value as the preferred class, for example, T_CLASS2. The
1401 transport provider would then be forced to initiate a connect request with class 2 as the
1402 preferred class.

1403 An XTI implementation may also return the value T_UNSPEC if it can currently not access the
1404 option value. This may happen, for example, in the state T_UNBND in systems where the
1405 protocol stacks reside on separate controller cards and not in the host. The implementation may
1406 never return T_UNSPEC if the option is not supported at all.

1407 If T_UNSPEC is a legal value for a specific option, it may be used by the user on input, too. It is
1408 used to indicate that it is left to the provider to choose an appropriate value. This is especially
1409 useful in complex options as ISO throughput, where the option value has an internal structure
1410 (see TCO_THROUGHPUT in Appendix A on page 189). The transport user may leave some
1411 fields unspecified by selecting this value. If the user proposes T_UNSPEC, the transport
1412 provider is free to select an appropriate value. This might be the default value, some other
1413 explicit value, or T_UNSPEC.

1414 For each option, it is specified whether or not T_UNSPEC is a legal value for negotiation
1415 purposes.

1416 6.5.2 The info Argument

1417 The functions t_open() and t_getinfo () return values representing characteristics of the transport
1418 provider in the argument info . The value of info->options is used by t_alloc () to allocate storage
1419 for an option buffer to be used in an XTI call. The value is sufficient for all uses.

1420 In general, info->options also includes the size of privileged options, even if these are not read-
1421 only for non-privileged users. Alternatively, an implementation can choose to return different
1422 values in info->options for privileged and non-privileged users.

1423 The values in info->etsdu , info->tsdu , info->connect and info->discon possibly diminish as soon as
1424 the T_DATAXFER state is entered. Calling t_optmgmt() does not influence these values (see
1425 t_optmgmt() on page 76).

44 X/Open CAE Specification (1994) (Draft March 15, 1995)

The Use of Options in XTI Supplements

1426 6.5.3 Summary

1427 • The format of an option is defined by a header struct t_opthdr, followed by an option value.

1428 • On input, several options can be specified in an input opt argument. Each option must begin
1429 on a long-word boundary.

1430 • There are options that are association-related and options that are not. On output, the
1431 functions t_listen() and t_rcvudata () return association-related options only. The functions
1432 t_rcvconnect() and t_rcvuderr() may return options of both categories. On input, options of
1433 both categories may be specified with t_accept() and t_sndudata (). The functions t_connect()
1434 and t_optmgmt() can process and return both categories of options.

1435 • A transport endpoint is (logically) associated with an internal option buffer, where the
1436 currently effective values are stored. Each successful negotiation of an option modifies this
1437 buffer, regardless of whether the call initiating the negotiation succeeds or fails.

1438 • When calling t_connect(), t_accept() or t_sndudata (), the transport user can choose to submit
1439 the currently effective option values by setting the len field of the input opt argument to zero.

1440 • If a connection is accepted via t_accept(), the explicitly specified option values together with
1441 the currently effective option values of resfd, not of fd , matter in this negotiation step.

1442 • The options returned by t_rcvuderr() are those negotiated with the outgoing datagram that
1443 produced the error. If the error occurred during option negotiation, the returned option
1444 might represent some mixture of partly negotiated and not-yet negotiated options.

Networking Services, Issue 4 45

Portability Aspects The Use of Options in XTI

1445 6.6 Portability Aspects
1446 An application programmer who writes XTI programs faces two portability aspects:

1447 • portability across protocol profiles

1448 • portability across different system platforms (possibly from different vendors).

1449 Options are intrinsically coupled with a definite protocol or protocol profile. Making explicit
1450 use of them therefore degrades portability across protocol profiles.

1451 Different vendors might offer transport providers with different option support. This is due to
1452 different implementations and product policies. The lists of options on the t_optmgmt() manual
1453 page and in the protocol-specific appendices are maximal sets but do not necessarily reflect
1454 common implementation practice. Vendors will implement subsets that suit their needs.
1455 Making careless use of options therefore endangers portability across different system
1456 platforms.

1457 Every implementation of a protocol profile accessible by XTI can be used with the default values
1458 of options. Applications can thus be written that do not care about options at all.

1459 An application program that processes options retrieved from an XTI function should discard
1460 options it does not know in order to lessen its dependence from different system platforms and
1461 future XTI releases with possibly increased option support.

46 X/Open CAE Specification (1994) (Draft March 15, 1995)

1462

Chapter 7

XTI Library Functions and Parameters

1463 7.1 How to Prepare XTI Applications
1464 In a software development environment, a program, for example that uses XTI functions must
1465 be compiled with the XTI Library. This can be done using the following command (for example,
1466 for normal library):

1467 cc file.c -lxti

1468 The syntax for shared libraries is implementation-dependent.

1469 The XTI structures and constants are all defined in the <xti.h> header, which can be found in
1470 Appendix F on page 253.

1471 7.2 Key for Parameter Arrays
1472 For each XTI function description, a table is given which summarises the contents of the input
1473 and output parameter. The key is given below:

1474 x The parameter value is meaningful. (Input parameter must be set before the call and
1475 output parameter may be read after the call.)

1476 (x) The content of the object pointed to by the x pointer is meaningful.

1477 ? The parameter value is meaningful but the parameter is optional.

1478 (?) The content of the object pointed to by the ? pointer is optional.

1479 / The parameter value is meaningless.

1480 = The parameter after the call keeps the same value as before the call.

1481 7.3 Return of TLOOK Error
1482 Many of the XTI functions contained in this chapter return a [TLOOK] error to report the
1483 occurrence of an asynchronous event. For these functions a complete list describing the function
1484 and the events is provided in Section 5.6 on page 34.

Networking Services, Issue 4 47

t_accept() XTI Library Functions and Parameters

1485 NAME
1486 t_accept - accept a connect request

1487 SYNOPSIS
1488 #include <xti.h>

1489 int t_accept(int fd , int resfd , struct t_call * call);

1490 DESCRIPTION
1491
1492 Parameters Before call After call
1493 fd x /
1494 resfd x /
1495 call->addr.maxlen / /
1496 call->addr.len x /
1497 call->addr.buf ? (?) /
1498 call->opt.maxlen / /
1499 call->opt.len x /
1500 call->opt.buf ? (?) /
1501 call->udata.maxlen / /
1502 call->udata.len x /
1503 call->udata.buf ? (?) /
1504 call->sequence x /

1505 This function is issued by a transport user to accept a connect request. The parameter fd
1506 identifies the local transport endpoint where the connect indication arrived; resfd specifies the
1507 local transport endpoint where the connection is to be established, and call contains information
1508 required by the transport provider to complete the connection. The parameter call points to a
1509 t_call structure which contains the following members:

1510 struct netbuf addr;
1511 struct netbuf opt;
1512 struct netbuf udata;
1513 int sequence;

1514 In call, addr is the protocol address of the calling transport user, opt indicates any options
1515 associated with the connection, udata points to any user data to be returned to the caller, and
1516 sequence is the value returned by t_listen() that uniquely associates the response with a
1517 previously received connect indication. The address of the caller, addr may be null (length zero).
1518 Where addr is not null then it may optionally be checked by XTI.

1519 A transport user may accept a connection on either the same, or on a different, local transport
1520 endpoint than the one on which the connect indication arrived. Before the connection can be
1521 accepted on the same endpoint (resfd==fd), the user must have responded to any previous
1522 connect indications received on that transport endpoint (via t_accept() or t_snddis()). Otherwise,
1523 t_accept() will fail and set t_errno to [TINDOUT].

1524 If a different transport endpoint is specified (resfd!=fd), then the user may or may not choose to
1525 bind the endpoint before the t_accept() is issued. If the endpoint is not bound prior to the
1526 t_accept(), then the transport provider will automatically bind it to the same protocol address fd
1527 is bound to. If the transport user chooses to bind the endpoint it must be bound to a protocol
1528 address with a qlen of zero and must be in the T_IDLE state before the t_accept() is issued.

1529 The call to t_accept() will fail with t_errno set to [TLOOK] if there are indications (for example,
1530 connect or disconnect) waiting to be received on the endpoint fd.

48 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_accept()

1531 The udata argument enables the called transport user to send user data to the caller and the
1532 amount of user data must not exceed the limits supported by the transport provider as returned
1533 in the connect field of the info argument of t_open() or t_getinfo (). If the len field of udata is zero,
1534 no data will be sent to the caller. All the maxlen fields are meaningless.

1535 When the user does not indicate any option (call->opt.len = 0) it is assumed that the connection
1536 is to be accepted unconditionally. The transport provider may choose options other than the
1537 defaults to ensure that the connection is accepted successfully.

1538 CAVEATS
1539 There may be transport provider-specific restrictions on address binding. See Appendix A on
1540 page 189 and Appendix B on page 199.

1541 Some transport providers do not differentiate between a connect indication and the connection
1542 itself. If the connection has already been established after a successful return of t_listen(),
1543 t_accept() will assign the existing connection to the transport endpoint specified by resfd (see
1544 Appendix B on page 199).

1545 VALID STATES
1546 fd: T_INCON resfd (fd!=resfd): T_IDLE

1547 ERRORS
1548 On failure, t_errno is set to one of the following:

1549 [TBADF] The file descriptor fd or resfd does not refer to a transport endpoint.

1550 [TOUTSTATE] The function was called in the wrong sequence on the transport endpoint
1551 referenced by fd, or the transport endpoint referred to by resfd is not in the
1552 appropriate state.

1553 [TACCES] The user does not have permission to accept a connection on the
1554 responding transport endpoint or to use the specified options.

1555 [TBADOPT] The specified options were in an incorrect format or contained illegal
1556 information.

1557 [TBADDATA] The amount of user data specified was not within the bounds allowed by
1558 the transport provider.

1559 [TBADADDR] The specified protocol address was in an incorrect format or contained
1560 illegal information.

1561 [TBADSEQ] An invalid sequence number was specified.

1562 [TLOOK] An asynchronous event has occurred on the transport endpoint
1563 referenced by fd and requires immediate attention.

1564 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

1565 [TSYSERR] A system error has occurred during execution of this function.

1566 [TINDOUT] The function was called with fd==resfd but there are outstanding
1567 connection indications on the endpoint. Those other connection
1568 indications must be handled either by rejecting them via t_snddis(3) or
1569 accepting them on a different endpoint via t_accept(3).

1570 [TPRIVMISMATCH] The file descriptors fd and resfd do not refer to the same transport
1571 provider.

1572 [TRESQLEN] The endpoint referenced by resfd (where resfd != fd) was bound to a
1573 protocol address with a qlen that is greater than zero.

Networking Services, Issue 4 49

t_accept() XTI Library Functions and Parameters

1574 [TPROTO] This error indicates that a communication problem has been detected
1575 between XTI and the transport provider for which there is no other
1576 suitable XTI (t_errno).

1577 [TRESADDR] This transport provider requires both fd and resfd to be bound to the same
1578 address. This error results if they are not.

1579 RETURN VALUE
1580 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
1581 t_errno is set to indicate an error.

1582 SEE ALSO
1583 t_connect(), t_getstate(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

1584 CHANGE HISTORY

Issue1585 4
1586 The SYNOPSIS section is placed in the form of a standard C function prototype.

50 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_alloc()

1587 NAME
1588 t_alloc - allocate a library structure

1589 SYNOPSIS
1590 #include <xti.h>

1591 char *t_alloc(int fd , int struct_type , int fields);

1592 DESCRIPTION
1593
1594 Parameters Before call After call
1595 fd x /
1596 struct_type x /
1597 fields x /

1598 The t_alloc () function dynamically allocates memory for the various transport function
1599 argument structures as specified below. This function will allocate memory for the specified
1600 structure, and will also allocate memory for buffers referenced by the structure.

1601 The structure to allocate is specified by struct_type and must be one of the following:

1602 T_BIND struct t_bind
1603 T_CALL struct t_call
1604 T_OPTMGMT struct t_optmgmt
1605 T_DIS struct t_discon
1606 T_UNITDATA struct t_unitdata
1607 T_UDERROR struct t_uderr
1608 T_INFO struct t_info

1609 where each of these structures may subsequently be used as an argument to one or more
1610 transport functions.

1611 Each of the above structures, except T_INFO, contains at least one field of type struct netbuf.
1612 For each field of this type, the user may specify that the buffer for that field should be allocated
1613 as well. The length of the buffer allocated will be equal to or greater than the appropriate size as
1614 returned in the info argument of t_open() or t_getinfo (). The relevant fields of the info argument
1615 are described in the following list. The fields argument specifies which buffers to allocate, where
1616 the argument is the bitwise-or of any of the following:

1617 T_ADDR The addr field of the t_bind, t_call, t_unitdata or t_uderr structures.

1618 T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_uderr structures.

1619 T_UDATA The udata field of the t_call, t_discon or t_unitdata structures.

1620 T_ALL All relevant fields of the given structure. Fields which are not supported
1621 by the transport provider specified by fd will not be allocated.

1622 For each relevant field specified in fields , t_alloc () will allocate memory for the buffer associated
1623 with the field, and initialise the len field to zero and the buf pointer and maxlen field accordingly.
1624 Irrelevant or unknown values passed in fields are ignored. Since the length of the buffer
1625 allocated will be based on the same size information that is returned to the user on a call to
1626 t_open() and t_getinfo (), fd must refer to the transport endpoint through which the newly
1627 allocated structure will be passed. In this way the appropriate size information can be accessed.
1628 If the size value associated with any specified field is −1 or −2 (see t_open() or t_getinfo ()),
1629 t_alloc () will be unable to determine the size of the buffer to allocate and will fail, setting t_errno
1630 to [TSYSERR] and errno to [EINVAL]. For any field not specified in fields , buf will be set to the
1631 null pointer and len and maxlen will be set to zero.

Networking Services, Issue 4 51

t_alloc() XTI Library Functions and Parameters

1632 Use of t_alloc () to allocate structures will help ensure the compatibility of user programs with
1633 future releases of the transport interface functions.

1634 VALID STATES
1635 ALL - apart from T_UNINIT

1636 ERRORS
1637 On failure, t_errno is set to one of the following:

1638 [TBADF] The specified file descriptor does not refer to a transport endpoint.

1639 [TSYSERR] A system error has occurred during execution of this function.

1640 [TNOSTRUCTYPE] Unsupported struct_type requested. This can include a request for a
1641 structure type which is inconsistent with the transport provider type
1642 specified, that is, connection-oriented or connectionless.

1643 [TPROTO] This error indicates that a communication problem has been detected
1644 between XTI and the transport provider for which there is no other
1645 suitable XTI (t_errno).

1646 RETURN VALUE
1647 On successful completion, t_alloc () returns a pointer to the newly allocated structure. On
1648 failure, a null pointer is returned.

1649 SEE ALSO
1650 t_free(), t_getinfo (), t_open().

1651 CHANGE HISTORY

Issue1652 4
1653 The SYNOPSIS section is placed in the form of a standard C function prototype.

52 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_bind()

1654 NAME
1655 t_bind - bind an address to a transport endpoint

1656 SYNOPSIS
1657 #include <xti.h>

1658 int t_bind(int fd , struct t_bind * req , struct t_bind * ret);

1659 DESCRIPTION
1660
1661 Parameters Before call After call
1662 fd x /
1663 req->addr.maxlen / /
1664 req->addr.len x>=0 /
1665 req->addr.buf x (x) /
1666 req->qlen x >=0 /
1667 ret->addr.maxlen x /
1668 ret->addr.len / x
1669 ret->addr.buf ? (?)
1670 ret->qlen / x >=0

1671 This function associates a protocol address with the transport endpoint specified by fd and
1672 activates that transport endpoint. In connection mode, the transport provider may begin
1673 enqueuing incoming connect indications, or servicing a connection request on the transport
1674 endpoint. In connectionless mode, the transport user may send or receive data units through the
1675 transport endpoint.

1676 The req and ret arguments point to a t_bind structure containing the following members:

1677 struct netbuf addr;
1678 unsigned qlen;

1679 The addr field of the t_bind structure specifies a protocol address, and the qlen field is used to
1680 indicate the maximum number of outstanding connect indications.

1681 The parameter req is used to request that an address, represented by the netbuf structure, be
1682 bound to the given transport endpoint. The parameter len specifies the number of bytes in the
1683 address, and buf points to the address buffer. The parameter maxlen has no meaning for the req
1684 argument. On return, ret contains the address that the transport provider actually bound to the
1685 transport endpoint; this is the same as the address specified by the user in req. In ret, the user
1686 specifies maxlen, which is the maximum size of the address buffer, and buf which points to the
1687 buffer where the address is to be placed. On return, len specifies the number of bytes in the
1688 bound address, and buf points to the bound address. If maxlen is not large enough to hold the
1689 returned address, an error will result.

1690 If the requested address is not available, t_bind() will return −1 with t_errno set as appropriate.
1691 If no address is specified in req (the len field of addr in req is zero or req is NULL), the transport
1692 provider will assign an appropriate address to be bound, and will return that address in the addr
1693 field of ret. If the transport provider could not allocate an address, t_bind() will fail with t_errno
1694 set to [TNOADDR].

1695 The parameter req may be a null pointer if the user does not wish to specify an address to be
1696 bound. Here, the value of qlen is assumed to be zero, and the transport provider will assign an
1697 address to the transport endpoint. Similarly, ret may be a null pointer if the user does not care
1698 what address was bound by the provider and is not interested in the negotiated value of qlen. It
1699 is valid to set req and ret to the null pointer for the same call, in which case the provider chooses
1700 the address to bind to the transport endpoint and does not return that information to the user.

Networking Services, Issue 4 53

t_bind() XTI Library Functions and Parameters

1701 The qlen field has meaning only when initialising a connection-mode service. It specifies the
1702 number of outstanding connect indications that the transport provider should support for the
1703 given transport endpoint. An outstanding connect indication is one that has been passed to the
1704 transport user by the transport provider but which has not been accepted or rejected. A value of
1705 qlen greater than zero is only meaningful when issued by a passive transport user that expects
1706 other users to call it. The value of qlen will be negotiated by the transport provider and may be
1707 changed if the transport provider cannot support the specified number of outstanding connect
1708 indications. However, this value of qlen will never be negotiated from a requested value greater
1709 than zero to zero. This is a requirement on transport providers; see CAVEATS below. On
1710 return, the qlen field in ret will contain the negotiated value.

1711 If fd refers to a connection-mode service, this function allows more than one transport endpoint
1712 to be bound to the same protocol address (however, the transport provider must also support
1713 this capability), but it is not possible to bind more than one protocol address to the same
1714 transport endpoint. If a user binds more than one transport endpoint to the same protocol
1715 address, only one endpoint can be used to listen for connect indications associated with that
1716 protocol address. In other words, only one t_bind() for a given protocol address may specify a
1717 value of qlen greater than zero. In this way, the transport provider can identify which transport
1718 endpoint should be notified of an incoming connect indication. If a user attempts to bind a
1719 protocol address to a second transport endpoint with a value of qlen greater than zero, t_bind()
1720 will return −1 and set t_errno to [TADDRBUSY]. When a user accepts a connection on the
1721 transport endpoint that is being used as the listening endpoint, the bound protocol address will
1722 be found to be busy for the duration of the connection, until a t_unbind() or t_close() call has
1723 been issued. No other transport endpoints may be bound for listening on that same protocol
1724 address while that initial listening endpoint is active (in the data transfer phase or in the T_IDLE
1725 state). This will prevent more than one transport endpoint bound to the same protocol address
1726 from accepting connect indications.

1727 If fd refers to a connectionless-mode service, only one endpoint may be associated with a
1728 protocol address. If a user attempts to bind a second transport endpoint to an already bound
1729 protocol address, t_bind() will return −1 and set t_errno to [TADDRBUSY].

1730 VALID STATES
1731 T_UNBND

1732 ERRORS
1733 On failure, t_errno is set to one of the following:

1734 [TBADF] The specified file descriptor does not refer to a transport endpoint.

1735 [TOUTSTATE] The function was issued in the wrong sequence.

1736 [TBADADDR] The specified protocol address was in an incorrect format or contained
1737 illegal information.

1738 [TNOADDR] The transport provider could not allocate an address.

1739 [TACCES] The user does not have permission to use the specified address.

1740 [TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is
1741 greater than 0 but not sufficient to store the value of that argument. The
1742 provider’s state will change to T_IDLE and the information to be returned
1743 in ret will be discarded.

1744 [TSYSERR] A system error has occurred during execution of this function.

1745 [TADDRBUSY] The requested address is in use.

54 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_bind()

1746 [TPROTO] This error indicates that a communication problem has been detected
1747 between XTI and the transport provider for which there is no other
1748 suitable XTI (t_errno).

1749 RETURN VALUE
1750 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
1751 t_errno is set to indicate an error.

1752 SEE ALSO
1753 t_alloc (), t_close(), t_open(), t_optmgmt(), t_unbind().

1754 CAVEATS
1755 The requirement that the value of qlen never be negotiated from a requested value greater than
1756 zero to zero implies that transport providers, rather than the XTI implementation itself, accept
1757 this restriction.

1758 A transport provider may not allow an explicit binding of more than one transport endpoint to
1759 the same protocol address, although it allows more than one connection to be accepted for the
1760 same protocol address. To ensure portability, it is, therefore, recommended not to bind transport
1761 endpoints that are used as responding endpoints (resfd) in a call to t_accept(), if the responding
1762 address is to be the same as the called address.

1763 CHANGE HISTORY

Issue1764 4
1765 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 55

t_close() XTI Library Functions and Parameters

1766 NAME
1767 t_close - close a transport endpoint

1768 SYNOPSIS
1769 #include <xti.h>

1770 int t_close(int fd);

1771 DESCRIPTION
1772
1773 Parameters Before call After call
1774 fd x /

1775 The t_close() function informs the transport provider that the user is finished with the transport
1776 endpoint specified by fd , and frees any local library resources associated with the endpoint. In
1777 addition, t_close() closes the file associated with the transport endpoint.

1778 The function t_close() should be called from the T_UNBND state (see t_getstate()). However,
1779 this function does not check state information, so it may be called from any state to close a
1780 transport endpoint. If this occurs, the local library resources associated with the endpoint will
1781 be freed automatically. In addition, close() will be issued for that file descriptor; the close() will
1782 be abortive if there are no other descriptors in this, or in another process which references the
1783 transport endpoint, and in this case will break any transport connection that may be associated
1784 with that endpoint.

1785 A t_close() issued on a connection endpoint may cause data previously sent, or data not yet
1786 received, to be lost. It is the responsibility of the transport user to ensure that data is received by
1787 the remote peer.

1788 VALID STATES
1789 ALL - apart from T_UNINIT

1790 ERRORS
1791 On failure, t_errno is set to the following:

1792 [TBADF] The specified file descriptor does not refer to a transport endpoint.

1793 [TPROTO] This error indicates that a communication problem has been detected
1794 between XTI and the transport provider for which there is no other
1795 suitable XTI (t_errno).

1796 RETURN VALUE
1797 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
1798 t_errno is set to indicate an error.

1799 SEE ALSO
1800 t_getstate(), t_open(), t_unbind().

1801 CHANGE HISTORY

Issue1802 4
1803 The SYNOPSIS section is placed in the form of a standard C function prototype.

56 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_connect()

1804 NAME
1805 t_connect - establish a connection with another transport user

1806 SYNOPSIS
1807 #include <xti.h>

1808 int t_connect(int fd , struct t_call * sndcall , struct t_call * rcvcall);

1809 DESCRIPTION
1810
1811 Parameters Before call After call
1812 fd x /
1813 sndcall->addr.maxlen / /
1814 sndcall->addr.len x /
1815 sndcall->addr.buf x (x) /
1816 sndcall->opt.maxlen / /
1817 sndcall->opt.len x /
1818 sndcall->opt.buf x (x) /
1819 sndcall->udata.maxlen / /
1820 sndcall->udata.len x /
1821 sndcall->udata.buf ? (?) /
1822 sndcall->sequence / /
1823 rcvcall->addr.maxlen x /
1824 rcvcall->addr.len / x
1825 rcvcall->addr.buf ? (?)
1826 rcvcall->opt.maxlen x /
1827 rcvcall->opt.len / x
1828 rcvcall->opt.buf ? (?)
1829 rcvcall->udata.maxlen x /
1830 rcvcall->udata.len / x
1831 rcvcall->udata.buf ? (?)
1832 rcvcall->sequence / /

1833 This function enables a transport user to request a connection to the specified destination
1834 transport user. This function can only be issued in the T_IDLE state. The parameter fd identifies
1835 the local transport endpoint where communication will be established, while sndcall and rcvcall
1836 point to a t_call structure which contains the following members:

1837 struct netbuf addr;
1838 struct netbuf opt;
1839 struct netbuf udata;
1840 int sequence;

1841 The parameter sndcall specifies information needed by the transport provider to establish a
1842 connection and rcvcall specifies information that is associated with the newly established
1843 connection.

1844 In sndcall , addr specifies the protocol address of the destination transport user, opt presents any
1845 protocol-specific information that might be needed by the transport provider, udata points to
1846 optional user data that may be passed to the destination transport user during connection
1847 establishment, and sequence has no meaning for this function.

1848 On return, in rcvcall, addr contains the protocol address associated with the responding transport
1849 endpoint, opt represents any protocol-specific information associated with the connection, udata
1850 points to optional user data that may be returned by the destination transport user during
1851 connection establishment, and sequence has no meaning for this function.

Networking Services, Issue 4 57

t_connect() XTI Library Functions and Parameters

1852 The opt argument permits users to define the options that may be passed to the transport
1853 provider. These options are specific to the underlying protocol of the transport provider and are
1854 described for ISO and TCP protocols in Appendix A on page 189, Appendix B on page 199 and
1855 Appendix F on page 253. The user may choose not to negotiate protocol options by setting the
1856 len field of opt to zero. In this case, the provider may use default options.

1857 If used, sndcall->opt.buf must point to a buffer with the corresponding options; the maxlen and buf
1858 fields of the netbuf structure pointed by rcvcall->addr and rcvcall->opt must be set before the call.

1859 The udata argument enables the caller to pass user data to the destination transport user and
1860 receive user data from the destination user during connection establishment. However, the
1861 amount of user data must not exceed the limits supported by the transport provider as returned
1862 in the connect field of the info argument of t_open() or t_getinfo (). If the len of udata is zero in
1863 sndcall , no data will be sent to the destination transport user.

1864 On return, the addr , opt and udata fields of rcvcall will be updated to reflect values associated
1865 with the connection. Thus, the maxlen field of each argument must be set before issuing this
1866 function to indicate the maximum size of the buffer for each. However, rcvcall may be a null
1867 pointer, in which case no information is given to the user on return from t_connect().

1868 By default, t_connect() executes in synchronous mode, and will wait for the destination user’s
1869 response before returning control to the local user. A successful return (that is, return value of
1870 zero) indicates that the requested connection has been established. However, if O_NONBLOCK
1871 is set (via t_open() or fcntl()), t_connect() executes in asynchronous mode. In this case, the call
1872 will not wait for the remote user’s response, but will return control immediately to the local user
1873 and return −1 with t_errno set to [TNODATA] to indicate that the connection has not yet been
1874 established. In this way, the function simply initiates the connection establishment procedure
1875 by sending a connect request to the destination transport user. The t_rcvconnect() function is
1876 used in conjunction with t_connect() to determine the status of the requested connection.

1877 When a synchronous t_connect() call is interrupted by the arrival of a signal, the state of the
1878 corresponding transport endpoint is T_OUTCON, allowing a further call to either t_rcvconnect(),
1879 t_rcvdis() or t_snddis().

1880 VALID STATES
1881 T_IDLE

1882 ERRORS
1883 On failure, t_errno is set to one of the following:

1884 [TBADF] The specified file descriptor does not refer to a transport endpoint.

1885 [TOUTSTATE] The function was issued in the wrong sequence.

1886 [TNODATA] O_NONBLOCK was set, so the function successfully initiated the
1887 connection establishment procedure, but did not wait for a response from
1888 the remote user.

1889 [TBADADDR] The specified protocol address was in an incorrect format or contained
1890 illegal information.

1891 [TBADOPT] The specified protocol options were in an incorrect format or contained
1892 illegal information.

1893 [TBADDATA] The amount of user data specified was not within the bounds allowed by
1894 the transport provider.

1895 [TACCES] The user does not have permission to use the specified address or
1896 options.

58 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_connect()

1897 [TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
1898 greater than 0 but not sufficient to store the value of that argument. If
1899 executed in synchronous mode, the provider’s state, as seen by the user,
1900 changes to T_DATAXFER, and the information to be returned in rcvcall is
1901 discarded.

1902 [TLOOK] An asynchronous event has occurred on this transport endpoint and
1903 requires immediate attention.

1904 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

1905 [TSYSERR] A system error has occurred during execution of this function.

1906 [TADDRBUSY] This transport provider does not support multiple connections with the
1907 same local and remote addresses. This error indicates that a connection
1908 already exists.

1909 [TPROTO] This error indicates that a communication problem has been detected
1910 between XTI and the transport provider for which there is no other
1911 suitable XTI (t_errno).

1912 RETURN VALUE
1913 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
1914 t_errno is set to indicate an error.

1915 SEE ALSO
1916 t_accept(), t_alloc (), t_getinfo (), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

1917 CHANGE HISTORY

Issue1918 4
1919 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 59

t_error() XTI Library Functions and Parameters

1920 NAME
1921 t_error - produce error message

1922 SYNOPSIS
1923 #include <xti.h>

1924 int t_error(char * errmsg);

1925 DESCRIPTION
1926
1927 Parameters Before call After call
1928 errmsg x /

1929 The t_error() function produces a language-dependent message on the standard error output
1930 which describes the last error encountered during a call to a transport function. The argument
1931 string errmsg is a user-supplied error message that gives context to the error.

1932 The error message is written as follows: first (if errmsgis not a null pointer and the character
1933 pointed to be errmsgis not the null character) the string pointed to by errmsgfollowed by a colon
1934 and a space; then a standard error message string for the current error defined in t_errno. If
1935 t_errnohas a value different from [TSYSERR], the standard error message string is followed by a
1936 newline character. If, however, t_errno is equal to [TSYSERR], the t_errno string is followed by
1937 the standard error message string for the current error defined in errno followed by a newline.

1938 The language for error message strings written by t_error() is implementation-defined. If it is in
1939 English, the error message string describing the value in t_errno is identical to the comments
1940 following the t_errno codes defined in xti.h. The contents of the error message strings describing
1941 the value in errno are the same as those returned by the strerror(3C) function with an argument
1942 of errno.

1943 The error number, t_errno, is only set when an error occurs and it is not cleared on successful
1944 calls.

1945 EXAMPLE
1946 If a t_connect() function fails on transport endpoint fd2 because a bad address was given, the
1947 following call might follow the failure:

1948 t_error("t_connect failed on fd2");

1949 The diagnostic message to be printed would look like:

1950 t_connect failed on fd2: incorrect addr format

1951 where incorrect addr format identifies the specific error that occurred, and t_connect failed on fd2
1952 tells the user which function failed on which transport endpoint.

1953 VALID STATES
1954 All - apart from T_UNINIT

1955 ERRORS
1956 No errors are defined for the t_error() function.

1957 RETURN VALUE
1958 Upon completion, a value of 0 is returned.

1959 CHANGE HISTORY

Issue1960 4
1961 The SYNOPSIS section is placed in the form of a standard C function prototype.

60 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_free()

1962 NAME
1963 t_free - free a library structure

1964 SYNOPSIS
1965 #include <xti.h>

1966 int t_free(char * ptr , int struct_type);

1967 DESCRIPTION
1968
1969 Parameters Before call After call
1970 ptr x /
1971 struct_type x /

1972 The t_free() function frees memory previously allocated by t_alloc (). This function will free
1973 memory for the specified structure, and will also free memory for buffers referenced by the
1974 structure.

1975 The argument ptr points to one of the seven structure types described for t_alloc (), and
1976 struct_type identifies the type of that structure which must be one of the following:

1977 T_BIND struct t_bind
1978 T_CALL struct t_call
1979 T_OPTMGMT struct t_optmgmt
1980 T_DIS struct t_discon
1981 T_UNITDATA struct t_unitdata
1982 T_UDERROR struct t_uderr
1983 T_INFO struct t_info

1984 where each of these structures is used as an argument to one or more transport functions.

1985 The function t_free() will check the addr , opt and udata fields of the given structure (as
1986 appropriate) and free the buffers pointed to by the buf field of the netbuf structure. If buf is a
1987 null pointer, t_free() will not attempt to free memory. After all buffers are freed, t_free() will free
1988 the memory associated with the structure pointed to by ptr.

1989 Undefined results will occur if ptr or any of the buf pointers points to a block of memory that
1990 was not previously allocated by t_alloc ().

1991 VALID STATES
1992 ALL - apart from T_UNINIT

1993 ERRORS
1994 On failure, t_errno is set to the following:

1995 [TSYSERR] A system error has occurred during execution of this function.

1996 [TNOSTRUCTYPE] Unsupported struct_type requested.

1997 [TPROTO] This error indicates that a communication problem has been detected
1998 between XTI and the transport provider for which there is no other
1999 suitable XTI (t_errno).

2000 RETURN VALUE
2001 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2002 t_errno is set to indicate an error.

2003 SEE ALSO
2004 t_alloc ().

Networking Services, Issue 4 61

t_free() XTI Library Functions and Parameters

2005 CHANGE HISTORY

Issue2006 4
2007 The SYNOPSIS section is placed in the form of a standard C function prototype.

62 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_getinfo()

2008 NAME
2009 t_getinfo - get protocol-specific service information

2010 SYNOPSIS
2011 #include <xti.h>

2012 int t_getinfo(int fd , struct t_info * info);

2013 DESCRIPTION
2014
2015 Parameters Before call After call
2016 fd x /
2017 info->addr / x
2018 info->options / x
2019 info->tsdu / x
2020 info->etsdu / x
2021 info->connect / x
2022 info->discon / x
2023 info->servtype / x
2024 info->flags / x

2025 This function returns the current characteristics of the underlying transport protocol and/or
2026 transport connection associated with file descriptor fd. The info pointer is used to return the
2027 same information returned by t_open(), although not necessarily precisely the same values. This
2028 function enables a transport user to access this information during any phase of communication.

2029 This argument points to a t_info structure which contains the following members:

2030 long addr; /* max size of the transport protocol address */
2031 long options; /* max number of bytes of protocol-specific options */
2032 long tsdu; /* max size of a transport service data unit (TSDU) */
2033 long etsdu; /* max size of an expedited transport service */
2034 /* data unit (ETSDU) */
2035 long connect; /* max amount of data allowed on connection */
2036 /* establishment functions */
2037 long discon; /* max amount of data allowed on t_snddis() */
2038 /* and t_rcvdis() functions */
2039 long servtype; /* service type supported by the transport provider */
2040 long flags; /* other info about the transport provider */

2041 The values of the fields have the following meanings:

2042 addr A value greater than zero indicates the maximum size of a transport
2043 protocol address and a value of −2 specifies that the transport provider
2044 does not provide user access to transport protocol addresses.

2045 options A value greater than zero indicates the maximum number of bytes of
2046 protocol-specific options supported by the provider, and a value of −2
2047 specifies that the transport provider does not support user-settable
2048 options.

2049 tsdu A value greater than zero specifies the maximum size of a transport
2050 service data unit (TSDU); a value of zero specifies that the transport
2051 provider does not support the concept of TSDU, although it does support
2052 the sending of a datastream with no logical boundaries preserved across a
2053 connection; a value of −1 specifies that there is no limit on the size of a
2054 TSDU; and a value of −2 specifies that the transfer of normal data is not
2055 supported by the transport provider.

Networking Services, Issue 4 63

t_getinfo() XTI Library Functions and Parameters

2056 etsdu A value greater than zero specifies the maximum size of an expedited
2057 transport service data unit (ETSDU); a value of zero specifies that the
2058 transport provider does not support the concept of ETSDU, although it
2059 does support the sending of an expedited data stream with no logical
2060 boundaries preserved across a connection; a value of −1 specifies that
2061 there is no limit on the size of an ETSDU; and a value of −2 specifies that
2062 the transfer of expedited data is not supported by the transport provider.
2063 Note that the semantics of expedited data may be quite different for
2064 different transport providers (see Appendix A on page 189 and Appendix
2065 B on page 199).

2066 connect A value greater than zero specifies the maximum amount of data that
2067 may be associated with connection establishment functions and a value
2068 of −2 specifies that the transport provider does not allow data to be sent
2069 with connection establishment functions.

2070 discon A value greater than zero specifies the maximum amount of data that
2071 may be associated with the t_snddis() and t_rcvdis() functions and a
2072 value of −2 specifies that the transport provider does not allow data to be
2073 sent with the abortive release functions.

2074 servtype This field specifies the service type supported by the transport provider,
2075 as described below.

2076 flags This is a bit field used to specify other information about the transport
2077 provider. If the T_SENDZERO bit is set in flags, this indicates that the
2078 underlying transport provider supports the sending of zero-length
2079 TSDUs. See Appendix A on page 189 for a discussion of the separate
2080 issue of zero-length fragments within a TSDU.

2081 If a transport user is concerned with protocol independence, the above sizes may be accessed to
2082 determine how large the buffers must be to hold each piece of information. Alternatively, the
2083 t_alloc () function may be used to allocate these buffers. An error will result if a transport user
2084 exceeds the allowed data size on any function. The value of each field may change as a result of
2085 protocol option negotiation during connection establishment (the t_optmgmt() call has no affect
2086 on the values returned by t_getinfo ()). These values will only change from the values presented
2087 to t_open() after the endpoint enters the T_DATAXFER state.

2088 The servtype field of info specifies one of the following values on return:

2089 T_COTS The transport provider supports a connection-mode service but does not
2090 support the optional orderly release facility.

2091 T_COTS_ORD The transport provider supports a connection-mode service with the
2092 optional orderly release facility.

2093 T_CLTS The transport provider supports a connectionless-mode service. For this
2094 service type, t_open() will return −2 for etsdu, connect and discon .

2095 VALID STATES
2096 ALL - apart from T_UNINIT

2097 ERRORS
2098 On failure, t_errno is set to one of the following:

2099 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2100 [TSYSERR] A system error has occurred during execution of this function.

64 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_getinfo()

2101 [TPROTO] This error indicates that a communication problem has been detected
2102 between XTI and the transport provider for which there is no other
2103 suitable XTI (t_errno).

2104 RETURN VALUE
2105 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2106 t_errno is set to indicate an error.

2107 SEE ALSO
2108 t_alloc (), t_open().

2109 CHANGE HISTORY

Issue2110 4
2111 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 65

t_getprotaddr() XTI Library Functions and Parameters

2112 NAME
2113 t_getprotaddr - get the protocol addresses

2114 SYNOPSIS
2115 #include <xti.h>

2116 int t_getprotaddr(int fd , struct t_bind * boundaddr , struct t_bind * peeraddr);

2117 DESCRIPTION
2118
2119 Parameters Before call After call
2120 fd x /
2121 boundaddr->maxlen x /
2122 boundaddr->addr.len / x
2123 boundaddr->addr.buf ? (?)
2124 boundaddr->qlen / /
2125 peeraddr->maxlen x /
2126 peeraddr->addr.len / x
2127 peeraddr->addr.buf ? (?)
2128 peeraddr->qlen / /

2129 The t_getprotaddr () function returns local and remote protocol addresses currently associated
2130 with the transport endpoint specified by fd . In boundaddr and peeraddr the user specifies maxlen,
2131 which is the maximum size of the address buffer, and buf which points to the buffer where the
2132 address is to be placed. On return, the buf field of boundaddr points to the address, if any,
2133 currently bound to fd , and the len field specifies the length of the address. If the transport
2134 endpoint is in the T_UNBND state, zero is returned in the len field of boundaddr . The buf field of
2135 peeraddr points to the address, if any, currently connected to fd , and the len field specifies the
2136 length of the address. If the transport endpoint is not in the T_DATAXFER state, zero is returned
2137 in the len field of peeraddr .

2138 VALID STATES
2139 ALL - apart from T_UNINIT

2140 ERRORS
2141 On failure, t_errno is set to one of the following:

2142 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2143 [TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
2144 greater than 0 but not sufficient to store the value of that argument.

2145 [TSYSERR] A system error has occurred during execution of this function.

2146 [TPROTO] This error indicates that a communication problem has been detected
2147 between XTI and the transport provider for which there is no other
2148 suitable XTI (t_errno).

2149 RETURN VALUE
2150 Upon successful completion, a value of zero is returned. Otherwise, a value of −1 is returned
2151 and t_errno is set to indicate the error.

2152 SEE ALSO
2153 t_bind().

66 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_getprotaddr()

2154 CHANGE HISTORY

Issue2155 4
2156 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 67

t_getstate() XTI Library Functions and Parameters

2157 NAME
2158 t_getstate - get the current state

2159 SYNOPSIS
2160 #include <xti.h>

2161 int t_getstate(int fd);

2162 DESCRIPTION
2163
2164 Parameters Before call After call
2165 fd x /

2166 The t_getstate() function returns the current state of the provider associated with the transport
2167 endpoint specified by fd .

2168 VALID STATES
2169 ALL - apart from T_UNINIT

2170 ERRORS
2171 On failure, t_errno is set to one of the following:

2172 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2173 [TSTATECHNG] The transport provider is undergoing a transient state change.

2174 [TSYSERR] A system error has occurred during execution of this function.

2175 [TPROTO] This error indicates that a communication problem has been detected
2176 between XTI and the transport provider for which there is no other
2177 suitable XTI (t_errno).

2178 RETURN VALUE
2179 State is returned upon successful completion. Otherwise, a value of −1 is returned and t_errno is
2180 set to indicate an error. The current state is one of the following:

2181 T_UNBND Unbound.

2182 T_IDLE Idle.

2183 T_OUTCON Outgoing connection pending.

2184 T_INCON Incoming connection pending.

2185 T_DATAXFER Data transfer.

2186 T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

2187 T_INREL Incoming orderly release (waiting to send an orderly release request).

2188 If the provider is undergoing a state transition when t_getstate() is called, the function will fail.

2189 SEE ALSO
2190 t_open().

2191 CHANGE HISTORY

Issue2192 4
2193 The SYNOPSIS section is placed in the form of a standard C function prototype.

68 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_listen()

2194 NAME
2195 t_listen - listen for a connect indication

2196 SYNOPSIS
2197 #include <xti.h>

2198 int t_listen(int fd , struct t_call * call);

2199 DESCRIPTION
2200
2201 Parameters Before call After call
2202 fd x /
2203 call->addr.maxlen x /
2204 call->addr.len / x
2205 call->addr.buf ? (?)
2206 call->opt.maxlen x /
2207 call->opt.len / x
2208 call->opt.buf ? (?)
2209 call->udata.maxlen x /
2210 call->udata.len / x
2211 call->udata.buf ? (?)
2212 call->sequence / x

2213 This function listens for a connect request from a calling transport user. The argument fd
2214 identifies the local transport endpoint where connect indications arrive, and on return, call
2215 contains information describing the connect indication. The parameter call points to a t_call
2216 structure which contains the following members:

2217 struct netbuf addr;
2218 struct netbuf opt;
2219 struct netbuf udata;
2220 int sequence;

2221 In call , addr returns the protocol address of the calling transport user. This address is in a format
2222 usable in future calls to t_connect(). Note, however that t_connect() may fail for other reasons,
2223 for example [TADDRBUSY]. opt returns options associated with the connect request, udata
2224 returns any user data sent by the caller on the connect request, and sequence is a number that
2225 uniquely identifies the returned connect indication. The value of sequence enables the user to
2226 listen for multiple connect indications before responding to any of them.

2227 Since this function returns values for the addr , opt and udata fields of call , the maxlen field of each
2228 must be set before issuing the t_listen() to indicate the maximum size of the buffer for each.

2229 By default, t_listen() executes in synchronous mode and waits for a connect indication to arrive
2230 before returning to the user. However, if O_NONBLOCK is set via t_open() or fcntl(), t_listen()
2231 executes asynchronously, reducing to a poll for existing connect indications. If none are
2232 available, it returns −1 and sets t_errno to [TNODATA].

2233 VALID STATES
2234 T_IDLE, T_INCON

2235 ERRORS
2236 On failure, t_errno is set to one of the following:

2237 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2238 [TBADQLEN] The argument qlen of the endpoint referenced by fd is zero.

Networking Services, Issue 4 69

t_listen() XTI Library Functions and Parameters

2239 [TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
2240 greater than 0 but not sufficient to store the value of that argument. The
2241 provider’s state, as seen by the user, changes to T_INCON, and the
2242 connect indication information to be returned in call is discarded. The
2243 value of sequence returned can be used to do a t_snddis().

2244 [TNODATA] O_NONBLOCK was set, but no connect indications had been queued.

2245 [TLOOK] An asynchronous event has occurred on this transport endpoint and
2246 requires immediate attention.

2247 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

2248 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2249 referenced by fd .

2250 [TSYSERR] A system error has occurred during execution of this function.

2251 [TQFULL] The maximum number of outstanding indications has been reached for
2252 the endpoint referenced by fd .

2253 [TPROTO] This error indicates that a communication problem has been detected
2254 between XTI and the transport provider for which there is no other
2255 suitable XTI (t_errno).

2256 CAVEATS
2257 Some transport providers do not differentiate between a connect indication and the connection
2258 itself. If this is the case, a successful return of t_listen() indicates an existing connection (see
2259 Appendix B on page 199).

2260 RETURN VALUE
2261 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2262 t_errno is set to indicate an error.

2263 SEE ALSO
2264 fcntl(), t_accept(), t_alloc (), t_bind(), t_connect(), t_open(), t_optmgmt(), t_rcvconnect().

2265 CHANGE HISTORY

Issue2266 4
2267 The SYNOPSIS section is placed in the form of a standard C function prototype.

70 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_look()

2268 NAME
2269 t_look - look at the current event on a transport endpoint

2270 SYNOPSIS
2271 #include <xti.h>

2272 int t_look(int fd);

2273 DESCRIPTION
2274
2275 Parameters Before call After call
2276 fd x /

2277 This function returns the current event on the transport endpoint specified by fd . This function
2278 enables a transport provider to notify a transport user of an asynchronous event when the user
2279 is calling functions in synchronous mode. Certain events require immediate notification of the
2280 user and are indicated by a specific error, [TLOOK], on the current or next function to be
2281 executed. Details on events which cause functions to fail [TLOOK] may be found in Section 5.6
2282 on page 34.

2283 This function also enables a transport user to poll a transport endpoint periodically for
2284 asynchronous events.

2285 VALID STATES
2286 ALL - apart from T_UNINIT

2287 ERRORS
2288 On failure, t_errno is set to one of the following:

2289 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2290 [TSYSERR] A system error has occurred during execution of this function.

2291 [TPROTO] This error indicates that a communication problem has been detected
2292 between XTI and the transport provider for which there is no other
2293 suitable XTI (t_errno).

2294 RETURN VALUE
2295 Upon success, t_look () returns a value that indicates which of the allowable events has occurred,
2296 or returns zero if no event exists. One of the following events is returned:

2297 T_LISTEN Connection indication received.

2298 T_CONNECT Connect confirmation received.

2299 T_DATA Normal data received.

2300 T_EXDATA Expedited data received.

2301 T_DISCONNECT Disconnect received.

2302 T_UDERR Datagram error indication.

2303 T_ORDREL Orderly release indication.

2304 T_GODATA Flow control restrictions on normal data flow that led to a [TFLOW] error
2305 have been lifted. Normal data may be sent again.

2306 T_GOEXDATA Flow control restrictions on expedited data flow that led to a [TFLOW]
2307 error have been lifted. Expedited data may be sent again.

2308 On failure, −1 is returned and t_errno is set to indicate the error.

Networking Services, Issue 4 71

t_look() XTI Library Functions and Parameters

2309 SEE ALSO
2310 t_open(), t_snd(), t_sndudata ().

2311 APPLICATION USAGE
2312 Additional functionality is provided through the Event Management (EM) interface.

2313 CHANGE HISTORY

Issue2314 4
2315 The SYNOPSIS section is placed in the form of a standard C function prototype.

72 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_open()

2316 NAME
2317 t_open - establish a transport endpoint

2318 SYNOPSIS
2319 #include <xti.h>
2320 #include <fcntl.h>

2321 int t_open(char * name, int oflag , struct t_info * info);

2322 DESCRIPTION
2323
2324 Parameters Before call After call
2325 name x /
2326 oflag x /
2327 info->addr / x
2328 info->options / x
2329 info->tsdu / x
2330 info->etsdu / x
2331 info->connect / x
2332 info->discon / x
2333 info->servtype / x
2334 info->flags / x

2335 The t_open() function must be called as the first step in the initialisation of a transport endpoint.
2336 This function establishes a transport endpoint by supplying a transport provider identifier that
2337 indicates a particular transport provider (that is, transport protocol) and returning a file
2338 descriptor that identifies that endpoint.

2339 The argument name points to a transport provider identifier and oflag identifies any open flags
2340 (as in open()). The argument oflag is constructed from O_RDWR optionally bitwise inclusive-
2341 OR’ed with O_NONBLOCK. These flags are defined by the header <fcntl.h>. The file
2342 descriptor returned by t_open() will be used by all subsequent functions to identify the
2343 particular local transport endpoint.

2344 This function also returns various default characteristics of the underlying transport protocol by
2345 setting fields in the t_info structure. This argument points to a t_info which contains the
2346 following members:

2347 long addr; /* max size of the transport protocol address */
2348 long options; /* max number of bytes of */
2349 /* protocol-specific options */
2350 long tsdu; /* max size of a transport service data */
2351 /* unit (TSDU) */
2352 long etsdu; /* max size of an expedited transport */
2353 /* service data unit (ETSDU) */
2354 long connect; /* max amount of data allowed on */
2355 /* connection establishment functions */
2356 long discon; /* max amount of data allowed on */
2357 /* t_snddis() and t_rcvdis() functions */
2358 long servtype; /* service type supported by the */
2359 /* transport provider */
2360 long flags; /* other info about the transport provider */

Networking Services, Issue 4 73

t_open() XTI Library Functions and Parameters

2361 The values of the fields have the following meanings:

2362 addr A value greater than zero indicates the maximum size of a transport
2363 protocol address and a value of −2 specifies that the transport provider
2364 does not provide user access to transport protocol addresses.

2365 options A value greater than zero indicates the maximum number of bytes of
2366 protocol-specific options supported by the provider and a value of −2
2367 specifies that the transport provider does not support user-settable
2368 options.

2369 tsdu A value greater than zero specifies the maximum size of a transport
2370 service data unit (TSDU); a value of zero specifies that the transport
2371 provider does not support the concept of TSDU, although it does support
2372 the sending of a data stream with no logical boundaries preserved across
2373 a connection; a value of −1 specifies that there is no limit to the size of a
2374 TSDU; and a value of −2 specifies that the transfer of normal data is not
2375 supported by the transport provider.

2376 etsdu A value greater than zero specifies the maximum size of an expedited
2377 transport service data unit (ETSDU); a value of zero specifies that the
2378 transport provider does not support the concept of ETSDU, although it
2379 does support the sending of an expedited data stream with no logical
2380 boundaries preserved across a connection; a value of −1 specifies that
2381 there is no limit on the size of an ETSDU; and a value of −2 specifies that
2382 the transfer of expedited data is not supported by the transport provider.
2383 Note that the semantics of expedited data may be quite different for
2384 different transport providers (see Appendix A on page 189 and Appendix
2385 B on page 199).

2386 connect A value greater than zero specifies the maximum amount of data that
2387 may be associated with connection establishment functions and a value
2388 of −2 specifies that the transport provider does not allow data to be sent
2389 with connection establishment functions.

2390 discon A value greater than zero specifies the maximum amount of data that
2391 may be associated with the t_snddis() and t_rcvdis() functions and a
2392 value of −2 specifies that the transport provider does not allow data to be
2393 sent with the abortive release functions.

2394 servtype This field specifies the service type supported by the transport provider,
2395 as described below.

2396 flags This is a bit field used to specify other information about the transport
2397 provider. If the T_SENDZERO bit is set in flags, this indicates the
2398 underlying transport provider supports the sending of zero-length
2399 TSDUs. See Appendix A on page 189 for a discussion of the separate
2400 issue of zero-length fragments within a TSDU.

2401 If a transport user is concerned with protocol independence, the above sizes may be accessed to
2402 determine how large the buffers must be to hold each piece of information. Alternatively, the
2403 t_alloc () function may be used to allocate these buffers. An error will result if a transport user
2404 exceeds the allowed data size on any function.

2405 The servtype field of info specifies one of the following values on return:

2406 T_COTS The transport provider supports a connection-mode service but does not
2407 support the optional orderly release facility.

74 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_open()

2408 T_COTS_ORD The transport provider supports a connection-mode service with the
2409 optional orderly release facility.

2410 T_CLTS The transport provider supports a connectionless-mode service. For this
2411 service type, t_open() will return −2 for etsdu, connect and discon .

2412 A single transport endpoint may support only one of the above services at one time.

2413 If info is set to a null pointer by the transport user, no protocol information is returned by
2414 t_open().

2415 VALID STATES
2416 T_UNINIT

2417 ERRORS
2418 On failure, t_errno is set to the following:

2419 [TBADFLAG] An invalid flag is specified.

2420 [TBADNAME] Invalid transport provider name.

2421 [TSYSERR] A system error has occurred during execution of this function.

2422 [TPROTO] This error indicates that a communication problem has been detected
2423 between XTI and the transport provider for which there is no other
2424 suitable XTI (t_errno).

2425 RETURN VALUES
2426 A valid file descriptor is returned upon successful completion. Otherwise, a value of −1 is
2427 returned and t_errno is set to indicate an error.

2428 SEE ALSO
2429 open().

2430 CHANGE HISTORY

Issue2431 4
2432 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 75

t_optmgmt() XTI Library Functions and Parameters

2433 NAME
2434 t_optmgmt - manage options for a transport endpoint

2435 SYNOPSIS
2436 #include <xti.h>

2437 int t_optmgmt(int fd , struct t_optmgmt * req , struct t_optmgmt * ret);

2438 DESCRIPTION
2439
2440 Parameters Before call After call
2441 fd x /
2442 req->opt.maxlen / /
2443 req->opt.len x /
2444 req->opt.buf x (x) /
2445 req->flags x /
2446 ret->opt.maxlen x /
2447 ret->opt.len / x
2448 ret->opt.buf ? (?)
2449 ret->flags / x

2450 The t_optmgmt() function enables a transport user to retrieve, verify or negotiate protocol
2451 options with the transport provider. The argument fd identifies a transport endpoint.

2452 The req and ret arguments point to a t_optmgmt structure containing the following members:

2453 struct netbuf opt;
2454 long flags;

2455 The opt field identifies protocol options and the flags field is used to specify the action to take
2456 with those options.

2457 The options are represented by a netbuf structure in a manner similar to the address in t_bind().
2458 The argument req is used to request a specific action of the provider and to send options to the
2459 provider. The argument len specifies the number of bytes in the options, buf points to the
2460 options buffer, and maxlen has no meaning for the req argument. The transport provider may
2461 return options and flag values to the user through ret. For ret, maxlen specifies the maximum
2462 size of the options buffer and buf points to the buffer where the options are to be placed. On
2463 return, len specifies the number of bytes of options returned. The value in maxlen has no
2464 meaning for the req argument, but must be set in the ret argument to specify the maximum
2465 number of bytes the options buffer can hold.

2466 Each option in the options buffer is of the form struct t_opthdr possibly followed by an option
2467 value.

2468 The level field of struct t_opthdr identifies the XTI level or a protocol of the transport provider.
2469 The name field identifies the option within the level, and len contains its total length; that is, the
2470 length of the option header t_opthdr plus the length of the option value. If t_optmgmt() is called
2471 with the action T_NEGOTIATE set, the status field of the returned options contains information
2472 about the success or failure of a negotiation.

2473 Each option in the input or output option buffer must start at a long-word boundary. The macro
2474 OPT_NEXTHDR(pbuf, buflen, poption) can be used for that purpose. The parameter pbuf
2475 denotes a pointer to an option buffer opt.buf , and buflen is its length. The parameter poption
2476 points to the current option in the option buffer. OPT_NEXTHDR returns a pointer to the
2477 position of the next option or returns a null pointer if the option buffer is exhausted. The macro
2478 is helpful for writing and reading. See <xti.h> in Appendix F on page 253 for the exact
2479 definition.

76 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_optmgmt()

2480 If the transport user specifies several options on input, all options must address the same level.

2481 If any option in the options buffer does not indicate the same level as the first option, or the level
2482 specified is unsupported, then the t_optmgmt() request will fail with [TBADOPT]. If the error is
2483 detected, some options have possibly been successfully negotiated. The transport user can
2484 check the current status by calling t_optmgmt() with the T_CURRENT flag set.

2485 Chapter 6 contains a detailed description about the use of options and should be read before
2486 using this function.

2487 The flags field of req must specify one of the following actions:

2488 T_NEGOTIATE This action enables the transport user to negotiate option values.

2489 The user specifies the options of interest and their values in the buffer
2490 specified by req->opt.buf and req->opt.len. The negotiated option values
2491 are returned in the buffer pointed to by ret->opt.buf. The status field of
2492 each returned option is set to indicate the result of the negotiation. The
2493 value is T_SUCCESS if the proposed value was negotiated,
2494 T_PARTSUCCESS if a degraded value was negotiated, T_FAILURE if the
2495 negotiation failed (according to the negotiation rules), T_NOTSUPPORT
2496 if the transport provider does not support this option or illegally requests
2497 negotiation of a privileged option, and T_READONLY if modification of a
2498 read-only option was requested. If the status is T_SUCCESS,
2499 T_FAILURE, T_NOTSUPPORT or T_READONLY, the returned option
2500 value is the same as the one requested on input.

2501 The overall result of the negotiation is returned in ret->flags .

2502 This field contains the worst single result, whereby the rating is done
2503 according to the order T_NOTSUPPORT, T_READONLY, T_FAILURE,
2504 T_PARTSUCCESS, T_SUCCESS. The value T_NOTSUPPORT is the
2505 worst result and T_SUCCESS is the best.

2506 For each level, the option T_ALLOPT (see below) can be requested on
2507 input. No value is given with this option; only the t_opthdr part is
2508 specified. This input requests to negotiate all supported options of this
2509 level to their default values. The result is returned option by option in
2510 ret->opt.buf. (Note that depending on the state of the transport endpoint,
2511 not all requests to negotiate the default value may be successful.)

2512 T_CHECK This action enables the user to verify whether the options specified in req
2513 are supported by the transport provider.

2514 If an option is specified with no option value (it consists only of a
2515 t_opthdr structure), the option is returned with its status field set to
2516 T_SUCCESS if it is supported, T_NOTSUPPORT if it is not or needs
2517 additional user privileges, and T_READONLY if it is read-only (in the
2518 current XTI state). No option value is returned.

2519 If an option is specified with an option value, the status field of the
2520 returned option has the same value, as if the user had tried to negotiate
2521 this value with T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE,
2522 T_NOTSUPPORT or T_READONLY, the returned option value is the
2523 same as the one requested on input.

2524 The overall result of the option checks is returned in ret->flags . This field
2525 contains the worst single result of the option checks, whereby the rating

Networking Services, Issue 4 77

t_optmgmt() XTI Library Functions and Parameters

2526 is the same as for T_NEGOTIATE.

2527 Note that no negotiation takes place. All currently effective option values
2528 remain unchanged.

2529 T_DEFAULT This action enables the transport user to retrieve the default option
2530 values. The user specifies the options of interest in req->opt.buf. The
2531 option values are irrelevant and will be ignored; it is sufficient to specify
2532 the t_opthdr part of an option only. The default values are then returned
2533 in ret->opt.buf.

2534 The status field returned is T_NOTSUPPORT if the protocol level does
2535 not support this option or the transport user illegally requested a
2536 privileged option, T_READONLY if the option is read-only, and set to
2537 T_SUCCESS in all other cases. The overall result of the request is
2538 returned in ret->flags . This field contains the worst single result, whereby
2539 the rating is the same as for T_NEGOTIATE.

2540 For each level, the option T_ALLOPT (see below) can be requested on
2541 input. All supported options of this level with their default values are
2542 then returned. In this case, ret->opt.maxlen must be given at least the
2543 value info->options (see t_getinfo (), t_open()) before the call.

2544 T_CURRENT This action enables the transport user to retrieve the currently effective
2545 option values. The user specifies the options of interest in req->opt.buf.
2546 The option values are irrelevant and will be ignored; it is sufficient to
2547 specify the t_opthdr part of an option only. The currently effective values
2548 are then returned in ret->opt.buf.

2549 The status field returned is T_NOTSUPPORT if the protocol level does
2550 not support this option or the transport user illegally requested a
2551 privileged option, T_READONLY if the option is read-only, and set to
2552 T_SUCCESS in all other cases. The overall result of the request is
2553 returned in ret->flags . This field contains the worst single result, whereby
2554 the rating is the same as for T_NEGOTIATE.

2555 For each level, the option T_ALLOPT (see below) can be requested on
2556 input. All supported options of this level with their currently effective
2557 values are then returned.

2558 The option T_ALLOPT can only be used with t_optmgmt() and the actions T_NEGOTIATE,
2559 T_DEFAULT and T_CURRENT. It can be used with any supported level and addresses all
2560 supported options of this level. The option has no value; it consists of a t_opthdr only. Since in
2561 a t_optmgmt() call only options of one level may be addressed, this option should not be
2562 requested together with other options. The function returns as soon as this option has been
2563 processed.

2564 Options are independently processed in the order they appear in the input option buffer. If an
2565 option is multiply input, it depends on the implementation whether it is multiply output or
2566 whether it is returned only once.

2567 Transport providers may not be able to provide an interface capable of supporting
2568 T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
2569 [TNOTSUPPORT] is returned.

2570 The function t_optmgmt() may block under various circumstances and depending on the
2571 implementation. The function will block, for instance, if the protocol addressed by the call
2572 resides on a separate controller. It may also block due to flow control constraints; that is, if data

78 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_optmgmt()

2573 sent previously across this transport endpoint has not yet been fully processed. If the function is
2574 interrupted by a signal, the option negotiations that have been done so far may remain valid.
2575 The behaviour of the function is not changed if O_NONBLOCK is set.

2576 XTI-LEVEL OPTIONS
2577 XTI-level options are not specific for a particular transport provider. An XTI implementation
2578 supports none, all or any subset of the options defined below. An implementation may restrict
2579 the use of any of these options by offering them only in the privileged or read-only mode, or if fd
2580 relates to specific transport providers.

2581 The subsequent options are not association-related (see Chapter 5, The Use of Options). They
2582 may be negotiated in all XTI states except T_UNINIT.

2583 The protocol level is XTI_GENERIC. For this level, the following options are defined:
2584
2585 option name type of option legal meaning
2586 value option value
2587 XTI_DEBUG array of unsigned longs see text enable debugging
2588 linger on close if data is
2589 present

XTI_LINGER struct linger see text

2590 XTI_RCVBUF unsigned long size in octets receive buffer size
2591 XTI_RCVLOWAT unsigned long size in octets receive low-water mark
2592 XTI_SNDBUF unsigned long size in octets send buffer size
2593 XTI_SNDLOWAT unsigned long size in octets send low-water mark

2594 Table 7-1 XTI-level Options

2595 A request for XTI_DEBUG is an absolute requirement. A request to activate XTI_LINGER is an
2596 absolute requirement; the timeout value to this option is not. XTI_RCVBUF, XTI_RCVLOWAT,
2597 XTI_SNDBUF and XTI_SNDLOWAT are not absolute requirements.

2598 XTI_DEBUG This option enables debugging. The values of this option are
2599 implementation-defined. Debugging is disabled if the option is specified
2600 with ‘‘no value’’; that is, with an option header only.

2601 The system supplies utilities to process the traces. Note that an
2602 implementation may also provide other means for debugging.

2603 XTI_LINGER This option is used to linger the execution of a t_close() or close() if send
2604 data is still queued in the send buffer. The option value specifies the
2605 linger period. If a close() or t_close() is issued and the send buffer is not
2606 empty, the system attempts to send the pending data within the linger
2607 period before closing the endpoint. Data still pending after the linger
2608 period has elapsed is discarded.

2609 Depending on the implementation, t_close() or close() either block for at
2610 maximum the linger period, or immediately return, whereupon the
2611 system holds the connection in existence for at most the linger period.

2612 The option value consists of a structure t_linger declared as:

2613 struct t_linger {
2614 long l_onoff; /* switch option on/off */
2615 long l_linger; /* linger period in seconds */
2616 }

Networking Services, Issue 4 79

t_optmgmt() XTI Library Functions and Parameters

2617 Legal values for the field l_onoff are:

2618 T_NO switch option off
2619 T_YES activate option

2620 The value l_onoff is an absolute requirement.

2621 The field l_linger determines the linger period in seconds. The transport
2622 user can request the default value by setting the field to T_UNSPEC. The
2623 default timeout value depends on the underlying transport provider (it is
2624 often T_INFINITE). Legal values for this field are T_UNSPEC,
2625 T_INFINITE and all non-negative numbers.

2626 The l_linger value is not an absolute requirement. The implementation
2627 may place upper and lower limits to this value. Requests that fall short of
2628 the lower limit are negotiated to the lower limit.

2629 Note that this option does not linger the execution of t_snddis().

2630 XTI_RCVBUF This option is used to adjust the internal buffer size allocated for the
2631 receive buffer. The buffer size may be increased for high-volume
2632 connections, or decreased to limit the possible backlog of incoming data.

2633 This request is not an absolute requirement. The implementation may
2634 place upper and lower limits on the option value. Requests that fall short
2635 of the lower limit are negotiated to the lower limit.

2636 Legal values are all positive numbers.

2637 XTI_RCVLOWAT This option is used to set a low-water mark in the receive buffer. The
2638 option value gives the minimal number of bytes that must have
2639 accumulated in the receive buffer before they become visible to the
2640 transport user. If and when the amount of accumulated receive data
2641 exceeds the low-water mark, a T_DATA event is created, an event
2642 mechanism (for example, poll () or select()) indicates the data, and the
2643 data can be read by t_rcv() or t_rcvudata ().

2644 This request is not an absolute requirement. The implementation may
2645 place upper and lower limits on the option value. Requests that fall short
2646 of the lower limit are negotiated to the lower limit.

2647 Legal values are all positive numbers.

2648 XTI_SNDBUF This option is used to adjust the internal buffer size allocated for the send
2649 buffer.

2650 This request is not an absolute requirement. The implementation may
2651 place upper and lower limits on the option value. Requests that fall short
2652 of the lower limit are negotiated to the lower limit.

2653 Legal values are all positive numbers.

2654 XTI_SNDLOWAT This option is used to set a low-water mark in the send buffer. The option
2655 value gives the minimal number of bytes that must have accumulated in
2656 the send buffer before they are sent.

2657 This request is not an absolute requirement. The implementation may
2658 place upper and lower limits on the option value. Requests that fall short
2659 of the lower limit are negotiated to the lower limit.

80 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_optmgmt()

2660 Legal values are all positive numbers.

2661 VALID STATES
2662 ALL - apart from T_UNINIT

2663 ERRORS
2664 On failure, t_errno is set to one of the following:

2665 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2666 [TOUTSTATE] The function was issued in the wrong sequence.

2667 [TACCES] The user does not have permission to negotiate the specified options.

2668 [TBADOPT] The specified options were in an incorrect format or contained illegal
2669 information.

2670 [TBADFLAG] An invalid flag was specified.

2671 [TBUFOVFLW] The number of bytes allowed for an incoming argument (maxlen) is
2672 greater than 0 but not sufficient to store the value of that argument. The
2673 information to be returned in ret will be discarded.

2674 [TSYSERR] A system error has occurred during execution of this function.

2675 [TPROTO] This error indicates that a communication problem has been detected
2676 between XTI and the transport provider for which there is no other
2677 suitable XTI (t_errno) .

2678 [TNOTSUPPORT] This action is not supported by the transport provider.

2679 RETURN VALUE
2680 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2681 t_errno is set to indicate an error.

2682 SEE ALSO
2683 t_accept(), t_alloc (), t_connect(), t_getinfo (), t_listen(), t_open(), t_rcvconnect(), Chapter 6.

2684 CHANGE HISTORY

Issue2685 4
2686 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 81

t_rcv() XTI Library Functions and Parameters

2687 NAME
2688 t_rcv - receive data or expedited data sent over a connection

2689 SYNOPSIS
2690 #include <xti.h>

2691 int t_rcv(int fd , char * buf , unsigned int nbytes , int * flags);

2692 DESCRIPTION
2693
2694 Parameters Before call After call
2695 fd x /
2696 buf x (x)
2697 nbytes x /
2698 flags / x

2699 This function receives either normal or expedited data. The argument fd identifies the local
2700 transport endpoint through which data will arrive, buf points to a receive buffer where user data
2701 will be placed, and nbytes specifies the size of the receive buffer. The argument flags may be set
2702 on return from t_rcv() and specifies optional flags as described below.

2703 By default, t_rcv() operates in synchronous mode and will wait for data to arrive if none is
2704 currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()), t_rcv() will
2705 execute in asynchronous mode and will fail if no data is available. (See [TNODATA] below.)

2706 On return from the call, if T_MORE is set in flags , this indicates that there is more data, and the
2707 current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
2708 must be received in multiple t_rcv() calls. In the asynchronous mode, the T_MORE flag may be
2709 set on return from the t_rcv() call even when the number of bytes received is less than the size of
2710 the receive buffer specified. Each t_rcv() with the T_MORE flag set indicates that another
2711 t_rcv() must follow to get more data for the current TSDU. The end of the TSDU is identified by
2712 the return of a t_rcv() call with the T_MORE flag not set. If the transport provider does not
2713 support the concept of a TSDU as indicated in the info argument on return from t_open() or
2714 t_getinfo (), the T_MORE flag is not meaningful and should be ignored. If nbytes is greater than
2715 zero on the call to t_rcv(), t_rcv() will return 0 only if the end of a TSDU is being returned to the
2716 user.

2717 On return, the data returned is expedited data if T_EXPEDITED is set in flags . If the number of
2718 bytes of expedited data exceeds nbytes, t_rcv() will set T_EXPEDITED and T_MORE on return
2719 from the initial call. Subsequent calls to retrieve the remaining ETSDU will have T_EXPEDITED
2720 set on return. The end of the ETSDU is identified by the return of a t_rcv() call with the
2721 T_MORE flag not set.

2722 In synchronous mode, the only way for the user to be notified of the arrival of normal or
2723 expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the
2724 t_look () function. Additionally, the process can arrange to be notified via the EM interface.

2725 VALID STATES
2726 T_DATAXFER, T_OUTREL

2727 ERRORS
2728 On failure, t_errno is set to one of the following:

2729 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2730 [TNODATA] O_NONBLOCK was set, but no data is currently available from the
2731 transport provider.

82 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_rcv()

2732 [TLOOK] An asynchronous event has occurred on this transport endpoint and
2733 requires immediate attention.

2734 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

2735 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2736 referenced by fd .

2737 [TSYSERR] A system error has occurred during execution of this function.

2738 [TPROTO] This error indicates that a communication problem has been detected
2739 between XTI and the transport provider for which there is no other
2740 suitable XTI (t_errno).

2741 RETURN VALUE
2742 On successful completion, t_rcv() returns the number of bytes received. Otherwise, it returns −1
2743 on failure and t_errno is set to indicate the error.

2744 SEE ALSO
2745 fcntl(), t_getinfo (), t_look (), t_open(), t_snd().

2746 CHANGE HISTORY

Issue2747 4
2748 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 83

t_rcvconnect() XTI Library Functions and Parameters

2749 NAME
2750 t_rcvconnect - receive the confirmation from a connect request

2751 SYNOPSIS
2752 #include <xti.h>

2753 int t_rcvconnect(int fd , struct t_call * call);

2754 DESCRIPTION
2755
2756 Parameters Before call After call
2757 fd x /
2758 call->addr.maxlen x /
2759 call->addr.len / x
2760 call->addr.buf ? (?)
2761 call->opt.maxlen x /
2762 call->opt.len / x
2763 call->opt.buf ? (?)
2764 call->udata.maxlen x /
2765 call->udata.len / x
2766 call->udata.buf ? (?)
2767 call->sequence / /

2768 This function enables a calling transport user to determine the status of a previously sent
2769 connect request and is used in conjunction with t_connect() to establish a connection in
2770 asynchronous mode. The connection will be established on successful completion of this
2771 function.

2772 The argument fd identifies the local transport endpoint where communication will be
2773 established, and call contains information associated with the newly established connection. The
2774 argument call points to a t_call structure which contains the following members:

2775 struct netbuf addr;
2776 struct netbuf opt;
2777 struct netbuf udata;
2778 int sequence;

2779 In call , addr returns the protocol address associated with the responding transport endpoint, opt
2780 presents any options associated with the connection, udata points to optional user data that may
2781 be returned by the destination transport user during connection establishment, and sequence has
2782 no meaning for this function.

2783 The maxlen field of each argument must be set before issuing this function to indicate the
2784 maximum size of the buffer for each. However, call may be a null pointer, in which case no
2785 information is given to the user on return from t_rcvconnect(). By default, t_rcvconnect()
2786 executes in synchronous mode and waits for the connection to be established before returning.
2787 On return, the addr , opt and udata fields reflect values associated with the connection.

2788 If O_NONBLOCK is set (via t_open() or fcntl()), t_rcvconnect() executes in asynchronous mode,
2789 and reduces to a poll for existing connect confirmations. If none are available, t_rcvconnect()
2790 fails and returns immediately without waiting for the connection to be established. (See
2791 [TNODATA] below.) In this case, t_rcvconnect() must be called again to complete the connection
2792 establishment phase and retrieve the information returned in call .

2793 VALID STATES
2794 T_OUTCON

84 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_rcvconnect()

2795 ERRORS
2796 On failure, t_errno is set to one of the following:

2797 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2798 [TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
2799 greater than 0 but not sufficient to store the value of that argument, and
2800 the connect information to be returned in call will be discarded. The
2801 provider’s state, as seen by the user, will be changed to T_DATAXFER.

2802 [TNODATA] O_NONBLOCK was set, but a connect confirmation has not yet arrived.

2803 [TLOOK] An asynchronous event has occurred on this transport connection and
2804 requires immediate attention.

2805 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

2806 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2807 referenced by fd .

2808 [TSYSERR] A system error has occurred during execution of this function.

2809 [TPROTO] This error indicates that a communication problem has been detected
2810 between XTI and the transport provider for which there is no other
2811 suitable XTI (t_errno).

2812 RETURN VALUE
2813 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2814 t_errno is set to indicate an error.

2815 SEE ALSO
2816 t_accept(), t_alloc (), t_bind(), t_connect(), t_listen(), t_open(), t_optmgmt().

2817 CHANGE HISTORY

Issue2818 4
2819 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 85

t_rcvdis() XTI Library Functions and Parameters

2820 NAME
2821 t_rcvdis - retrieve information from disconnect

2822 SYNOPSIS
2823 #include <xti.h>

2824 int t_rcvdis(int fd , struct t_discon * discon);

2825 DESCRIPTION
2826
2827 Parameters Before call After call
2828 fd x /
2829 discon->udata.maxlen x /
2830 discon->udata.len / x
2831 discon->udata.buf ? (?)
2832 discon->reason / x
2833 discon->sequence / ?

2834 This function is used to identify the cause of a disconnect and to retrieve any user data sent with
2835 the disconnect. The argument fd identifies the local transport endpoint where the connection
2836 existed, and discon points to a t_discon structure containing the following members:

2837 struct netbuf udata;
2838 int reason;
2839 int sequence;

2840 The field reason specifies the reason for the disconnect through a protocol-dependent reason
2841 code, udata identifies any user data that was sent with the disconnect, and sequence may identify
2842 an outstanding connect indication with which the disconnect is associated. The field sequence is
2843 only meaningful when t_rcvdis() is issued by a passive transport user who has executed one or
2844 more t_listen() functions and is processing the resulting connect indications. If a disconnect
2845 indication occurs, sequence can be used to identify which of the outstanding connect indications
2846 is associated with the disconnect.

2847 If a user does not care if there is incoming data and does not need to know the value of reason or
2848 sequence, discon may be a null pointer and any user data associated with the disconnect will be
2849 discarded. However, if a user has retrieved more than one outstanding connect indication (via
2850 t_listen()) and discon is a null pointer, the user will be unable to identify with which connect
2851 indication the disconnect is associated.

2852 VALID STATES
2853 T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

2854 ERRORS
2855 On failure, t_errno is set to one of the following:

2856 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2857 [TNODIS] No disconnect indication currently exists on the specified transport
2858 endpoint.

2859 [TBUFOVFLW] The number of bytes allocated for incoming data (maxlen) is greater than 0
2860 but not sufficient to store the data. If fd is a passive endpoint with ocnt >
2861 1, it remains in state T_INCON; otherwise, the endpoint state is set to
2862 T_IDLE.

2863 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

86 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_rcvdis()

2864 [TSYSERR] A system error has occurred during execution of this function.

2865 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2866 referenced by fd .

2867 [TPROTO] This error indicates that a communication problem has been detected
2868 between XTI and the transport provider for which there is no other
2869 suitable XTI (t_errno).

2870 RETURN VALUE
2871 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2872 t_errno is set to indicate an error.

2873 SEE ALSO
2874 t_alloc (), t_connect(), t_listen(), t_open(), t_snddis().

2875 CHANGE HISTORY

Issue2876 4
2877 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 87

t_rcvrel() XTI Library Functions and Parameters

2878 NAME
2879 t_rcvrel - acknowledge receipt of an orderly release indication

2880 SYNOPSIS
2881 #include <xti.h>

2882 int t_rcvrel(int fd);

2883 DESCRIPTION
2884
2885 Parameters Before call After call
2886 fd x /

2887 This function is used to acknowledge receipt of an orderly release indication. The argument fd
2888 identifies the local transport endpoint where the connection exists. After receipt of this
2889 indication, the user may not attempt to receive more data because such an attempt will block
2890 forever. However, the user may continue to send data over the connection if t_sndrel() has not
2891 been called by the user. This function is an optional service of the transport provider, and is
2892 only supported if the transport provider returned service type T_COTS_ORD on t_open() or
2893 t_getinfo ().

2894 VALID STATES
2895 T_DATAXFER,T_OUTREL

2896 ERRORS
2897 On failure, t_errno is set to one of the following:

2898 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2899 [TNOREL] No orderly release indication currently exists on the specified transport
2900 endpoint.

2901 [TLOOK] An asynchronous event has occurred on this transport endpoint and
2902 requires immediate attention.

2903 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

2904 [TSYSERR] A system error has occurred during execution of this function.

2905 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2906 referenced by fd .

2907 [TPROTO] This error indicates that a communication problem has been detected
2908 between XTI and the transport provider for which there is no other
2909 suitable XTI (t_errno).

2910 RETURN VALUE
2911 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2912 t_errno is set to indicate an error.

2913 SEE ALSO
2914 t_getinfo (), t_open(), t_sndrel().

2915 CHANGE HISTORY

Issue2916 4
2917 The SYNOPSIS section is placed in the form of a standard C function prototype.

88 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_rcvudata()

2918 NAME
2919 t_rcvudata - receive a data unit

2920 SYNOPSIS
2921 #include <xti.h>

2922 int t_rcvudata(int fd , struct t_unitdata * unitdata , int * flags);

2923 DESCRIPTION
2924
2925 Parameters Before call After call
2926 fd x /
2927 unitdata->addr.maxlen x /
2928 unitdata->addr.len / x
2929 unitdata->addr.buf ? (?)
2930 unitdata->opt.maxlen x /
2931 unitdata->opt.len / x
2932 unitdata->opt.buf ? (?)
2933 unitdata->udata.maxlen x /
2934 unitdata->udata.len / x
2935 unitdata->udata.buf ? (?)
2936 flags / x

2937 This function is used in connectionless mode to receive a data unit from another transport user.
2938 The argument fd identifies the local transport endpoint through which data will be received,
2939 unitdata holds information associated with the received data unit, and flags is set on return to
2940 indicate that the complete data unit was not received. The argument unitdata points to a
2941 t_unitdata structure containing the following members:

2942 struct netbuf addr;
2943 struct netbuf opt;
2944 struct netbuf udata;

2945 The maxlen field of addr , opt and udata must be set before calling this function to indicate the
2946 maximum size of the buffer for each.

2947 On return from this call, addr specifies the protocol address of the sending user, opt identifies
2948 options that were associated with this data unit, and udata specifies the user data that was
2949 received.

2950 By default, t_rcvudata () operates in synchronous mode and will wait for a data unit to arrive if
2951 none is currently available. However, if O_NONBLOCK is set (via t_open() or fcntl()),
2952 t_rcvudata () will execute in asynchronous mode and will fail if no data units are available.

2953 If the buffer defined in the udata field of unitdata is not large enough to hold the current data
2954 unit, the buffer will be filled and T_MORE will be set in flags on return to indicate that another
2955 t_rcvudata () should be called to retrieve the rest of the data unit. Subsequent calls to
2956 t_rcvudata () will return zero for the length of the address and options until the full data unit has
2957 been received.

2958 VALID STATES
2959 T_IDLE

Networking Services, Issue 4 89

t_rcvudata() XTI Library Functions and Parameters

2960 ERRORS
2961 On failure, t_errno is set to one of the following:

2962 [TBADF] The specified file descriptor does not refer to a transport endpoint.

2963 [TNODATA] O_NONBLOCK was set, but no data units are currently available from
2964 the transport provider.

2965 [TBUFOVFLW] The number of bytes allocated for the incoming protocol address or
2966 options (maxlen) is greater than 0 but not sufficient to store the
2967 information. The unit data information to be returned in unitdata will be
2968 discarded.

2969 [TLOOK] An asynchronous event has occurred on this transport endpoint and
2970 requires immediate attention.

2971 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

2972 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
2973 referenced by fd .

2974 [TSYSERR] A system error has occurred during execution of this function.

2975 [TPROTO] This error indicates that a communication problem has been detected
2976 between XTI and the transport provider for which there is no other
2977 suitable XTI (t_errno).

2978 RETURN VALUE
2979 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
2980 t_errno is set to indicate an error.

2981 SEE ALSO
2982 fcntl(), t_alloc (), t_open(), t_rcvuderr(), t_sndudata ().

2983 CHANGE HISTORY

Issue2984 4
2985 The SYNOPSIS section is placed in the form of a standard C function prototype.

90 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_rcvuderr()

2986 NAME
2987 t_rcvuderr - receive a unit data error indication

2988 SYNOPSIS
2989 #include <xti.h>

2990 int t_rcvuderr(int fd , struct t_uderr * uderr);

2991 DESCRIPTION
2992
2993 Parameters Before call After call
2994 fd x /
2995 uderr->addr.maxlen x /
2996 uderr->addr.len / x
2997 uderr->addr.buf ? (?)
2998 uderr->opt.maxlen x /
2999 uderr->opt.len / x
3000 uderr->opt.buf ? (?)
3001 uderr->error / x

3002 This function is used in connectionless mode to receive information concerning an error on a
3003 previously sent data unit, and should only be issued following a unit data error indication. It
3004 informs the transport user that a data unit with a specific destination address and protocol
3005 options produced an error. The argument fd identifies the local transport endpoint through
3006 which the error report will be received, and uderr points to a t_uderr structure containing the
3007 following members:

3008 struct netbuf addr;
3009 struct netbuf opt;
3010 long error;

3011 The maxlen field of addr and opt must be set before calling this function to indicate the maximum
3012 size of the buffer for each.

3013 On return from this call, the addr structure specifies the destination protocol address of the
3014 erroneous data unit, the opt structure identifies options that were associated with the data unit,
3015 and error specifies a protocol-dependent error code.

3016 If the user does not care to identify the data unit that produced an error, uderr may be set to a
3017 null pointer, and t_rcvuderr() will simply clear the error indication without reporting any
3018 information to the user.

3019 VALID STATES
3020 T_IDLE

3021 ERRORS
3022 On failure, t_errno is set to one of the following:

3023 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3024 [TNOUDERR] No unit data error indication currently exists on the specified transport
3025 endpoint.

3026 [TBUFOVFLW] The number of bytes allocated for the incoming protocol address or
3027 options (maxlen) is greater than 0 but not sufficient to store the
3028 information. The unit data error information to be returned in uderr will
3029 be discarded.

Networking Services, Issue 4 91

t_rcvuderr() XTI Library Functions and Parameters

3030 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

3031 [TSYSERR] A system error has occurred during execution of this function.

3032 [TPROTO] This error indicates that a communication problem has been detected
3033 between XTI and the transport provider for which there is no other
3034 suitable XTI (t_errno).

3035 RETURN VALUE
3036 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
3037 t_errno is set to indicate an error.

3038 SEE ALSO
3039 t_rcvudata (), t_sndudata ().

3040 CHANGE HISTORY

Issue3041 4
3042 The SYNOPSIS section is placed in the form of a standard C function prototype.

92 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_snd()

3043 NAME
3044 t_snd - send data or expedited data over a connection

3045 SYNOPSIS
3046 #include <xti.h>

3047 int t_snd(int fd , char * buf , unsigned int nbytes , int flags);

3048 DESCRIPTION
3049
3050 Parameters Before call After call
3051 fd x /
3052 buf x (x) /
3053 nbytes x /
3054 flags x /

3055 This function is used to send either normal or expedited data. The argument fd identifies the
3056 local transport endpoint over which data should be sent, buf points to the user data, nbytes
3057 specifies the number of bytes of user data to be sent, and flags specifies any optional flags
3058 described below:

3059 T_EXPEDITED If set in flags , the data will be sent as expedited data and will be subject to
3060 the interpretations of the transport provider.

3061 T_MORE If set in flags , this indicates to the transport provider that the transport
3062 service data unit (TSDU) (or expedited transport service data unit -
3063 ETSDU) is being sent through multiple t_snd() calls. Each t_snd() with
3064 the T_MORE flag set indicates that another t_snd() will follow with more
3065 data for the current TSDU (or ETSDU).

3066 The end of the TSDU (or ETSDU) is identified by a t_snd() call with the
3067 T_MORE flag not set. Use of T_MORE enables a user to break up large
3068 logical data units without losing the boundaries of those units at the other
3069 end of the connection. The flag implies nothing about how the data is
3070 packaged for transfer below the transport interface. If the transport
3071 provider does not support the concept of a TSDU as indicated in the info
3072 argument on return from t_open() or t_getinfo (), the T_MORE flag is not
3073 meaningful and will be ignored if set.

3074 The sending of a zero-length fragment of a TSDU or ETSDU is only
3075 permitted where this is used to indicate the end of a TSDU or ETSDU;
3076 that is, when the T_MORE flag is not set. Some transport providers also
3077 forbid zero-length TSDUs and ETSDUs. See Appendix A on page 189 for
3078 a fuller explanation.

3079 By default, t_snd() operates in synchronous mode and may wait if flow control restrictions
3080 prevent the data from being accepted by the local transport provider at the time the call is made.
3081 However, if O_NONBLOCK is set (via t_open() or fcntl()), t_snd() will execute in asynchronous
3082 mode, and will fail immediately if there are flow control restrictions. The process can arrange to
3083 be informed when the flow control restrictions are cleared via either t_look () or the EM interface.

3084 On successful completion, t_snd() returns the number of bytes accepted by the transport
3085 provider. Normally this will equal the number of bytes specified in nbytes. However, if
3086 O_NONBLOCK is set, it is possible that only part of the data will actually be accepted by the
3087 transport provider. In this case, t_snd() will return a value that is less than the value of nbytes. If
3088 nbytes is zero and sending of zero octets is not supported by the underlying transport service,
3089 t_snd() will return −1 with t_errno set to [TBADDATA].

Networking Services, Issue 4 93

t_snd() XTI Library Functions and Parameters

3090 The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
3091 specified by the current values in the TSDU or ETSDU fields in the info argument returned by
3092 t_getinfo ().

3093 The error [TLOOK] may be returned to inform the process that an event (for example, a
3094 disconnect) has occurred.

3095 VALID STATES
3096 T_DATAXFER, T_INREL

3097 ERRORS
3098 On failure, t_errno is set to one of the following:

3099 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3100 [TBADDATA] Illegal amount of data:

3101 — A single send was attempted specifying a TSDU (ETSDU) or fragment
3102 TSDU (ETSDU) greater than that specified by the current values of the
3103 TSDU or ETSDU fields in the info argument.

3104 — A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU
3105 (ETSDU) is not supported by the provider (see Appendix A on page
3106 189.

3107 — Multiple sends were attempted resulting in a TSDU (ETSDU) larger
3108 than that specified by the current value of the TSDU or ETSDU fields
3109 in the info argument — the ability of an XTI implementation to detect
3110 such an error case is implementation-dependent (see CAVEATS,
3111 below).

3112 [TBADFLAG] An invalid flag was specified.

3113 [TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
3114 transport provider from accepting any data at this time.

3115 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

3116 [TLOOK] An asynchronous event has occurred on this transport endpoint.

3117 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
3118 referenced by fd .

3119 [TSYSERR] A system error has occurred during execution of this function.

3120 [TPROTO] This error indicates that a communication problem has been detected
3121 between XTI and the transport provider for which there is no other
3122 suitable XTI (t_errno).

3123 RETURN VALUE
3124 On successful completion, t_snd() returns the number of bytes accepted by the transport
3125 provider. Otherwise, −1 is returned on failure and t_errno is set to indicate the error.

3126 Note that in asynchronous mode, if the number of bytes accepted by the transport provider is
3127 less than the number of bytes requested, this may indicate that the transport provider is blocked
3128 due to flow control.

3129 SEE ALSO
3130 t_getinfo (), t_open(), t_rcv().

94 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_snd()

3131 CAVEATS
3132 It is important to remember that the transport provider treats all users of a transport endpoint as
3133 a single user. Therefore if several processes issue concurrent t_snd() calls then the different data
3134 may be intermixed.

3135 Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by XTI.
3136 In this case an implementation-dependent error will result (generated by the transport provider)
3137 perhaps on a subsequent XTI call. This error may take the form of a connection abort, a
3138 [TSYSERR], a [TBADDATA] or a [TPROTO] error.

3139 If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI, t_snd()
3140 fails with [TBADDATA].

3141 CHANGE HISTORY

Issue3142 4
3143 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 95

t_snddis() XTI Library Functions and Parameters

3144 NAME
3145 t_snddis - send user-initiated disconnect request

3146 SYNOPSIS
3147 #include <xti.h>

3148 int t_snddis(int fd , struct t_call * call);

3149 DESCRIPTION
3150
3151 Parameters Before call After call
3152 fd x /
3153 call->addr.maxlen / /
3154 call->addr.len / /
3155 call->addr.buf / /
3156 call->opt.maxlen / /
3157 call->opt.len / /
3158 call->opt.buf / /
3159 call->udata.maxlen / /
3160 call->udata.len x /
3161 call->udata.buf ?(?) /
3162 call->sequence ? /

3163 This function is used to initiate an abortive release on an already established connection, or to
3164 reject a connect request. The argument fd identifies the local transport endpoint of the
3165 connection, and call specifies information associated with the abortive release. The argument
3166 call points to a t_call structure which contains the following members:

3167 struct netbuf addr;
3168 struct netbuf opt;
3169 struct netbuf udata;
3170 int sequence;

3171 The values in call have different semantics, depending on the context of the call to t_snddis().
3172 When rejecting a connect request, call must be non-null and contain a valid value of sequence to
3173 uniquely identify the rejected connect indication to the transport provider. The sequence field is
3174 only meaningful if the transport connection is in the T_INCON state. The addr and opt fields of
3175 call are ignored. In all other cases, call need only be used when data is being sent with the
3176 disconnect request. The addr , opt and sequence fields of the t_call structure are ignored. If the
3177 user does not wish to send data to the remote user, the value of call may be a null pointer.

3178 The udata structure specifies the user data to be sent to the remote user. The amount of user data
3179 must not exceed the limits supported by the transport provider, as returned in the discon field, of
3180 the info argument of t_open() or t_getinfo (). If the len field of udata is zero, no data will be sent to
3181 the remote user.

3182 VALID STATES
3183 T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

3184 ERRORS
3185 On failure, t_errno is set to one of the following:

3186 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3187 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
3188 referenced by fd .

96 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_snddis()

3189 [TBADDATA] The amount of user data specified was not within the bounds allowed by
3190 the transport provider.

3191 [TBADSEQ] An invalid sequence number was specified, or a null call pointer was
3192 specified, when rejecting a connect request.

3193 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

3194 [TSYSERR] A system error has occurred during execution of this function.

3195 [TLOOK] An asynchronous event, which requires attention, has occurred.

3196 [TPROTO] This error indicates that a communication problem has been detected
3197 between XTI and the transport provider for which there is no other
3198 suitable XTI (t_errno).

3199 RETURN VALUE
3200 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
3201 t_errno is set to indicate an error.

3202 SEE ALSO
3203 t_connect(), t_getinfo (), t_listen(), t_open().

3204 CAVEATS
3205 t_snddis() is an abortive disconnect. Therefore a t_snddis() issued on a connection endpoint may
3206 cause data previously sent via t_snd(), or data not yet received, to be lost (even if an error is
3207 returned).

3208 CHANGE HISTORY

Issue3209 4
3210 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 97

t_sndrel() XTI Library Functions and Parameters

3211 NAME
3212 t_sndrel - initiate an orderly release

3213 SYNOPSIS
3214 #include <xti.h>

3215 int t_sndrel(int fd);

3216 DESCRIPTION
3217
3218 Parameters Before call After call
3219 fd x /

3220 This function is used to initiate an orderly release of a transport connection and indicates to the
3221 transport provider that the transport user has no more data to send. The argument fd identifies
3222 the local transport endpoint where the connection exists. After calling t_sndrel(), the user may
3223 not send any more data over the connection. However, a user may continue to receive data if an
3224 orderly release indication has not been received. This function is an optional service of the
3225 transport provider and is only supported if the transport provider returned service type
3226 T_COTS_ORD on t_open() or t_getinfo ().

3227 VALID STATES
3228 T_DATAXFER,T_INREL

3229 ERRORS
3230 On failure, t_errno is set to one of the following:

3231 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3232 [TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
3233 transport provider from accepting the function at this time.

3234 [TLOOK] An asynchronous event has occurred on this transport endpoint and
3235 requires immediate attention.

3236 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

3237 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
3238 referenced by fd .

3239 [TSYSERR] A system error has occurred during execution of this function.

3240 [TPROTO] This error indicates that a communication problem has been detected
3241 between XTI and the transport provider for which there is no other
3242 suitable XTI (t_errno).

3243 RETURN VALUE
3244 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
3245 t_errno is set to indicate an error.

3246 SEE ALSO
3247 t_getinfo (), t_open(), t_rcvrel().

3248 CHANGE HISTORY

Issue3249 4
3250 The SYNOPSIS section is placed in the form of a standard C function prototype.

98 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_sndudata()

3251 NAME
3252 t_sndudata - send a data unit

3253 SYNOPSIS
3254 #include <xti.h>

3255 int t_sndudata(int fd , struct t_unitdata * unitdata);

3256 DESCRIPTION
3257
3258 Parameters Before call After call
3259 fd x /
3260 unitdata->addr.maxlen / /
3261 unitdata->addr.len x /
3262 unitdata->addr.buf x(x) /
3263 unitdata->opt.maxlen / /
3264 unitdata->opt.len x /
3265 unitdata->opt.buf ?(?) /
3266 unitdata->udata.maxlen / /
3267 unitdata->udata.len x /
3268 unitdata->udata.buf x(x) /

3269 This function is used in connectionless mode to send a data unit to another transport user. The
3270 argument fd identifies the local transport endpoint through which data will be sent, and unitdata
3271 points to a t_unitdata structure containing the following members:

3272 struct netbuf addr;
3273 struct netbuf opt;
3274 struct netbuf udata;

3275 In unitdata , addr specifies the protocol address of the destination user, opt identifies options that
3276 the user wants associated with this request, and udata specifies the user data to be sent. The user
3277 may choose not to specify what protocol options are associated with the transfer by setting the
3278 len field of opt to zero. In this case, the provider may use default options.

3279 If the len field of udata is zero, and sending of zero octets is not supported by the underlying
3280 transport service, the t_sndudata () will return −1 with t_errno set to [TBADDATA].

3281 By default, t_sndudata () operates in synchronous mode and may wait if flow control restrictions
3282 prevent the data from being accepted by the local transport provider at the time the call is made.
3283 However, if O_NONBLOCK is set (via t_open() or fcntl()), t_sndudata () will execute in
3284 asynchronous mode and will fail under such conditions. The process can arrange to be notified
3285 of the clearance of a flow control restriction via either t_look () or the EM interface.

3286 If the amount of data specified in udata exceeds the TSDU size as returned in the tsdu field of the
3287 info argument of t_open() or t_getinfo (), a [TBADDATA] error will be generated. If t_sndudata ()
3288 is called before the destination user has activated its transport endpoint (see t_bind()), the data
3289 unit may be discarded.

3290 If it is not possible for the transport provider to immediately detect the conditions that cause the
3291 errors [TBADDADDR] and [TBADOPT]. These errors will alternatively be returned by
3292 t_rcvuderr. Therefore, an application must be prepared to receive these errors in both of these
3293 ways.

3294 VALID STATES
3295 T_IDLE

Networking Services, Issue 4 99

t_sndudata() XTI Library Functions and Parameters

3296 ERRORS
3297 On failure, t_errno is set to one of the following:

3298 [TBADDATA] Illegal amount of data. A single send was attempted specifying a TSDU
3299 greater than that specified in the info argument, or a send of a zero byte
3300 TSDU is not supported by the provider.

3301 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3302 [TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
3303 transport provider from accepting any data at this time.

3304 [TLOOK] An asynchronous event has occurred on this transport endpoint.

3305 [TNOTSUPPORT] This function is not supported by the underlying transport provider.

3306 [TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
3307 referenced by fd .

3308 [TSYSERR] A system error has occurred during execution of this function.

3309 [TBADADDR] The specified protocol address was in an incorrect format or contained
3310 illegal information.

3311 [TBADOPT] The specified options were in an incorrect format or contained illegal
3312 information.

3313 [TPROTO] This error indicates that a communication problem has been detected
3314 between XTI and the transport provider for which there is no other
3315 suitable XTI (t_errno).

3316 RETURN VALUE
3317 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
3318 t_errno is set to indicate an error.

3319 SEE ALSO
3320 fcntl(), t_alloc (), t_open(), t_rcvudata (), t_rcvuderr().

3321 CHANGE HISTORY

Issue3322 4
3323 The SYNOPSIS section is placed in the form of a standard C function prototype.

100 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_strerror()

3324 NAME
3325 t_strerror - produce an error message string

3326 SYNOPSIS
3327 #include <xti.h>

3328 char *t_strerror(int errnum);

3329 DESCRIPTION
3330
3331 Parameters Before call After call
3332 errnum x /

3333 The t_strerror() function maps the error number in errnum that corresponds to an XTI error to a
3334 language-dependent error message string and returns a pointer to the string. The string pointed
3335 to will not be modified by the program, but may be overwritten by a subsequent call to the
3336 t_strerror function. The string is not terminated by a newline character. The language for error
3337 message strings written by t_strerror() is implementation-defined. If it is English, the error
3338 message string describing the value in t_errno is identical to the comments following the t_errno
3339 codes defined in <xti.h>. If an error code is unknown, and the language is English, t_strerror()
3340 returns the string:

3341 "<error>: error unknown"

3342 where <error> is the error number supplied as input. In other languages, an equivalent text is
3343 provided.

3344 VALID STATES
3345 ALL - apart from T_UNINIT

3346 RETURN VALUE
3347 The function t_strerror() returns a pointer to the generated message string.

3348 SEE ALSO
3349 t_error()

3350 CHANGE HISTORY

Issue3351 4
3352 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 101

t_sync() XTI Library Functions and Parameters

3353 NAME
3354 t_sync - synchronise transport library

3355 SYNOPSIS
3356 #include <xti.h>

3357 int t_sync(int fd);

3358 DESCRIPTION
3359
3360 Parameters Before call After call
3361 fd x /

3362 For the transport endpoint specified by fd , t_sync() synchronises the data structures managed by
3363 the transport library with information from the underlying transport provider. In doing so, it
3364 can convert an uninitialised file descriptor (obtained via open(), dup() or as a result of a fork ()
3365 and exec()) to an initialised transport endpoint, assuming that the file descriptor referenced a
3366 transport endpoint, by updating and allocating the necessary library data structures. This
3367 function also allows two cooperating processes to synchronise their interaction with a transport
3368 provider.

3369 For example, if a process forks a new process and issues an exec(), the new process must issue a
3370 t_sync() to build the private library data structure associated with a transport endpoint and to
3371 synchronise the data structure with the relevant provider information.

3372 It is important to remember that the transport provider treats all users of a transport endpoint as
3373 a single user. If multiple processes are using the same endpoint, they should coordinate their
3374 activities so as not to violate the state of the transport endpoint. The function t_sync() returns
3375 the current state of the transport endpoint to the user, thereby enabling the user to verify the
3376 state before taking further action. This coordination is only valid among cooperating processes;
3377 it is possible that a process or an incoming event could change the endpoint’s state after a
3378 t_sync() is issued.

3379 If the transport endpoint is undergoing a state transition when t_sync() is called, the function
3380 will fail.

3381 VALID STATES
3382 ALL - apart from T_UNINIT

3383 ERRORS
3384 On failure, t_errno is set to one of the following:

3385 [TBADF] The specified file descriptor does not refer to a transport endpoint. This
3386 error may be returned when the fd has been previously closed or an
3387 erroneous number may have been passed to the call.

3388 [TSTATECHNG] The transport endpoint is undergoing a state change.

3389 [TSYSERR] A system error has occurred during execution of this function.

3390 [TPROTO] This error indicates that a communication problem has been detected
3391 between XTI and the transport provider for which there is no other
3392 suitable XTI (t_errno).

3393 RETURN VALUE
3394 On successful completion, the state of the transport endpoint is returned. Otherwise, a value of
3395 −1 is returned and t_errno is set to indicate an error. The state returned is one of the following:

3396 T_UNBND Unbound.

102 X/Open CAE Specification (1994) (Draft March 15, 1995)

XTI Library Functions and Parameters t_sync()

3397 T_IDLE Idle.

3398 T_OUTCON Outgoing connection pending.

3399 T_INCON Incoming connection pending.

3400 T_DATAXFER Data transfer.

3401 T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

3402 T_INREL Incoming orderly release (waiting for an orderly release request).

3403 SEE ALSO
3404 dup(), exec(), fork (), open().

3405 CHANGE HISTORY

Issue3406 4
3407 The SYNOPSIS section is placed in the form of a standard C function prototype.

Networking Services, Issue 4 103

t_unbind() XTI Library Functions and Parameters

3408 NAME
3409 t_unbind - disable a transport endpoint

3410 SYNOPSIS
3411 #include <xti.h>

3412 int t_unbind(int fd);

3413 DESCRIPTION
3414
3415 Parameters Before call After call
3416 fd x /

3417 The t_unbind() function disables the transport endpoint specified by fd which was previously
3418 bound by t_bind(). On completion of this call, no further data or events destined for this
3419 transport endpoint will be accepted by the transport provider. An endpoint which is disabled by
3420 using t_unbind() can be enabled by a subsequent call to t_bind().

3421 VALID STATES
3422 T_IDLE

3423 ERRORS
3424 On failure, t_errno is set to one of the following:

3425 [TBADF] The specified file descriptor does not refer to a transport endpoint.

3426 [TOUTSTATE] The function was issued in the wrong sequence.

3427 [TLOOK] An asynchronous event has occurred on this transport endpoint.

3428 [TSYSERR] A system error has occurred during execution of this function.

3429 [TPROTO] This error indicates that a communication problem has been detected
3430 between XTI and the transport provider for which there is no other
3431 suitable XTI (t_errno).

3432 RETURN VALUE
3433 Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
3434 t_errno is set to indicate an error.

3435 SEE ALSO
3436 t_bind().

3437 CHANGE HISTORY

Issue3438 4
3439 The SYNOPSIS section is placed in the form of a standard C function prototype.

104 X/Open CAE Specification (1994) (Draft March 15, 1995)

3440

Chapter 8

Sockets Interfaces

3441 This chapter gives an overview of the Sockets interfaces and includes functions, macros and
3442 external variables to support portability at the C-language source level.

3443 The associated headers are documented in Chapter 9.

Networking Services, Issue 4 105

Sockets Overview Sockets Interfaces

3444 8.1 Sockets Overview
3445 All network protocols are associated with a specific protocol family. A protocol family provides
3446 basic services to the protocol implementation to allow it to function within a specific network
3447 environment. These services can include packet fragmentation and reassembly, routing,
3448 addressing, and basic transport. A protocol family can support multiple methods of addressing,
3449 though the current protocol implementations do not. A protocol family normally comprises a
3450 number of protocols, one per socket type. It is not required that a protocol family support all
3451 socket types. A protocol family can contain multiple protocols supporting the same socket
3452 abstraction.

3453 A protocol supports one of the socket abstractions detailed in the manual page for the socket()
3454 function. A specific protocol can be accessed either by creating a socket of the appropriate type
3455 and protocol family, or by requesting the protocol explicitly when creating a socket. Protocols
3456 normally accept only one type of address format, usually determined by the addressing
3457 structure inherent in the design of the protocol family and network architecture. Certain
3458 semantics of the basic socket abstractions are protocol specific. All protocols are expected to
3459 support the basic model for their particular socket type, but can, in addition, provide
3460 nonstandard facilities or extensions to a mechanism. For example, a protocol supporting the
3461 SOCK_STREAM abstraction can allow more than one byte of out-of-band data to be transmitted
3462 per out-of-band message.

3463 This specification covers local UNIX connections and Internet protocols.

3464 Addressing

3465 Associated with each address family is an address format. All network addresses adhere to a
3466 general structure, called a sockaddr. The length of the structure varies according to the address
3467 family.

3468 Routing

3469 Sockets provides packet routing facilities. A routing information database is maintained, which
3470 is used in selecting the appropriate network interface when transmitting packets.

3471 Interfaces

3472 Each network interface in a system corresponds to a path through which messages can be sent
3473 and received. A network interface usually has a hardware device associated with it, though
3474 certain interfaces such as the loopback interface do not.

106 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX accept()

3475 NAME
3476 accept — accept a new connection on a socket

3477 SYNOPSIS
3478 UX #include <sys/socket.h>

3479 int accept (int socket , struct sockaddr * address , size_t * address_len);
3480

DESCRIPTION
3481 The accept() function extracts the first connection on the queue of pending connections, creates a
3482 new socket with the same socket type protocol and address family as the specified socket, and
3483 allocates a new file descriptor for that socket.

3484 The function takes the following arguments:

3485 socket Specifies a socket that was created with socket(), has been bound to an
3486 address with bind(), and has issued a successful call to listen().

3487 address Either a null pointer, or a pointer to a sockaddr structure where the
3488 address of the connecting socket will be returned.

3489 address_len Points to a size_t which on input specifies the length of the supplied
3490 sockaddr structure, and on output specifies the length of the stored
3491 address.

3492 If address is not a null pointer, the address of the peer for the accepted connection is stored in the
3493 sockaddr structure pointed to by address, and the length of this address is stored in the object
3494 pointed to by address_len.

3495 If the actual length of the address is greater than the length of the supplied sockaddr structure,
3496 the stored address will be truncated.

3497 If the protocol permits connections by unbound clients, and the peer is not bound, then the value
3498 stored in the object pointed to by address is unspecified.

3499 If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
3500 descriptor for the socket, accept() will block until a connection is present. If the listen() queue is
3501 empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
3502 accept() will fail and set errno to [EWOULDBLOCK] or [EAGAIN].

3503 The accepted socket cannot itself accept more connections. The original socket remains open
3504 and can accept more connections.

3505 RETURN VALUE
3506 Upon successful completion, accept() returns the nonnegative file descriptor of the accepted
3507 socket. Otherwise, −1 is returned and errno is set to indicate the error.

3508 ERRORS
3509 The accept() function will fail if:

3510 [EBADF] The socket argument is not a valid file descriptor.

3511 [ECONNABORTED] A connection has been aborted.

3512 [ENOTSOCK] The socket argument does not refer to a socket.

3513 [EOPNOTSUPP] The socket type of the specified socket does not support accepting
3514 connections.

3515 [EAGAIN] or [EWOULDBLOCK]
3516 O_NONBLOCK is set for the socket file descriptor and no connections are
3517 present to be accepted.

Networking Services, Issue 4 107

accept() X/OPEN UNIX Sockets Interfaces

3518 [EINTR] The accept() function was interrupted by a signal that was caught before a
3519 valid connection arrived.

3520 [EINVAL] The socket is not accepting connections.

3521 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

3522 [ENFILE] The maximum number of file descriptors in the system are already open.

3523 The accept() function may fail if:

3524 [ENOMEM] There was insufficient memory available to complete the operation.

3525 [ENOBUFS] No buffer space is available.

3526 [ENOSR] There was insufficient STREAMS resources available to complete the
3527 operation.

3528 [EPROTO] A protocol error has occurred; for example, the STREAMS protocol stack
3529 has not been initialised.

3530 APPLICATION USAGE
3531 When a connection is available, select() will indicate that the file descriptor for the socket is
3532 ready for reading.

3533 SEE ALSO
3534 bind(), connect(), listen(), socket(), <sys/socket>.

3535 CHANGE HISTORY
3536 First released in Issue 4.

108 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX bind()

3537 NAME
3538 bind — bind a name to a socket

3539 SYNOPSIS
3540 UX #include <sys/socket.h>

3541 int bind(int socket , const struct sockaddr * address ,
3542 size_t address_len);
3543

DESCRIPTION
3544 The bind() function assigns an address to an unnamed socket. Sockets created with socket()
3545 function are initially unnamed; they are identified only by their address family.

3546 The function takes the following arguments:

3547 socket Specifies the file descriptor of the socket to be bound.

3548 address Points to a sockaddr structure containing the address to be bound to the
3549 socket. The length and format of the address depend on the address
3550 family of the socket.

3551 address_len Specifies the length of the sockaddr structure pointed to by the address
3552 argument.

3553 RETURN VALUE
3554 Upon successful completion, bind() returns 0. Otherwise, −1 is returned and errno is set to
3555 indicate the error.

3556 ERRORS
3557 The bind() function will fail if:

3558 [EBADF] The socket argument is not a valid file descriptor.

3559 [ENOTSOCK] The socket argument does not refer to a socket.

3560 [EADDRNOTAVAIL] The specified address is not available from the local machine.

3561 [EADDRINUSE] The specified address is already in use.

3562 [EINVAL] The socket is already bound to an address, and the protocol does not
3563 support binding to a new address; or the socket has been shut down.

3564 [EACCES] The specified address is protected and the current user does not have
3565 permission to bind to it.

3566 [EAFNOSUPPORT] The specified address is not a valid address for the address family of the
3567 specified socket.

3568 [EOPNOTSUPP] The socket type of the specified socket does not support binding to an
3569 address.

3570 If the address family of the socket is AF_UNIX, then bind() will fail if:

3571 [EDESTADDRREQ] or [EISDIR]
3572 The address argument is a null pointer.

3573 [EACCES] A component of the path prefix denies search permission, or the
3574 requested name requires writing in a directory with a mode that denies
3575 write permission.

3576 [ENOTDIR] A component of the path prefix of the pathname in address is not a
3577 directory.

Networking Services, Issue 4 109

bind() X/OPEN UNIX Sockets Interfaces

3578 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
3579 entire pathname exceeded {PATH_MAX} characters.

3580 [ENOENT] A component of the pathname does not name an existing file or the
3581 pathname is an empty string.

3582 [ELOOP] Too many symbolic links were encountered in translating the pathname
3583 in address.

3584 [EIO] An I/O error occurred.

3585 [EROFS] The name would reside on a read-only filesystem.

3586 The bind() function may fail if:

3587 [EINVAL] The address_len argument is not a valid length for the address family.

3588 [EISCONN] The socket is already connected.

3589 [ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
3590 whose length exceeds {PATH_MAX}.

3591 [ENOBUFS] Insufficient resources were available to complete the call.

3592 [ENOSR] There were insufficient STREAMS resources for the operation to
3593 complete.

3594 APPLICATION USAGE
3595 An application program can retrieve the assigned socket name with the getsockname() function.

3596 SEE ALSO
3597 connect(), getsockname(), listen(), socket(), <sys/socket>.

3598 CHANGE HISTORY
3599 First released in Issue 4.

110 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH close()

3600 NAME
3601 close — close a file descriptor

3602 Note: The XSH specification contains the basic definition of this interface. The following
3603 additional information pertains to Sockets.

3604 DESCRIPTION
3605 UX If fildes refers to a socket, close() causes the socket to be destroyed. If the socket is connection-
3606 oriented, and the SOCK_LINGER option is set for the socket, and the socket has untransmitted
3607 data, then close() will block for up to the current linger interval until all data is transmitted.

3608 CHANGE HISTORY
3609 First released in Issue 4.

Networking Services, Issue 4 111

connect() X/OPEN UNIX Sockets Interfaces

3610 NAME
3611 connect — connect a socket

3612 SYNOPSIS
3613 UX #include <sys/socket.h>

3614 int connect(int socket , const struct sockaddr * address ,
3615 size_t address_len);
3616

DESCRIPTION
3617 The connect() function requests a connection to be made on a socket. The function takes the
3618 following arguments:

3619 socket Specifies the file descriptor associated with the socket.

3620 address Points to a sockaddr structure containing the peer address. The length
3621 and format of the address depend on the address family of the socket.

3622 address_len Specifies the length of the sockaddr structure pointed to by the address
3623 argument.

3624 If the initiating socket is not connection-oriented, then connect() sets the socket’s peer address,
3625 but no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
3626 datagrams are sent on subsequent send() calls, and limits the remote sender for subsequent
3627 recv() calls. If address is a null address for the protocol, the socket’s peer address will be reset.

3628 If the initiating socket is connection-oriented, then connect() attempts to establish a connection
3629 to the address specified by the address argument.

3630 If the connection cannot be established immediately and O_NONBLOCK is not set for the file
3631 descriptor for the socket, connect() will block for up to an unspecified timeout interval until the
3632 connection is established. If the timeout interval expires before the connection is established,
3633 connect() will fail and the connection attempt will be aborted. If connect() is interrupted by a
3634 signal that is caught while blocked waiting to establish a connection, connect() will fail and set
3635 errno to [EINTR], but the connection request will not be aborted, and the connection will be
3636 established asynchronously.

3637 If the connection cannot be established immediately and O_NONBLOCK is set for the file
3638 descriptor for the socket, connect() will fail and set errno to [EINPROGRESS], but the connection
3639 request will not be aborted, and the connection will be established asynchronously. Subsequent
3640 calls to connect() for the same socket, before the connection is established, will fail and set errno
3641 to [EALREADY].

3642 When the connection has been established asynchronously, select() and poll () will indicate that
3643 the file descriptor for the socket is ready for writing.

3644 RETURN VALUE
3645 Upon successful completion, connect() returns 0. Otherwise, −1 is returned and errno is set to
3646 indicate the error.

3647 ERRORS
3648 The connect() function will fail if:

3649 [EADDRNOTAVAIL] The specified address is not available from the local machine.

3650 [EAFNOSUPPORT] The specified address is not a valid address for the address family of the
3651 specified socket.

3652 [EALREADY] A connection request is already in progress for the specified socket.

112 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX connect()

3653 [EBADF] The socket argument is not a valid file descriptor.

3654 [ECONNREFUSED] The target address was not listening for connections or refused the
3655 connection request.

3656 [EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the
3657 connection cannot be immediately established; the connection will be
3658 established asynchronously.

3659 [EINTR] The attempt to establish a connection was interrupted by delivery of a
3660 signal that was caught; the connection will be established
3661 asynchronously.

3662 [EISCONN] The specified socket is connection-oriented and is already connected.

3663 [ENETUNREACH] No route to the network is present.

3664 [ENOTSOCK] The socket argument does not refer to a socket.

3665 [EPROTOTYPE] The specified address has a different type than the socket bound to the
3666 specified peer address.

3667 [ETIMEDOUT] The attempt to connect timed out before a connection was made.

3668 If the address family of the socket is AF_UNIX, then connect() will fail if:

3669 [ENOTDIR] A component of the path prefix of the pathname in address is not a
3670 directory.

3671 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
3672 entire pathname exceeded {PATH_MAX} characters.

3673 [EACCES] Search permission is denied for a component of the path prefix; or write
3674 access to the named socket is denied.

3675 [EIO] An I/O error occurred while reading from or writing to the file system.

3676 [ELOOP] Too many symbolic links were encountered in translating the pathname
3677 in address.

3678 [ENOENT] A component of the pathname does not name an existing file or the
3679 pathname is an empty string.

3680 The connect() function may fail if:

3681 [EADDRINUSE] Attempt to establish a connection that uses addresses that are already in
3682 use.

3683 [ECONNRESET] Remote host reset the connection request.

3684 [EHOSTUNREACH] The destination host cannot be reached (probably because the host is
3685 down or a remote router cannot reach it).

3686 [EINVAL] The address_len argument is not a valid length for the address family; or
3687 invalid address family in sockaddr structure.

3688 [ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
3689 whose length exceeds {PATH_MAX}.

3690 [ENETDOWN] The local interface used to reach the destination is down.

3691 [ENOBUFS] No buffer space is available.

Networking Services, Issue 4 113

connect() X/OPEN UNIX Sockets Interfaces

3692 [ENOSR] There were insufficient STREAMS resources available to complete the
3693 operation.

3694 [EOPNOTSUPP] The socket is listening and can not be connected.

3695 APPLICATION USAGE
3696 If connect() fails, the state of the socket is unspecified. Portable applications should close the file
3697 descriptor and create a new socket before attempting to reconnect.

3698 SEE ALSO
3699 accept(), bind(), close(), getsockname(), poll (), select(), send(), shutdown(), socket(), <sys/socket.h>.

3700 CHANGE HISTORY
3701 First released in Issue 4.

114 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH fcntl()

3702 NAME
3703 fcntl — file control

3704 Note: The XSH specification contains the basic definition of this interface. The following
3705 additional information pertains to Sockets.

3706 DESCRIPTION
3707 UX The following additional values for cmd are defined in <fcntl.h>:

3708 F_GETOWN If fildes refers to a socket, get the process or process group ID specified to
3709 receive SIGURG signals when out-of-band data is available. Positive
3710 values indicate a process ID; negative values, other than −1, indicate a
3711 process group ID. If fildes does not refer to a socket, the results are
3712 unspecified.

3713 F_SETOWN If fildes refers to a socket, set the process or process group ID specified to
3714 receive SIGURG signals when out-of-band data is available, using the
3715 value of the third argument, arg, taken as type int. Positive values
3716 indicate a process ID; negative values, other than −1, indicate a process
3717 group ID. If fildes does not refer to a socket, the results are unspecified.

3718 RETURN VALUE
3719 UX Upon successful completion, the value returned depends on cmd as follows:

3720 F_GETOWN Value of the socket owner process or process group; this will not be −1.

3721 F_SETOWN Value other than −1.

3722 CHANGE HISTORY
3723 First released in Issue 4.

Networking Services, Issue 4 115

fgetpos() Addendum to XSH Sockets Interfaces

3724 NAME
3725 fgetpos — get current file position information

3726 Note: The XSH specification contains the basic definition of this interface. The following
3727 additional information pertains to Sockets.

3728 ERRORS
3729 UX The fgetpos() function may fail if:

3730 [ESPIPE] The file descriptor underlying stream is associated with a socket.

3731 CHANGE HISTORY
3732 First released in Issue 4.

116 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH fsetpos()

3733 NAME
3734 fsetpos — set current file position

3735 Note: The XSH specification contains the basic definition of this interface. The following
3736 additional information pertains to Sockets.

3737 ERRORS
3738 UX The fsetpos() function may fail if:

3739 [ESPIPE] The file descriptor underlying stream is associated with a socket.

3740 CHANGE HISTORY
3741 First released in Issue 4.

Networking Services, Issue 4 117

ftell() Addendum to XSH Sockets Interfaces

3742 NAME
3743 ftell — return a file offset in a stream

3744 Note: The XSH specification contains the basic definition of this interface. The following
3745 additional information pertains to Sockets.

3746 ERRORS
3747 UX The ftell () function may fail if:

3748 [ESPIPE] The file descriptor underlying stream is associated with a socket.

3749 CHANGE HISTORY
3750 First released in Issue 4.

118 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX getpeername()

3751 NAME
3752 getpeername — get the name of the peer socket

3753 SYNOPSIS
3754 UX #include <sys/socket.h>

3755 int getpeername(int socket , struct sockaddr * address ,
3756 size_t * address_len);
3757

DESCRIPTION
3758 The getpeername() function retrieves the peer address of the specified socket, stores this address
3759 in the sockaddr structure pointed to by the address argument, and stores the length of this
3760 address in the object pointed to by the address_len argument.

3761 If the actual length of the address is greater than the length of the supplied sockaddr structure,
3762 the stored address will be truncated.

3763 If the protocol permits connections by unbound clients, and the peer is not bound, then the value
3764 stored in the object pointed to by address is unspecified.

3765 RETURN VALUE
3766 Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate
3767 the error.

3768 ERRORS
3769 The getpeername() function will fail if:

3770 [EBADF] The socket argument is not a valid file descriptor.

3771 [ENOTSOCK] The socket argument does not refer to a socket.

3772 [ENOTCONN] The socket is not connected or otherwise has not had the peer
3773 prespecified.

3774 [EINVAL] The socket has been shut down.

3775 [EOPNOTSUPP] The operation is not supported for the socket protocol.

3776 The getpeername() function may fail if:

3777 [ENOBUFS] Insufficient resources were available in the system to complete the call.

3778 [ENOSR] There were insufficient STREAMS resources available for the operation to
3779 complete.

3780 SEE ALSO
3781 accept(), bind(), getsockname(), socket(), <sys/socket.h>.

3782 CHANGE HISTORY
3783 First released in Issue 4.

Networking Services, Issue 4 119

getsockname() X/OPEN UNIX Sockets Interfaces

3784 NAME
3785 getsockname — get the socket name

3786 SYNOPSIS
3787 UX #include <sys/socket.h>

3788 int getsockname(int socket , struct sockaddr * address ,
3789 size_t * address_len);
3790

DESCRIPTION
3791 The getsockname() function retrieves the locally-bound name of the specified socket, stores this
3792 address in the sockaddr structure pointed to by the address argument, and stores the length of
3793 this address in the object pointed to by the address_len argument.

3794 If the actual length of the address is greater than the length of the supplied sockaddr structure,
3795 the stored address will be truncated.

3796 If the socket has not been bound to a local name, the value stored in the object pointed to by
3797 address is unspecified.

3798 RETURN VALUE
3799 Upon successful completion, 0 is returned, the address argument points to the address of the
3800 socket, and the address_len argument points to the length of the address. Otherwise, −1 is
3801 returned and errno is set to indicate the error.

3802 ERRORS
3803 The getsockname() function will fail:

3804 [EBADF] The socket argument is not a valid file descriptor.

3805 [ENOTSOCK] The socket argument does not refer to a socket.

3806 [EOPNOTSUPP] The operation is not supported for this socket’s protocol.

3807 The getsockname() function may fail if:

3808 [EINVAL] The socket has been shut down.

3809 [ENOBUFS] Insufficient resources were available in the system to complete the call.

3810 [ENOSR] There were insufficient STREAMS resources available for the operation to
3811 complete.

3812 SEE ALSO
3813 accept(), bind(), getpeername(), socket(), <sys/socket.h>.

3814 CHANGE HISTORY
3815 First released in Issue 4.

120 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX getsockopt()

3816 NAME
3817 getsockopt — get the socket options

3818 SYNOPSIS
3819 UX #include <sys/socket.h>

3820 int getsockopt(int socket , int level , int option_name, void * option_value ,
3821 size_t * option_len);
3822

DESCRIPTION
3823 The getsockopt () function retrieves the value for the option specified by the option_name
3824 argument for the socket specified by the socket argument. If the size of the option value is
3825 greater than option_len, the value stored in the object pointed to by the option_value argument
3826 will be silently truncated. Otherwise, the object pointed to by the option_len argument will be
3827 modified to indicate the actual length of the value.

3828 The level argument specifies the protocol level at which the option resides. To retrieve options at
3829 the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
3830 supply the appropriate protocol number for the protocol controlling the option. For example, to
3831 indicate that an option will be interpreted by the TCP (Transport Control Protocol), set level to
3832 the protocol number of TCP, as defined in the <netinet/in.h> header, or as determined by using
3833 getprotobyname() function.

3834 The option_name argument specifies a single option to be retrieved. It can be one of the following
3835 values defined in <sys/socket.h>:

3836 SO_DEBUG Reports whether debugging information is being recorded. This option
3837 stores an int value.

3838 SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int
3839 value.

3840 SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
3841 is supported by the protocol. This option stores an int value.

3842 SO_REUSEADDR Reports whether the rules used in validating addresses supplied to bind()
3843 should allow reuse of local addresses, if this is supported by the protocol.
3844 This option stores an int value.

3845 SO_KEEPALIVE Reports whether connections are kept active with periodic transmission
3846 of messages, if this is supported by the protocol.

3847 If the connected socket fails to respond to these messages, the connection
3848 is broken and processes writing to that socket are notified with a SIGPIPE
3849 signal. This option stores an int value.

3850 SO_LINGER Reports whether the socket lingers on close() if data is present. If
3851 SO_LINGER is set, the system blocks the process during close() until it
3852 can transmit the data or until the end of the interval indicated by the
3853 l_linger member, whichever comes first. If SO_LINGER is not specified,
3854 and close() is issued, the system handles the call in a way that allows the
3855 process to continue as quickly as possible. This option stores a linger
3856 structure.

3857 SO_OOBINLINE Reports whether the socket leaves received out-of-band data (data
3858 marked urgent) in line. This option stores an int value.

3859 SO_SNDBUF Reports send buffer size information. This option stores an int value.

Networking Services, Issue 4 121

getsockopt() X/OPEN UNIX Sockets Interfaces

3860 SO_RCVBUF Reports receive buffer size information. This option stores an int value.

3861 SO_ERROR Reports information about error status and clears it. This option stores an
3862 int value.

3863 SO_TYPE Reports the socket type. This option stores an int value.

3864 For boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
3865 enabled.

3866 Options at other protocol levels vary in format and name.

3867 RETURN VALUE
3868 Upon successful completion, getsockopt () returns 0. Otherwise, −1 is returned and errno is set to
3869 indicate the error.

3870 ERRORS
3871 The getsockopt () function will fail if:

3872 [EBADF] The socket argument is not a valid file descriptor.

3873 [ENOPROTOOPT] The option is not supported by the protocol.

3874 [ENOTSOCK] The socket argument does not refer to a socket.

3875 [EINVAL] The specified option is invalid at the specified socket level.

3876 [EOPNOTSUPP] The operation is not supported by the socket protocol.

3877 The getsockopt () function may fail if:

3878 [EINVAL] The socket has been shut down.

3879 [ENOBUFS] Insufficient resources are available in the system to complete the call.

3880 [ENOSR] There were insufficient STREAMS resources available for the operation to
3881 complete.

3882 SEE ALSO
3883 bind(), close(), endprotoent(), setsockopt (), socket(), <sys/socket.h>.

3884 CHANGE HISTORY
3885 First released in Issue 4.

122 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX listen()

3886 NAME
3887 listen — listen for socket connections and limit the queue of incoming connections

3888 SYNOPSIS
3889 UX #include <sys/socket.h>

3890 int listen(int socket , int backlog);
3891

DESCRIPTION
3892 The listen() function marks a connection-oriented socket, specified by the socket argument, as
3893 accepting connections, and limits the number of outstanding connections in the socket’s listen
3894 queue to the value specified by the backlog argument.

3895 If listen() is called with a backlog argument value that is less than 0, the function sets the length
3896 of the socket’s listen queue to 0.

3897 Implementations may limit the length of the socket’s listen queue. If backlog exceeds the
3898 implementation-dependent maximum queue length, the length of the socket’s listen queue will
3899 be set to the maximum supported value.

3900 RETURN VALUE
3901 Upon successful completions, listen() returns 0. Otherwise, −1 is returned and errno is set to
3902 indicate the error.

3903 ERRORS
3904 The listen() function will fail if:

3905 [EBADF] The socket argument is not a valid file descriptor.

3906 [ENOTSOCK] The socket argument does not refer to a socket.

3907 [EOPNOTSUPP] The socket protocol does not support listen().

3908 [EINVAL] The socket is already connected.

3909 [EDESTADDRREQ] The socket is not bound to a local address, and the protocol does not
3910 support listening on an unbound socket.

3911 The listen() function may fail if:

3912 [EINVAL] The socket has been shut down.

3913 [ENOBUFS] Insufficient resources are available in the system to complete the call.

3914 SEE ALSO
3915 accept(), connect(), socket(), <sys/socket.h>.

3916 CHANGE HISTORY
3917 First released in Issue 4.

Networking Services, Issue 4 123

lseek() Addendum to XSH Sockets Interfaces

3918 NAME
3919 lseek — move read/write file offset

3920 Note: The XSH specification contains the basic definition of this interface. The following
3921 additional information pertains to Sockets.

3922 ERRORS
3923 UX The lseek() function will fail if:

3924 [ESPIPE] The file descriptor underlying stream is associated with a socket.

3925 CHANGE HISTORY
3926 First released in Issue 4.

124 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH poll()

3927 NAME
3928 poll — input/output multiplexing

3929 Note: The XSH specification contains the basic definition of this interface. The following
3930 additional information pertains to Sockets.

3931 DESCRIPTION
3932 UX The poll () function supports sockets.

3933 A file descriptor for a socket that is listening for connections will indicate that it is ready for
3934 reading, once connections are available. A file descriptor for a socket that is connecting
3935 asynchronously will indicate that it is ready for writing, once a connection has been established.

3936 CHANGE HISTORY
3937 First released in Issue 4.

Networking Services, Issue 4 125

read() Addendum to XSH Sockets Interfaces

3938 NAME
3939 read, readv — read from file

3940 Note: The XSH specification contains the basic definition of this interface. The following
3941 additional information pertains to Sockets.

3942 DESCRIPTION
3943 UX If fildes refers to a socket, read() is equivalent to recv() with no flags set.

3944 CHANGE HISTORY
3945 First released in Issue 4.

126 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX recv()

3946 NAME
3947 recv — receive a message from a connected socket

3948 SYNOPSIS
3949 UX #include <sys/socket.h>

3950 ssize_t recv(int socket , void * buffer , size_t length , int flags);
3951

DESCRIPTION
3952 The recv() function receives messages from a connected socket. The function takes the following
3953 arguments:

3954 socket Specifies the socket file descriptor.

3955 buffer Points to a buffer where the message should be stored.

3956 length Specifies the length in bytes of the buffer pointed to by the buffer
3957 argument.

3958 flags Specifies the type of message reception. Values of this argument are
3959 formed by logically OR’ing zero or more of the following values:

3960 MSG_PEEK Peeks at an incoming message. The data is treated
3961 as unread and the next recv() or similar function
3962 will still return this data.

3963 MSG_OOB Requests out-of-band data. The significance and
3964 semantics of out-of-band data are protocol-
3965 specific.

3966 MSG_WAITALL Requests that the function block until the full
3967 amount of data requested can be returned. The
3968 function may return a smaller amount of data if a
3969 signal is caught, the connection is terminated, or
3970 an error is pending for the socket.

3971 The recv() function returns the length of the message written to the buffer pointed to by the
3972 buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET,
3973 the entire message must be read in a single operation. If a message is too long to fit in the
3974 supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded.
3975 For stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this
3976 case, data is returned to the user as soon as it becomes available, and no data is discarded.

3977 If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
3978 message.

3979 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
3980 descriptor, recv() blocks until a message arrives. If no messages are available at the socket and
3981 O_NONBLOCK is set on the socket’s file descriptor, recv() fails and sets errno to
3982 [EWOULDBLOCK] or [EAGAIN].

3983 RETURN VALUE
3984 Upon successful completion, recv() returns the length of the message in bytes. If no messages
3985 are available to be received and the peer has performed an orderly shutdown, recv() returns 0.
3986 Otherwise, −1 is returned and errno is set to indicate the error.

Networking Services, Issue 4 127

recv() X/OPEN UNIX Sockets Interfaces

3987 ERRORS
3988 The recv() function will fail if:

3989 [EBADF] The socket argument is not a valid file descriptor.

3990 [ECONNRESET] A connection was forcibly closed by a peer.

3991 [EINTR] The recv() function was interrupted by a signal that was caught, before
3992 any data was available.

3993 [EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

3994 [ENOTCONN] A receive is attempted on a connection-oriented socket that is not
3995 connected.

3996 [ENOTSOCK] The socket argument does not refer to a socket.

3997 [EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

3998 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
3999 transmission timeout on active connection.

4000 [EWOULDBLOCK] or [EAGAIN]
4001 The socket’s file descriptor is marked O_NONBLOCK and no data is
4002 waiting to be received; or MSG_OOB is set and no out-of-band data is
4003 available and either the socket’s file descriptor is marked O_NONBLOCK
4004 or the socket does not support blocking to await out-of-band data.

4005 The recv() function may fail if:

4006 [EIO] An I/O error occurred while reading from or writing to the file system.

4007 [ENOBUFS] Insufficient resources were available in the system to perform the
4008 operation.

4009 [ENOMEM] Insufficient memory was available to fulfill the request.

4010 [ENOSR] There were insufficient STREAMS resources available for the operation to
4011 complete.

4012 APPLICATION USAGE
4013 The recv() function is identical to recvfrom() with a zero address_len argument, and to read() if no
4014 flags are used.

4015 The select() and poll () functions can be used to determine when data is available to be received.

4016 SEE ALSO
4017 poll (), read(), recvmsg(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(),
4018 write(), <sys/socket.h>.

4019 CHANGE HISTORY
4020 First released in Issue 4.

128 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX recvfrom()

4021 NAME
4022 recvfrom — receive a message from a socket

4023 SYNOPSIS
4024 UX #include <sys/socket.h>

4025 ssize_t recvfrom(int socket , void * buffer , size_t length , int flags ,
4026 struct sockaddr * address , size_t * address_len);
4027

DESCRIPTION
4028 The recvfrom() function receives a message from a connection-oriented or connectionless socket.
4029 It is normally used with connectionless sockets because it permits the application to retrieve the
4030 source address of received data.

4031 The function takes the following arguments:

4032 socket Specifies the socket file descriptor.

4033 buffer Points to the buffer where the message should be stored.

4034 length Specifies the length in bytes of the buffer pointed to by the buffer
4035 argument.

4036 flags Specifies the type of message reception. Values of this argument are
4037 formed by logically OR’ing zero or more of the following values:

4038 MSG_PEEK Peeks at an incoming message. The data is treated
4039 as unread and the next recvfrom() or similar
4040 function will still return this data.

4041 MSG_OOB Requests out-of-band data. The significance and
4042 semantics of out-of-band data are protocol-
4043 specific.

4044 MSG_WAITALL Requests that the function block until the full
4045 amount of data requested can be returned. The
4046 function may return a smaller amount of data if a
4047 signal is caught, the connection is terminated, or
4048 an error is pending for the socket.

4049 address A null pointer, or points to a sockaddr structure in which the sending
4050 address is to be stored. The length and format of the address depend on
4051 the address family of the socket.

4052 address_len Specifies the length of the sockaddr structure pointed to by the address
4053 argument.

4054 The recvfrom() function returns the length of the message written to the buffer pointed to by the
4055 buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET,
4056 the entire message must be read in a single operation. If a message is too long to fit in the
4057 supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded.
4058 For stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this
4059 case, data is returned to the user as soon as it becomes available, and no data is discarded.

4060 If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
4061 message.

4062 Not all protocols provide the source address for messages. If the address argument is not a null
4063 pointer and the protocol provides the source address of messages, the source address of the
4064 received message is stored in the sockaddr structure pointed to by the address argument, and the

Networking Services, Issue 4 129

recvfrom() X/OPEN UNIX Sockets Interfaces

4065 length of this address is stored in the object pointed to by the address_len argument.

4066 If the actual length of the address is greater than the length of the supplied sockaddr structure,
4067 the stored address will be truncated.

4068 If the address argument is not a null pointer and the protocol does not provide the source address
4069 of messages, the the value stored in the object pointed to by address is unspecified.

4070 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
4071 descriptor, recvfrom() blocks until a message arrives. If no messages are available at the socket
4072 and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() fails and sets errno to
4073 [EWOULDBLOCK] or [EAGAIN].

4074 RETURN VALUE
4075 Upon successful completion, recvfrom() returns the length of the message in bytes. If no
4076 messages are available to be received and the peer has performed an orderly shutdown,
4077 recvfrom() returns 0. Otherwise the function returns −1 and sets errno to indicate the error.

4078 ERRORS
4079 The recvfrom() function will fail if:

4080 [EBADF] The socket argument is not a valid file descriptor.

4081 [ECONNRESET] A connection was forcibly closed by a peer.

4082 [EINTR] A signal interrupted recvfrom() before any data was available.

4083 [EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

4084 [ENOTCONN] A receive is attempted on a connection-oriented socket that is not
4085 connected.

4086 [ENOTSOCK] The socket argument does not refer to a socket.

4087 [EOPNOTSUPP] The specified flags are not supported for this socket type.

4088 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
4089 transmission timeout on active connection.

4090 [EWOULDBLOCK] or [EAGAIN]
4091 The socket’s file descriptor is marked O_NONBLOCK and no data is
4092 waiting to be received; or MSG_OOB is set and no out-of-band data is
4093 available and either the socket’s file descriptor is marked O_NONBLOCK
4094 or the socket does not support blocking to await out-of-band data.

4095 The recvfrom() function may fail if:

4096 [EIO] An I/O error occurred while reading from or writing to the file system.

4097 [ENOBUFS] Insufficient resources were available in the system to perform the
4098 operation.

4099 [ENOMEM] Insufficient memory was available to fulfill the request.

4100 [ENOSR] There were insufficient STREAMS resources available for the operation to
4101 complete.

4102 APPLICATION USAGE
4103 The select() and poll () functions can be used to determine when data is available to be received.

130 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX recvfrom()

4104 SEE ALSO
4105 poll (), read(), recv(), recvmsg(), select() send(), sendmsg(), sendto(), shutdown(), socket(), write(),
4106 <sys/socket.h>.

4107 CHANGE HISTORY
4108 First released in Issue 4.

Networking Services, Issue 4 131

recvmsg() X/OPEN UNIX Sockets Interfaces

4109 NAME
4110 recvmsg — receive a message from a socket

4111 SYNOPSIS
4112 UX #include <sys/socket.h>

4113 ssize_t recvmsg(int socket , struct msghdr * message , int flags);
4114

DESCRIPTION
4115 The recvmsg() function receives a message from a connection-oriented or connectionless socket.
4116 It is normally used with connectionless sockets because it permits the application to retrieve the
4117 source address of received data.

4118 The function takes the following arguments:

4119 socket Specifies the socket file descriptor.

4120 message Points to a msghdr structure, containing both the buffer to store the
4121 source address and the buffers for the incoming message. The length and
4122 format of the address depend on the address family of the socket. The
4123 msg_flags member is ignored on input, but may contain meaningful
4124 values on output.

4125 flags Specifies the type of message reception. Values of this argument are
4126 formed by logically OR’ing zero or more of the following values:

4127 MSG_OOB Requests out-of-band data. The significance and
4128 semantics of out-of-band data are protocol-
4129 specific.

4130 MSG_PEEK Peeks at the incoming message.

4131 MSG_WAITALL Requests that the function block until the full
4132 amount of data requested can be returned. The
4133 function may return a smaller amount of data if a
4134 signal is caught, the connection is terminated, or
4135 an error is pending for the socket.

4136 The recvmsg() function receives messages from unconnected or connected sockets and returns
4137 the length of the message.

4138 The recvmsg() function returns the total length of the message. For message-based sockets such
4139 as SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in a single
4140 operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
4141 flags argument, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags
4142 member of the msghdr structure. For stream-based sockets such as SOCK_STREAM, message
4143 boundaries are ignored. In this case, data is returned to the user as soon as it becomes available,
4144 and no data is discarded.

4145 If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first
4146 message.

4147 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
4148 descriptor, recvfrom() blocks until a message arrives. If no messages are available at the socket
4149 and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() function fails and sets errno
4150 to [EWOULDBLOCK] or [EAGAIN].

4151 In the msghdr structure, the msg_name and msg_namelen members specify the source address
4152 if the socket is unconnected. If the socket is connected, the msg_name and msg_namelen
4153 members are ignored. The msg_name member may be a null pointer if no names are desired or

132 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX recvmsg()

4154 required. The msg_iov and msg_iovlen members describe the scatter/gather locations.

4155 On successful completion, the msg_flags member of the message header is the bitwise-inclusive
4156 OR of all of the following flags that indicate conditions detected for the received message:.

4157 MSG_EOR End of record was received (if supported by the protocol).

4158 MSG_OOB Out-of-band data was received.

4159 MSG_TRUNC Normal data was truncated.

4160 MSG_CTRUNC Control data was truncated.

4161 RETURN VALUE
4162 Upon successful completion, recvmsg() returns the length of the message in bytes. If no
4163 messages are available to be received and the peer has performed an orderly shutdown,
4164 recvmsg() returns 0. Otherwise, −1 is returned and errno is set to indicate the error.

4165 ERRORS
4166 The recvmsg() function will fail if:

4167 [EBADF] The socket argument is not a valid open file descriptor.

4168 [ENOTSOCK] The socket argument does not refer to a socket.

4169 [EINVAL] The sum of the iov_len values overflows an ssize_t.

4170 [EWOULDBLOCK] or [EAGAIN]
4171 The socket’s file descriptor is marked O_NONBLOCK and no data is
4172 waiting to be received; or MSG_OOB is set and no out-of-band data is
4173 available and either the socket’s file descriptor is marked O_NONBLOCK
4174 or the socket does not support blocking to await out-of-band data.

4175 [EINTR] This function was interrupted by a signal before any data was available.

4176 [EOPNOTSUPP] The specified flags are not supported for this socket type.

4177 [ENOTCONN] A receive is attempted on a connection-oriented socket that is not
4178 connected.

4179 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
4180 transmission timeout on active connection.

4181 [EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

4182 [ECONNRESET] A connection was forcibly closed by a peer.

4183 The recvmsg() function may fail if:

4184 [EINVAL] The msg_iovlen member of the msghdr structure pointed to by msg is
4185 less than or equal to 0, or is greater than {IOV_MAX}.

4186 [EIO] An IO error occurred while reading from or writing to the file system.

4187 [ENOBUFS] Insufficient resources were available in the system to perform the
4188 operation.

4189 [ENOMEM] Insufficient memory was available to fulfill the request.

4190 [ENOSR] There were insufficient STREAMS resources available for the operation to
4191 complete.

4192 APPLICATION USAGE
4193 The select() and poll () functions can be used to determine when data is available to be received.

Networking Services, Issue 4 133

recvmsg() X/OPEN UNIX Sockets Interfaces

4194 SEE ALSO
4195 poll (), recv(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(),
4196 <sys/socket.h>.

4197 CHANGE HISTORY
4198 First released in Issue 4.

134 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH select()

4199 NAME
4200 select — synchronous I/O multiplexing

4201 Note: The XSH specification contains the basic definition of this interface. The following
4202 additional information pertains to Sockets.

4203 DESCRIPTION
4204 UX A file descriptor for a socket that is listening for connections will indicate that it is ready for
4205 reading, when connections are available. A file descriptor for a socket that is connecting
4206 asynchronously will indicate that it is ready for writing, when a connection has been established.
4207

4208 CHANGE HISTORY
4209 First released in Issue 4.

Networking Services, Issue 4 135

send() X/OPEN UNIX Sockets Interfaces

4210 NAME
4211 send — send a message on a socket

4212 SYNOPSIS
4213 UX #include <sys/socket.h>

4214 ssize_t send(int socket , const void * buffer , size_t length , int flags);
4215

DESCRIPTION

4216 socket Specifies the socket file descriptor.

4217 buffer Points to the buffer containing the message to send.

4218 length Specifies the length of the message in bytes.

4219 flags Specifies the type of message transmission. Values of this argument are
4220 formed by logically OR’ing zero or more of the following flags:

4221 MSG_EOR Terminates a record (if supported by the protocol)

4222 MSG_OOB Sends out-of-band data on sockets that support
4223 out-of-band communications. The significance
4224 and semantics of out-of-band data are protocol-
4225 specific.

4226 The send() function initiates transmission of a message from the specified socket to its peer. The
4227 send() function sends a message only when the socket is connected.

4228 The length of the message to be sent is specified by the length argument. If the message is too
4229 long to pass through the underlying protocol, send() fails and no data is transmitted.

4230 Successful completion of a call to send() does not guarantee delivery of the message. A return
4231 value of −1 indicates only locally-detected errors.

4232 If space is not available at the sending socket to hold the message to be transmitted and the
4233 socket file descriptor does not have O_NONBLOCK set, send() blocks until space is available. If
4234 space is not available at the sending socket to hold the message to be transmitted and the socket
4235 file descriptor does have O_NONBLOCK set, send() will fail. The select() and poll () functions
4236 can be used to determine when it is possible to send more data.

4237 RETURN VALUE
4238 Upon successful completion, send() returns the number of bytes sent. Otherwise, −1 is returned
4239 and errno is set to indicate the error.

4240 APPLICATION USAGE
4241 The send() function is identical to sendto() with a null pointer dest_len argument, and to write() if
4242 no flags are used.

4243 ERRORS
4244 The send() function will fail if:

4245 [EBADF] The socket argument is not a valid file descriptor.

4246 [ECONNRESET] A connection was forcibly closed by a peer.

4247 [EDESTADDRREQ] The socket is not connection-oriented and no peer address is set.

4248 [EINTR] A signal interrupted send() before any data was transmitted.

4249 [EMSGSIZE] The message is too large be sent all at once, as the socket requires.

136 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX send()

4250 [ENOTCONN] The socket is not connected or otherwise has not had the peer
4251 prespecified.

4252 [ENOTSOCK] The socket argument does not refer to a socket.

4253 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one
4254 or more of the values set in flags.

4255 [EPIPE] The socket is shut down for writing, or the socket is connection-oriented
4256 and the peer is closed or shut down for reading. In the latter case, and if
4257 the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to
4258 the calling process.

4259 [EWOULDBLOCK] or [EAGAIN]
4260 The socket’s file descriptor is marked O_NONBLOCK and the requested
4261 operation would block.

4262 The send() function may fail if:

4263 [ENETDOWN] The local interface used to reach the destination is down.

4264 [ENETUNREACH] No route to the network is present.

4265 [ENOBUFS] Insufficient resources were available in the system to perform the
4266 operation.

4267 [ENOSR] There were insufficient STREAMS resources available for the operation to
4268 complete.

4269 [EIO] An I/O error occurred while reading from or writing to the file system.

4270 SEE ALSO
4271 connect(), getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), sendmsg(), sendto(),
4272 setsockopt (), shutdown(), socket(), <sys/socket.h>.

4273 CHANGE HISTORY
4274 First released in Issue 4.

Networking Services, Issue 4 137

sendmsg() X/OPEN UNIX Sockets Interfaces

4275 NAME
4276 sendmsg — send a message on a socket using a message structure

4277 SYNOPSIS
4278 UX #include <sys/socket.h>

4279 ssize_t sendmsg (int socket , const struct msghdr * message , int flags);
4280

DESCRIPTION
4281 The sendmsg() function sends a message through a connection-oriented or connectionless socket.
4282 If the socket is connectionless, the message will be sent to the address specified by msghdr. If the
4283 socket is connection-oriented, the destination address in msghdr is ignored.

4284 The function takes the following arguments:

4285 socket Specifies the socket file descriptor.

4286 message Points to a msghdr structure, containing both the destination address and
4287 the buffers for the outgoing message. The length and format of the
4288 address depend on the address family of the socket. The msg_flags
4289 member is ignored.

4290 flags Specifies the type of message transmission. The application may specify
4291 0 or the following flag:

4292 MSG_EOR Terminates a record (if supported by the protocol)

4293 MSG_OOB Sends out-of-band data on sockets that support
4294 out-of-bound data. The significance and semantics
4295 of out-of-band data are protocol-specific.

4296 Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
4297 return value of −1 indicates only locally-detected errors.

4298 If space is not available at the sending socket to hold the message to be transmitted and the
4299 socket file descriptor does not have O_NONBLOCK set, sendmsg() function blocks until space is
4300 available. If space is not available at the sending socket to hold the message to be transmitted
4301 and the socket file descriptor does have O_NONBLOCK set, sendmsg() function will fail.

4302 If the socket protocol supports broadcast and the specified address is a broadcast address for the
4303 socket protocol, sendmsg() will fail if the SO_BROADCAST option is not set for the socket.

4304 RETURN VALUE
4305 Upon successful completion, sendmsg() function returns the number of bytes sent. Otherwise,
4306 −1 is returned and errno is set to indicate the error.

4307 ERRORS
4308 The sendmsg() function will fail if:

4309 [EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

4310 [EBADF] The socket argument is not a valid file descriptor.

4311 [ECONNRESET] A connection was forcibly closed by a peer.

4312 [EINTR] A signal interrupted sendmsg() before any data was transmitted.

4313 [EINVAL] The sum of the iov_len values overflows an ssize_t.

4314 [EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

4315 [ENOTCONN] The socket is connection-oriented but is not connected.

138 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX sendmsg()

4316 [ENOTSOCK] The socket argument does not refer a socket.

4317 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one
4318 or more of the values set in flags.

4319 [EPIPE] The socket is shut down for writing, or the socket is connection-oriented
4320 and the peer is closed or shut down for reading. In the latter case, and if
4321 the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to
4322 the calling process.

4323 [EWOULDBLOCK] or [EAGAIN]
4324 The socket’s file descriptor is marked O_NONBLOCK and the requested
4325 operation would block.

4326 If the address family of the socket is AF_UNIX, then sendmsg() will fail if:

4327 [EACCES] Search permission is denied for a component of the path prefix; or write
4328 access to the named socket is denied.

4329 [EIO] An I/O error occurred while reading from or writing to the file system.

4330 [ELOOP] Too many symbolic links were encountered in translating the pathname
4331 in the socket address.

4332 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
4333 entire pathname exceeded {PATH_MAX} characters.

4334 [ENOENT] A component of the pathname does not name an existing file or the
4335 pathname is an empty string.

4336 [ENOTDIR] A component of the path prefix of the pathname in the socket address is
4337 not a directory.

4338 The sendmsg() function may fail if:

4339 [EDESTADDRREQ] The socket is not connection-oriented and does not have its peer address
4340 set, and no destination address was specified.

4341 [EHOSTUNREACH] The destination host cannot be reached (probably because the host is
4342 down or a remote router cannot reach it).

4343 [EINVAL] The msg_iovlen member of the msghdr structure pointed to by msg is
4344 less than or equal to 0, or is greater than {IOV_MAX}.

4345 [EIO] An I/O error occurred while reading from or writing to the file system.

4346 [EISCONN] A destination address was specified and the socket is connection-oriented
4347 and is already connected.

4348 [ENETDOWN] The local interface used to reach the destination is down.

4349 [ENETUNREACH] No route to the network is present.

4350 [ENOBUFS] Insufficient resources were available in the system to perform the
4351 operation.

4352 [ENOMEM] Insufficient memory was available to fulfill the request.

4353 [ENOSR] There were insufficient STREAMS resources available for the operation to
4354 complete.

Networking Services, Issue 4 139

sendmsg() X/OPEN UNIX Sockets Interfaces

4355 If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

4356 [ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
4357 whose length exceeds {PATH_MAX}.

4358 APPLICATION USAGE
4359 The select() and poll () functions can be used to determine when it is possible to send more data.

4360 SEE ALSO
4361 getsockopt (), poll () recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (), shutdown(),
4362 socket(), <sys/socket.h>.

4363 CHANGE HISTORY
4364 First released in Issue 4.

140 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX sendto()

4365 NAME
4366 sendto — send a message on a socket

4367 SYNOPSIS
4368 UX #include <sys/socket.h>

4369 ssize_t sendto(int socket , const void * message , size_t length , int flags ,
4370 const struct sockaddr * dest_addr , size_t dest_len);
4371

DESCRIPTION
4372 The sendto() function sends a message through a connection-oriented or connectionless socket.
4373 If the socket is connectionless, the message will be sent to the address specified by dest_addr. If
4374 the socket is connection-oriented, dest_addr is ignored.

4375 The function takes the following arguments:

4376 socket Specifies the socket file descriptor.

4377 message Points to a buffer containing the message to be sent.

4378 length Specifies the size of the message in bytes.

4379 flags Specifies the type of message transmission. Values of this argument are
4380 formed by logically OR’ing zero or more of the following flags:

4381 MSG_EOR Terminates a record (if supported by the protocol)

4382 MSG_OOB Sends out-of-band data on sockets that support
4383 out-of-band data. The significance and semantics
4384 of out-of-band data are protocol-specific.

4385 dest_addr Points to a sockaddr structure containing the destination address. The
4386 length and format of the address depend on the address family of the
4387 socket.

4388 dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
4389 argument.

4390 If the socket protocol supports broadcast and the specified address is a broadcast address for the
4391 socket protocol, sendto() will fail if the SO_BROADCAST option is not set for the socket.

4392 The dest_addr argument specifies the address of the target. The length argument specifies the
4393 length of the message.

4394 Successful completion of a call to sendto() does not guarantee delivery of the message. A return
4395 value of −1 indicates only locally-detected errors.

4396 If space is not available at the sending socket to hold the message to be transmitted and the
4397 socket file descriptor does not have O_NONBLOCK set, sendto() blocks until space is available.
4398 If space is not available at the sending socket to hold the message to be transmitted and the
4399 socket file descriptor does have O_NONBLOCK set, sendto() will fail.

4400 RETURN VALUE
4401 Upon successful completion, sendto() returns the number of bytes sent. Otherwise, −1 is
4402 returned and errno is set to indicate the error.

4403 ERRORS
4404 The sendto() function will fail if:

4405 [EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

Networking Services, Issue 4 141

sendto() X/OPEN UNIX Sockets Interfaces

4406 [EBADF] The socket argument is not a valid file descriptor.

4407 [ECONNRESET] A connection was forcibly closed by a peer.

4408 [EINTR] A signal interrupted sendto() before any data was transmitted.

4409 [EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

4410 [ENOTCONN] The socket is connection-oriented but is not connected.

4411 [ENOTSOCK] The socket argument does not refer to a socket.

4412 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one
4413 or more of the values set in flags.

4414 [EPIPE] The socket is shut down for writing, or the socket is connection-oriented
4415 and the peer is closed or shut down for reading. In the latter case, and if
4416 the socket is of type SOCK_STREAM, the SIGPIPE signal is generated to
4417 the calling process.

4418 [EWOULDBLOCK] or [EAGAIN]
4419 The socket’s file descriptor is marked O_NONBLOCK and the requested
4420 operation would block.

4421 If the address family of the socket is AF_UNIX, then sendto() will fail if:

4422 [EACCES] Search permission is denied for a component of the path prefix; or write
4423 access to the named socket is denied.

4424 [EIO] An I/O error occurred while reading from or writing to the file system.

4425 [ELOOP] Too many symbolic links were encountered in translating the pathname
4426 in the socket address.

4427 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} characters, or an
4428 entire pathname exceeded {PATH_MAX} characters.

4429 [ENOENT] A component of the pathname does not name an existing file or the
4430 pathname is an empty string.

4431 [ENOTDIR] A component of the path prefix of the pathname in the socket address is
4432 not a directory.

4433 The sendto() function may fail if:

4434 [EDESTADDRREQ] The socket is not connection-oriented and does not have its peer address
4435 set, and no destination address was specified.

4436 [EHOSTUNREACH] The destination host cannot be reached (probably because the host is
4437 down or a remote router cannot reach it).

4438 [EINVAL] The dest_len argument is not a valid length for the address family.

4439 [EIO] An I/O error occurred while reading from or writing to the file system.

4440 [EISCONN] A destination address was specified and the socket is connection-oriented
4441 and is already connected.

4442 [ENETDOWN] The local interface used to reach the destination is down.

4443 [ENETUNREACH] No route to the network is present.

4444 [ENOBUFS] Insufficient resources were available in the system to perform the
4445 operation.

142 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX sendto()

4446 [ENOMEM] Insufficient memory was available to fulfill the request.

4447 [ENOSR] There were insufficient STREAMS resources available for the operation to
4448 complete.

4449 If the address family of the socket is AF_UNIX, then sendto() may fail if:

4450 [ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
4451 whose length exceeds {PATH_MAX}.

4452 APPLICATION USAGE
4453 The select() and poll () functions can be used to determine when it is possible to send more data.

4454 SEE ALSO
4455 getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), setsockopt (),
4456 shutdown(), socket(), <sys/socket.h>.

4457 CHANGE HISTORY
4458 First released in Issue 4.

Networking Services, Issue 4 143

setsockopt() X/OPEN UNIX Sockets Interfaces

4459 NAME
4460 setsockopt — set the socket options

4461 SYNOPSIS
4462 UX #include <sys/socket.h>

4463 int setsockopt(int socket , int level , int option_name , const void
4464 * option_value , size_t option_len);
4465

DESCRIPTION
4466 The setsockopt () function sets the option specified by the option_name argument, at the protocol
4467 level specified by the level argument, to the value pointed to by the option_value argument for the
4468 socket associated with the file descriptor specified by the socket argument.

4469 The level argument specifies the protocol level at which the option resides. To set options at the
4470 socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
4471 the appropriate protocol number for the protocol controlling the option. For example, to
4472 indicate that an option will be interpreted by the TCP (Transport Control Protocol), set level to
4473 the protocol number of TCP, as defined in the <netinet/in.h> header, or as determined by using
4474 getprotobyname().

4475 The option_name argument specifies a single option to set. The option_name argument and any
4476 specified options are passed uninterpreted to the appropriate protocol module for
4477 interpretations. The <sys/socket.h> header defines the socket level options. The socket level
4478 options can be enabled or disabled. The options are as follows:

4479 SO_DEBUG Turns on recording of debugging information. This option enables or
4480 disables debugging in the underlying protocol modules. This option
4481 takes an int value.

4482 SO_BROADCAST Permits sending of broadcast messages, if this is supported by the
4483 protocol. This option takes an int value.

4484 SO_REUSEADDR Specifies that the rules used in validating addresses supplied to bind()
4485 should allow reuse of local addresses, if this is supported by the protocol.
4486 This option takes an int value.

4487 SO_KEEPALIVE Keeps connections active by enabling the periodic transmission of
4488 messages, if this is supported by the protocol. This option takes an int
4489 value.

4490 If the connected socket fails to respond to these messages, the connection
4491 is broken and processes writing to that socket are notified with a SIGPIPE
4492 signal.

4493 SO_LINGER Lingers on a close() if data is present. This option controls the action
4494 taken when unsent messages queue on a socket and close() is performed.
4495 If SO_LINGER is set, the system blocks the process during close() until it
4496 can transmit the data or until the time expires. If SO_LINGER is not
4497 specified, and close() is issued, the system handles the call in a way that
4498 allows the process to continue as quickly as possible. This option takes a
4499 linger structure, as defined in the <sys/socket.h> header, to specify the
4500 state of the option and linger interval.

4501 SO_OOBINLINE Leaves received out-of-band data (data marked urgent) in line. This
4502 option takes an int value.

4503 SO_SNDBUF Sets send buffer size. This option takes an int value.

144 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX setsockopt()

4504 SO_RCVBUF Sets receive buffer size. This option takes an int value.

4505 For boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
4506 enabled.

4507 Options at other protocol levels vary in format and name.

4508 RETURN VALUE
4509 Upon successful completion, setsockopt () returns 0. Otherwise, −1 is returned and errno is set to
4510 indicate the error.

4511 ERRORS
4512 The setsockopt () function will fail if:

4513 [EBADF] The socket argument is not a valid file descriptor.

4514 [EINVAL] The specified option is invalid at the specified socket level or the socket
4515 has been shut down.

4516 [ENOPROTOOPT] The option is not supported by the protocol.

4517 [ENOTSOCK] The socket argument does not refer to a socket.

4518 The setsockopt () function may fail if:

4519 [ENOMEM] There was insufficient memory available for the operation to complete.

4520 [ENOBUFS] Insufficient resources are available in the system to complete the call.

4521 [ENOSR] There were insufficient STREAMS resources available for the operation to
4522 complete.

4523 APPLICATION USAGE
4524 The setsockopt () function provides an application program with the means to control socket
4525 behaviour. An application program can use setsockopt () to allocate buffer space, control
4526 timeouts, or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level
4527 options available to setsockopt ().

4528 Options may exist at multiple protocol levels. The SO_ options are always present at the
4529 uppermost socket level.

4530 SEE ALSO
4531 bind(), endprotoent(), getsockopt (), socket(), <sys/socket.h>.

4532 CHANGE HISTORY
4533 First released in Issue 4.

Networking Services, Issue 4 145

shutdown() X/OPEN UNIX Sockets Interfaces

4534 NAME
4535 shutdown — shut down socket send and receive operations

4536 SYNOPSIS
4537 UX #include <sys/socket.h>

4538 int shutdown(int socket , int how);
4539

DESCRIPTION

4540 socket Specifies the file descriptor of the socket.

4541 how Specifies the type of shutdown. The values are as follows:

4542 SHUT_RD Disables further receive operations.

4543 SHUT_WR Disables further send operations.

4544 SHUT_RDWR Disables further send and receive operations.

4545 The shutdown() function disables subsequent send and/or receive operations on a socket,
4546 depending on the value of the how argument.

4547 RETURN VALUE
4548 Upon successful completion, shutdown() returns 0. Otherwise, −1 is returned and errno is set to
4549 indicate the error.

4550 ERRORS
4551 The shutdown() function will fail if:

4552 [EBADF] The socket argument is not a valid file descriptor.

4553 [ENOTCONN] The socket is not connected.

4554 [ENOTSOCK] The socket argument does not refer to a socket.

4555 [EINVAL] The how argument is invalid.

4556 The shutdown() function may fail if:

4557 [ENOBUFS] Insufficient resources were available in the system to perform the
4558 operation.

4559 [ENOSR] There were insufficient STREAMS resources available for the operation to
4560 complete.

4561 SEE ALSO
4562 getsockopt (), read(), recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (), socket(),
4563 write(), <sys/socket.h>.

4564 CHANGE HISTORY
4565 First released in Issue 4.

146 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX socket()

4566 NAME
4567 socket — create an endpoint for communication

4568 SYNOPSIS
4569 UX #include <sys/socket.h>

4570 int socket(int domain , int type , int protocol);
4571

DESCRIPTION
4572 The socket() function creates an unbound socket in a communications domain, and returns a file
4573 descriptor that can be used in later function calls that operate on sockets.

4574 The function takes the following arguments:

4575 domain Specifies the communications domain in which a socket is to be created.

4576 type Specifies the type of socket to be created.

4577 protocol Specifies a particular protocol to be used with the socket. Specifying a
4578 protocol of 0 causes socket() to use an unspecified default protocol
4579 appropriate for the requested socket type.

4580 The domain argument specifies the address family used in the communications domain. The
4581 address families supported by the system are implementation-dependent.

4582 The <sys/socket.h> header defines at least the following values for the domain argument:

4583 AF_UNIX File system pathnames.

4584 AF_INET Internet address.

4585 The type argument specifies the socket type, which determines the semantics of communication
4586 over the socket. The socket types supported by the system are implementation-dependent.
4587 Possible socket types include:

4588 SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-oriented byte
4589 streams, and may provide a transmission mechanism for out-of-band
4590 data.

4591 SOCK_DGRAM Provides datagrams, which are connectionless, unreliable messages of
4592 fixed maximum length.

4593 SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-oriented
4594 transmission path for records. A record can be sent using one or more
4595 output operations and received using one or more input operations, but a
4596 single operation never transfers part of more than one record. Record
4597 boundaries are visible to the receiver via the MSG_EOR flag.

4598 If the protocol argument is non-zero, it must specify a protocol that is supported by the address
4599 family. The protocols supported by the system are implementation-dependent.

4600 RETURN VALUE
4601 Upon successful completion, socket() returns a nonnegative integer, the socket file descriptor.
4602 Otherwise a value of −1 is returned and errno is set to indicate the error.

4603 ERRORS
4604 The socket() function will fail if:

4605 [EACCES] The process does not have appropriate privileges.

4606 [EAFNOSUPPORT] The implementation does not support the specified address family.

Networking Services, Issue 4 147

socket() X/OPEN UNIX Sockets Interfaces

4607 [EMFILE] No more file descriptors are available for this process.

4608 [ENFILE] No more file descriptors are available for the system.

4609 [EPROTONOSUPPORT]
4610 The protocol is not supported by the address family, or the protocol is not
4611 supported by the implementation.

4612 [EPROTOTYPE] The socket type is not supported by the protocol.

4613 The socket() function may fail if:

4614 [ENOBUFS] Insufficient resources were available in the system to perform the
4615 operation.

4616 [ENOMEM] Insufficient memory was available to fulfill the request.

4617 [ENOSR] There were insufficient STREAMS resources available for the operation to
4618 complete.

4619 APPLICATION USAGE
4620 The documentation for specific address families specify which protocols each address family
4621 supports. The documentation for specific protocols specify which socket types each protocol
4622 supports.

4623 The application can determine if an address family is supported by trying to create a socket with
4624 domain set to the protocol in question.

4625 SEE ALSO
4626 accept(), bind(), connect(), getsockname(), getsockopt (), listen(), recv(), recvfrom(), recvmsg(),
4627 send(), sendmsg(), setsockopt (), shutdown(), socketpair (), <netinet/in.h>, <sys/socket.h>.

4628 CHANGE HISTORY
4629 First released in Issue 4.

148 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces X/OPEN UNIX socketpair()

4630 NAME
4631 socketpair — create a pair of connected sockets

4632 SYNOPSIS
4633 UX #include <sys/socket.h>

4634 int socketpair(int domain , int type , int protocol ,
4635 int socket_vector [2]);
4636

DESCRIPTION
4637 The socketpair () function creates an unbound pair of connected sockets in a specified domain, of a
4638 specified type, under the protocol optionally specified by the protocol argument. The two sockets
4639 are identical. The file descriptors used in referencing the created sockets are returned in
4640 socket_vector[0] and socket_vector[1].

4641 domain Specifies the communications domain in which the sockets are to be
4642 created.

4643 type Specifies the type of sockets to be created.

4644 protocol Specifies a particular protocol to be used with the sockets. Specifying a
4645 protocol of 0 causes socketpair () to use an unspecified default protocol
4646 appropriate for the requested socket type.

4647 socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket
4648 pair.

4649 The type argument specifies the socket type, which determines the semantics of communications
4650 over the socket. The socket types supported by the system are implementation-dependent.
4651 Possible socket types include:

4652 SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-oriented byte
4653 streams, and may provide a transmission mechanism for out-of-band
4654 data.

4655 SOCK_DGRAM Provides datagrams, which are connectionless, unreliable messages of
4656 fixed maximum length.

4657 SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-oriented
4658 transmission path for records. A record can be sent using one or more
4659 output operations and received using one or more input operations, but a
4660 single operation never transfers part of more than one record. Record
4661 boundaries are visible to the receiver via the MSG_EOR flag.

4662 If the protocol argument is non-zero, it must specify a protocol that is supported by the address
4663 family. The protocols supported by the system are implementation-dependent.

4664 RETURN VALUE
4665 Upon successful completion, this function returns 0. Otherwise, −1 is returned and errno is set to
4666 indicate the error.

4667 ERRORS
4668 The socketpair () function will fail if:

4669 [EAFNOSUPPORT] The implementation does not support the specified address family.

4670 [EMFILE] No more file descriptors are available for this process.

4671 [ENFILE] No more file descriptors are available for the system.

Networking Services, Issue 4 149

socketpair() X/OPEN UNIX Sockets Interfaces

4672 [EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

4673 [EPROTONOSUPPORT]
4674 The protocol is not supported by the address family, or the protocol is not
4675 supported by the implementation.

4676 [EPROTOTYPE] The socket type is not supported by the protocol.

4677 The socketpair () function may fail if:

4678 [EACCES] The process does not have appropriate privileges.

4679 [ENOMEM] Insufficient memory was available to fulfill the request.

4680 [ENOBUFS] Insufficient resources were available in the system to perform the
4681 operation.

4682 [ENOSR] There were insufficient STREAMS resources available for the operation to
4683 complete.

4684 APPLICATION USAGE
4685 The documentation for specific address families specifies which protocols each address family
4686 supports. The documentation for specific protocols specifies which socket types each protocol
4687 supports.

4688 The socketpair () function is used primarily with UNIX domain sockets and need not be
4689 supported for other domains.

4690 SEE ALSO
4691 socket(), <sys/socket.h>.

4692 CHANGE HISTORY
4693 First released in Issue 4.

150 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Interfaces Addendum to XSH write()

4694 NAME
4695 write, writev — write on a file

4696 Note: The XSH specification contains the basic definition of this interface. The following
4697 additional information pertains to Sockets.

4698 DESCRIPTION
4699 UX If fildes refers to a socket, write() is equivalent to send() with no flags set.

4700 CHANGE HISTORY
4701 First released in Issue 4.

Networking Services, Issue 4 151

Sockets Interfaces

152 X/Open CAE Specification (1994) (Draft March 15, 1995)

4702

Chapter 9

Sockets Headers

4703 This chapter describes the contents of headers used by the X/Open Sockets functions, macros
4704 and external variables.

4705 Headers contain the definition of symbolic constants, common structures, preprocessor macros
4706 and defined types. Each function in Chapter 8 specifies the headers that an application must
4707 include in order to use that function. In most cases only one header is required. These headers
4708 are present on an application development system; they do not have to be present on the target
4709 execution system.

Networking Services, Issue 4 153

<fcntl.h> Addendum to XSH Sockets Headers

4710 NAME
4711 fcntl.h — file control options

4712 Note: The XSH specification contains the basic definition of this interface. The following
4713 additional information pertains to Sockets.

4714 DESCRIPTION
4715 UX The <fcntl.h> header defines the following additional values for cmd used by fcntl():

4716 F_GETOWN Get process or process group ID to receive SIGURG signals.

4717 F_SETOWN Set process or process group ID to receive SIGURG signals.

4718 CHANGE HISTORY
4719 First released in Issue 4.

154 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Headers <sys/socket.h>

4720 NAME
4721 sys/socket.h — Internet Protocol family

4722 SYNOPSIS
4723 UX #include <sys/socket.h>
4724

DESCRIPTION
4725 The <sys/socket.h> header defines the unsigned integral type sa_family_t through typedef.

4726 The <sys/socket.h> header defines the sockaddr structure that includes at least the following
4727 members:

4728 sa_family_t sa_family address family
4729 char sa_data[] socket address (variable-length data)

4730 The <sys/socket.h> header defines the msghdr structure that includes at least the following
4731 members:

4732 void *msg_name optional address
4733 size_t msg_namelen size of address
4734 struct iovec *msg_iov scatter/gather array
4735 int msg_iovlen members in msg_iov
4736 void *msg_control ancillary data, see below
4737 size_t msg_controllen ancillary data buffer len
4738 int msg_flags flags on received message

4739 The <sys/socket.h> header defines the cmsghdr structure that includes at least the following
4740 members:

4741 size_t cmsg_len data byte count, including hdr
4742 int cmsg_level originating protocol
4743 int cmsg_type protocol-specific type

4744 Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr structure followed
4745 by a data array. The data array contains the ancillary data message, and the cmsghdr structure
4746 contains descriptive information that allows an application to correctly parse the data.

4747 The values for cmsg_level will be legal values for the level argument to the getsockopt () and
4748 setsockopt () functions. The system documentation should specify the cmsg_type definitions for
4749 the supported protocols.

4750 Ancillary data is also possible at the socket level. The <sys/socket.h> header defines the
4751 following macro for use as the cmsg_type value when cmsg_level is SOL_SOCKET:

4752 SCM_RIGHTS Indicates that the data array contains the access rights to be sent or
4753 received.

4754 The <sys/socket.h> header defines the following macros to gain access to the data arrays in the
4755 ancillary data associated with a message header:

4756 CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns an
4757 unsigned character pointer to the data array associated with the cmsghdr
4758 structure.

4759 CMSG_NXTHDR(mhdr,cmsg)
4760 If the first argument is a pointer to a msghdr structure and the second
4761 argument is a pointer to a cmsghdr structure in the ancillary data,
4762 pointed to by the msg_control field of that msghdr structure, this macro
4763 returns a pointer to the next cmsghdr structure, or a null pointer if this
4764 structure is the last cmsghdr in the ancillary data.

Networking Services, Issue 4 155

<sys/socket.h> Sockets Headers

4765 CMSG_FIRSTHDR(mhdr)
4766 If the argument is a pointer to a msghdr structure, this macro returns a
4767 pointer to the first cmsghdr structure in the ancillary data associated with
4768 this msghdr structure, or a null pointer if there is no ancillary data
4769 associated with the msghdr structure.

4770 The <sys/socket.h> header defines the linger structure that includes at least the following
4771 members:

4772 int l_onoff indicates whether linger option is enabled
4773 int l_linger linger time, in seconds

4774 The <sys/socket.h> header defines the following macros, with distinct integral values:

4775 SOCK_DGRAM Datagram socket
4776 SOCK_STREAM Byte-stream socket
4777 SOCK_SEQPACKET Sequenced-packet socket

4778 The <sys/socket.h> header defines the following macro for use as the level argument of
4779 setsockopt () and getsockopt ().

4780 SOL_SOCKET Options to be accessed at socket level, not protocol level.

4781 The <sys/socket.h> header defines the following macros, with distinct integral values, for use as
4782 the option_name argument in getsockopt () or setsockopt () calls:

4783 SO_DEBUG Debugging information is being recorded.
4784 SO_ACCEPTCONN Socket is accepting connections.
4785 SO_BROADCAST Transmission of broadcast messages is supported.
4786 SO_REUSEADDR Reuse of local addresses is supported.
4787 SO_KEEPALIVE Connections are kept alive with periodic messages.
4788 SO_LINGER Socket lingers on close.
4789 SO_OOBINLINE Out-of-band data is transmitted in line.
4790 SO_SNDBUF Send buffer size.
4791 SO_RCVBUF Receive buffer size.
4792 SO_ERROR Socket error status.
4793 SO_TYPE Socket type.

4794 The <sys/socket.h> header defines the following macros, with distinct integral values, for use as
4795 the valid values for the msg_flags field in the msghdr structure, or the flags parameter in
4796 recvfrom(), recvmsg(), sendto() or sendmsg() calls:

4797 MSG_CTRUNC Control data truncated.
4798 MSG_EOR Terminates a record (if supported by the protocol).
4799 MSG_OOB Out-of-band data.
4800 MSG_PEEK Leave received data in queue.
4801 MSG_TRUNC Normal data truncated.
4802 MSG_WAITALL Wait for complete message.

4803 The <sys/socket.h> header defines the following macros, with distinct integral values:

4804 AF_UNIX UNIX domain sockets
4805 AF_INET Internet domain sockets

4806 The <sys/socket.h> header defines the following macros, with distinct integral values:

4807 SHUT_RD Disables further receive operations.
4808 SHUT_WR Disables further send operations.
4809 SHUT_RDWR Disables further send and receive operations.

156 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Headers <sys/socket.h>

4810 The following are declared as functions, and may also be defined as macros:

4811 int accept(int socket , struct sockaddr * address ,
4812 size_t *address_len);
4813 int bind(int socket , const struct sockaddr * address ,
4814 size_t address_len);
4815 int connect(int socket , const struct sockaddr * address ,
4816 size_t address_len);
4817 int getpeername(int socket , struct sockaddr * address ,
4818 size_t * address_len);
4819 int getsockname(int socket , struct sockaddr * address ,
4820 size_t * address_len);
4821 int getsockopt(int socket , int level , int option_name ,
4822 void * option_value , size_t * option_len);
4823 int listen(int socket , int backlog);
4824 ssize_t recv(int socket , void * buffer , size_t length , int flags);
4825 ssize_t recvfrom(int socket , void * buffer , size_t length ,
4826 int flags , struct sockaddr * address , size_t * address_len);
4827 ssize_t recvmsg(int socket , struct msghdr * message , int flags);
4828 ssize_t send(int socket , const void * message , size_t length , int flags);
4829 ssize_t sendmsg(int socket , const struct msghdr * message , int flags);
4830 ssize_t sendto(int socket , const void * message , size_t length , int flags ,
4831 const struct sockaddr * dest_addr , size_t dest_len);
4832 int setsockopt(int socket , int level , int option_name ,
4833 const void * option_value , size_t option_len);
4834 int shutdown(int socket , int how);
4835 int socket(int domain , int type , int protocol);
4836 int socketpair(int domain , int type , int protocol ,
4837 int socket_vector [2]);

4838 SEE ALSO
4839 accept(), bind(), connect(), getpeername(), getsockname(), getsockopt (), listen(), recv(), recfrom(),
4840 recvmsg(), send(), sendmsg(), sendto(), setsockopt (), shutdown(), socket(), socketpair ().

4841 CHANGE HISTORY
4842 First released in Issue 4.

Networking Services, Issue 4 157

<sys/stat.h> Addendum to XSH Sockets Headers

4843 NAME
4844 sys/stat.h — data returned by the stat() function

4845 Note: The XSH specification contains the basic definition of this interface. The following
4846 additional information pertains to Sockets.

4847 DESCRIPTION
4848 UX The following additional symbolic name for the value of st_mode is defined:

4849 File type:

4850 S_IFMT type of file
4851 S_IFSOCK socket

4852 The following macro will test whether a file is of the specified type. The value m supplied to the
4853 macro is the value of st_mode from a stat structure. The macro evaluates to a non-zero value if
4854 the test is true, 0 if the test is false.

4855 S_ISSOCK (m) test for a socket

4856 CHANGE HISTORY
4857 First released in Issue 4.

158 X/Open CAE Specification (1994) (Draft March 15, 1995)

Sockets Headers <sys/un.h>

4858 NAME
4859 sys/un.h — definitions for UNIX-domain sockets

4860 SYNOPSIS
4861 UX #include <sys/un.h>
4862

DESCRIPTION
4863 The <sys/un.h> header defines the sockaddr_un structure that includes at least the following
4864 members:

4865 sa_family_t sun_family address family
4866 char sun_path[] socket pathname

4867 The sockaddr_un structure is used to store addresses for UNIX domain sockets. Values of this
4868 type must be cast to struct sockaddr for use with the socket interfaces defined in this document.

4869 The <sys/un.h> header defines the type sa_family_t as described in <sys/socket.h>.

4870 SEE ALSO
4871 bind(), socket(), socketpair ().

Networking Services, Issue 4 159

Sockets Headers

160 X/Open CAE Specification (1994) (Draft March 15, 1995)

4872

Chapter 10

IP Address Resolution Interfaces

4873 Address Resolution refers to a set of interfaces that obtain network information and are usable
4874 in conjunction with both XTI and Sockets when using the Internet Protocol (IP).

4875 This chapter provides reference manual pages for the address resolution API. This includes
4876 functions, macros and external variables to support application portability at the C-language
4877 source level.

Networking Services, Issue 4 161

endhostent() X/OPEN UNIX IP Address Resolution Interfaces

4878 NAME
4879 endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent — network host database
4880 functions

4881 SYNOPSIS
4882 UX #include <netdb.h>

4883 extern int h_errno;

4884 void endhostent(void);

4885 struct hostent *gethostbyaddr(const void * addr , size_t len , int type);

4886 struct hostent *gethostbyname(const char * name);

4887 struct hostent *gethostent(void);

4888 void sethostent(int stayopen);
4889

DESCRIPTION
4890 The gethostent(), gethostbyaddr (), and gethostbyname() functions each return a pointer to a
4891 hostent structure, the members of which contain the fields of an entry in the network host
4892 database.

4893 The gethostent() function reads the next entry of the database, opening a connection to the
4894 database if necessary.

4895 The gethostbyaddr () function searches the database from the beginning and finds the first entry
4896 for which the address family specified by type matches the h_addrtype member and the address
4897 pointed to by addr occurs in h_addrlist, opening a connection to the database if necessary. The
4898 addr argument is a pointer to the binary-format (that is, not null-terminated) address in network
4899 byte order, whose length is specified by the len argument. The datatype of the address depends
4900 on the address family. For an address of type AF_INET, this is an in_addr structure, defined in
4901 <netinet/in.h>.

4902 The gethostbyname() function searches the database from the beginning and finds the first entry
4903 for which the host name specified by name matches the h_name member, opening a connection
4904 to the database if necessary.

4905 The sethostent() function opens a connection to the network host database, and sets the position
4906 of the next entry to the first entry. If the stayopen argument is non-zero, the connection to the
4907 host database will not be closed after each call to gethostent() (either directly, or indirectly
4908 through one of the other gethost*() functions).

4909 The endhostent() function closes the connection to the database.

4910 RETURN VALUE
4911 On successful completion, gethostbyaddr (), gethostbyname() and gethostent() return a pointer to a
4912 hostent structure if the requested entry was found, and a null pointer if the end of the database
4913 was reached or the requested entry was not found. Otherwise, a null pointer is returned.

4914 On unsuccessful completion, gethostbyaddr () and gethostbyname() functions set h_errno to
4915 indicate the error.

4916 ERRORS
4917 No errors are defined for endhostent(), gethostent() and sethostent().

4918 The gethostbyaddr () and gethostbyname() functions will fail in the following cases, setting h_errno
4919 to the value shown in the list below. Any changes to errno are unspecified.

162 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX endhostent()

4920 [HOST_NOT_FOUND]
4921 No such host is known.

4922 [TRY_AGAIN] A temporary and possibly transient error occurred, such as a failure of a
4923 server to respond.

4924 [NO_RECOVERY] An unexpected server failure occurred which can not be recovered.

4925 [NO_DATA] The server recognised the request and the name but no address is
4926 available. Another type of request to the name server for the domain
4927 might return an answer.

4928 APPLICATION USAGE
4929 The gethostent(), gethostbyaddr (), and gethostbyname() functions may return pointers to static
4930 data, which may be overwritten by subsequent calls to any of these functions.

4931 These functions are generally used with the Internet address family.

4932 SEE ALSO
4933 endservent(), htonl(), inet_addr(), <netdb.h>.

4934 CHANGE HISTORY
4935 First released in Issue 4.

Networking Services, Issue 4 163

endnetent() X/OPEN UNIX IP Address Resolution Interfaces

4936 NAME
4937 endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

4938 SYNOPSIS
4939 UX #include <netdb.h>

4940 void endnetent(void);

4941 struct netent *getnetbyaddr(in_addr_t net , int type);

4942 struct netent *getnetbyname(const char * name);

4943 struct netent *getnetent(void);

4944 void setnetent(int stayopen);
4945

DESCRIPTION
4946 The getnetbyaddr(), getnetbyname() and getnetent(), functions each return a pointer to a netent
4947 structure, the members of which contain the fields of an entry in the network database.

4948 The getnetent() function reads the next entry of the database, opening a connection to the
4949 database if necessary.

4950 The getnetbyaddr() function searches the database from the beginning, and finds the first entry
4951 for which the address family specified by type matches the n_addrtype member and the network
4952 number net matches the n_net member, opening a connection to the database if necessary. The
4953 net argument is the network number in host byte order.

4954 The getnetbyname() function searches the database from the beginning and finds the first entry
4955 for which the network name specified by name matches the n_name member, opening a
4956 connection to the database if necessary.

4957 The setnetent() function opens and rewinds the database. If the stayopen argument is non-zero,
4958 the connection to the net database will not be closed after each call to getnetent() (either directly,
4959 or indirectly through one of the other getnet*() functions).

4960 The endnetent() function closes the database.

4961 RETURN VALUE
4962 On successful completion, getnetbyaddr(), getnetbyname() and getnetent(), return a pointer to a
4963 netent structure if the requested entry was found, and a null pointer if the end of the database
4964 was reached or the requested entry was not found. Otherwise, a null pointer is returned.

4965 ERRORS
4966 No errors are defined.

4967 APPLICATION USAGE
4968 The getnetbyaddr(), getnetbyname() and getnetent(), functions may return pointers to static data,
4969 which may be overwritten by subsequent calls to any of these functions.

4970 These functions are generally used with the Internet address family.

4971 SEE ALSO
4972 <netdb.h>.

4973 CHANGE HISTORY
4974 First released in Issue 4.

164 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX endprotoent()

4975 NAME
4976 endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent — network protocol
4977 database functions

4978 SYNOPSIS
4979 UX #include <netdb.h>

4980 void endprotoent(void);

4981 struct protoent *getprotobyname(const char * name);

4982 struct protoent *getprotobynumber(int proto);

4983 struct protoent *getprotoent(void);

4984 void setprotoent(int stayopen);
4985

DESCRIPTION
4986 The getprotobyname(), getprotobynumber() and getprotoent(), functions each return a pointer to a
4987 protoent structure, the members of which contain the fields of an entry in the network protocol
4988 database.

4989 The getprotoent() function reads the next entry of the database, opening a connection to the
4990 database if necessary.

4991 The getprotobyname() function searches the database from the beginning and finds the first entry
4992 for which the protocol name specified by name matches the p_name member, opening a
4993 connection to the database if necessary.

4994 The getprotobynumber() function searches the database from the beginning and finds the first
4995 entry for which the protocol number specified by number matches the p_proto member, opening
4996 a connection to the database if necessary.

4997 The setprotoent() function opens a connection to the database, and sets the next entry to the first
4998 entry. If the stayopen argument is non-zero, the connection to the network protocol database will
4999 not be closed after each call to getprotoent() (either directly, or indirectly through one of the other
5000 getproto*() functions).

5001 The endprotoent() function closes the connection to the database.

5002 RETURN VALUES
5003 On successful completion, getprotobyname(), getprotobynumber() and getprotoent() functions
5004 return a pointer to a protoent structure if the requested entry was found, and a null pointer if the
5005 end of the database was reached or the requested entry was not found. Otherwise, a null pointer
5006 is returned.

5007 ERRORS
5008 No errors are defined.

5009 APPLICATION USAGE
5010 The getprotobyname(), getprotobynumber() and getprotoent() functions may return pointers to
5011 static data, which may be overwritten by subsequent calls to any of these functions.

5012 These functions are generally used with the Internet address family.

5013 SEE ALSO
5014 <netdb.h>.

5015 CHANGE HISTORY
5016 First released in Issue 4.

Networking Services, Issue 4 165

endservent() X/OPEN UNIX IP Address Resolution Interfaces

5017 NAME
5018 endservent, getservbyport, getservbyname, getservent, setservent — network services database
5019 functions

5020 SYNOPSIS
5021 UX #include <netdb.h>

5022 void endservent(void);

5023 struct servent *getservbyname(const char * name, const char * proto);

5024 struct servent *getservbyport(int port , const char * proto);

5025 struct servent *getservent(void);

5026 void setservent(int stayopen);
5027

DESCRIPTION
5028 The getservbyname(), getservbyport() and getservent() functions each return a pointer to a servent
5029 structure, the members of which contain the fields of an entry in the network services database.

5030 The getservent() function reads the next entry of the database, opening a connection to the
5031 database if necessary.

5032 The getservbyname() function searches the database from the beginning and finds the first entry
5033 for which the service name specified by name matches the s_name member and the protocol
5034 name specified by proto matches the s_proto member, opening a connection to the database if
5035 necessary. If proto is a null pointer, any value of the s_proto member will be matched.

5036 The getservbyport() function searches the database from the beginning and finds the first entry
5037 for which the port specified by port matches the s_port member and the protocol name specified
5038 by proto matches the s_proto member, opening a connection to the database if necessary. If proto
5039 is a null pointer, any value of the s_proto member will be matched. The port argument must be
5040 in network byte order.

5041 The setservent() function opens a connection to the database, and sets the next entry to the first
5042 entry. If the stayopen argument is non-zero, the net database will not be closed after each call to
5043 the getservent() function (either directly, or indirectly through one of the other getserv*()
5044 functions).

5045 The endservent() function closes the database.

5046 RETURN VALUES
5047 On successful completion, getservbyname(), getservbyport() and getservent() return a pointer to a
5048 servent structure if the requested entry was found, and a null pointer if the end of the database
5049 was reached or the requested entry was not found. Otherwise, a null pointer is returned.

5050 ERRORS
5051 No errors are defined.

5052 APPLICATION USAGE
5053 The port argument of getservbyport() need not be compatible with the port values of all address
5054 families.

5055 The getservent(), getservbyname() and getservbyport() functions may return pointers to static data,
5056 which may be overwritten by subsequent calls to any of these functions.

5057 These functions are generally used with the Internet address family.

166 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX endservent()

5058 SEE ALSO
5059 endhostent(), endprotoent(), htonl(), inet_addr(), <netdb.h>.

5060 CHANGE HISTORY
5061 First released in Issue 4.

Networking Services, Issue 4 167

gethostbyaddr() X/OPEN UNIX IP Address Resolution Interfaces

5062 NAME
5063 gethostbyaddr, gethostbyname, gethostent — network host database functions

5064 SYNOPSIS
5065 UX #include <netdb.h>

5066 struct hostent *gethostbyaddr(const void * addr , size_t len , int type);

5067 struct hostent *gethostbyname(const char * name);

5068 struct hostent *gethostent(void);
5069

DESCRIPTION
5070 Refer to endhostent().

5071 CHANGE HISTORY
5072 First released in Issue 4.

168 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX gethostname()

5073 NAME
5074 gethostname — get name of current host

5075 SYNOPSIS
5076 UX #include <unistd.h>

5077 int gethostname(char * name, size_t namelen);
5078

DESCRIPTION
5079 The gethostname() function returns the standard host name for the current machine. The namelen
5080 argument specifies the size of the array pointed to by the name argument. The returned name is
5081 null-terminated, except that if namelen is an insufficient length to hold the host name, then the
5082 returned name is truncated and it is unspecified whether the returned name is null-terminated.

5083 Host names are limited to 255 bytes.

5084 RETURN VALUE
5085 On successful completion, 0 is returned. Otherwise, −1 is returned.

5086 ERRORS
5087 No errors are defined.

5088 SEE ALSO
5089 gethostid () (in the XSH specification), uname(), <unistd.h>.

5090 CHANGE HISTORY
5091 First released in Issue 4.

Networking Services, Issue 4 169

getnetbyaddr() X/OPEN UNIX IP Address Resolution Interfaces

5092 NAME
5093 getnetbyaddr, getnetbyname, getnetent — network database functions

5094 SYNOPSIS
5095 UX #include <netdb.h>

5096 struct netent *getnetbyaddr(in_addr_t net , int type);

5097 struct netent *getnetbyname(const char * name);

5098 struct netent *getnetent(void);
5099

DESCRIPTION
5100 Refer to endnetent().

5101 CHANGE HISTORY
5102 First released in Issue 4.

170 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX getprotobynumber()

5103 NAME
5104 getprotobynumber, getprotobyname, getprotoent — network protocol database functions

5105 SYNOPSIS
5106 UX #include <netdb.h>

5107 struct protoent *getprotobyname(const char * name);

5108 struct protoent *getprotobynumber(int proto);

5109 struct protoent *getprotoent(void);
5110

DESCRIPTION
5111 Refer to endprotoent().

5112 CHANGE HISTORY
5113 First released in Issue 4.

Networking Services, Issue 4 171

getservbyport() X/OPEN UNIX IP Address Resolution Interfaces

5114 NAME
5115 getservbyport, getservbyname, getservent — network services database functions

5116 SYNOPSIS
5117 UX #include <netdb.h>

5118 struct servent *getservbyname(const char * name, const char * proto);

5119 struct servent *getservbyport(int port , const char * proto);

5120 struct servent *getservent(void);
5121

DESCRIPTION
5122 Refer to endservent().

5123 CHANGE HISTORY
5124 First released in Issue 4.

172 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX h_errno

5125 NAME
5126 h_errno — error return value for network database operations

5127 SYNOPSIS
5128 UX extern int h_errno;
5129

DESCRIPTION
5130 Refer to endhostent().

5131 CHANGE HISTORY
5132 First released in Issue 4.

Networking Services, Issue 4 173

htonl() X/OPEN UNIX IP Address Resolution Interfaces

5133 NAME
5134 htonl, htons, ntohl, ntohs — convert values between host and network byte order

5135 SYNOPSIS
5136 UX #include <arpa/inet.h>

5137 in_addr_t htonl(in_addr_t hostlong);

5138 in_port_t htons(in_port_t hostshort);

5139 in_addr_t ntohl(in_addr_t netlong);

5140 in_port_t ntohs(in_port_t netshort);
5141

DESCRIPTION
5142 These functions convert 16-bit and 32-bit quantities between network byte order and host byte
5143 order.

5144 RETURN VALUES
5145 The htonl() and htons() functions return the argument value converted from host to network
5146 byte order.

5147 The ntohl() and ntohs() functions return the argument value converted from network to host
5148 byte order.

5149 ERRORS
5150 No errors are defined.

5151 APPLICATION USAGE
5152 These functions are most often used in conjunction with Internet addresses and ports as
5153 returned by gethostent() and getservent().

5154 On some architectures these functions are defined as macros that expand to the value of their
5155 argument.

5156 SEE ALSO
5157 endhostent(), endservent(), <arpa/inet.h>.

5158 CHANGE HISTORY
5159 First released in Issue 4.

174 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX inet_addr()

5160 NAME
5161 inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa — Internet address
5162 manipulation

5163 SYNOPSIS
5164 UX #include <arpa/inet.h>

5165 in_addr_t inet_addr(const char * cp);

5166 in_addr_t inet_lnaof(struct in_addr in);

5167 struct in_addr inet_makeaddr(in_addr_t net , in_addr_t lna);

5168 in_addr_t inet_netof(struct in_addr in);

5169 in_addr_t inet_network(const char * cp);

5170 char *inet_ntoa(struct in_addr in);
5171

DESCRIPTION
5172 The inet_addr() function converts the string pointed to by cp, in the Internet standard dot
5173 notation, to an integer value suitable for use as an Internet address.

5174 The inet_lnaof () function takes an Internet host address specified by in and extracts the local
5175 network address part, in host byte order.

5176 The inet_makeaddr () function takes the Internet network number specified by net and the local
5177 network address specified by lna, both in host byte order, and constructs an Internet address
5178 from them.

5179 The inet_netof() function takes an Internet host address specified by in and extracts the network
5180 number part, in host byte order.

5181 The inet_network() function converts the string pointed to by cp, in the Internet standard dot
5182 notation, to an integer value suitable for use as an Internet network number.

5183 The inet_ntoa () function converts the Internet host address specified by in to a string in the
5184 Internet standard dot notation.

5185 All Internet addresses are returned in network order (bytes ordered from left to right).

5186 Values specified using dot notation take one of the following forms:

5187 a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned,
5188 from left to right, to the four bytes of an Internet address.

5189 a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit
5190 quantity and placed in the rightmost two bytes of the network address. This
5191 makes the three-part address format convenient for specifying Class B network
5192 addresses as 128. net . host .

5193 a.b When a two-part address is supplied, the last part is interpreted as a 24-bit
5194 quantity and placed in the rightmost three bytes of the network address. This
5195 makes the two-part address format convenient for specifying Class A network
5196 addresses as net . host .

5197 a When only one part is given, the value is stored directly in the network address
5198 without any byte rearrangement.

5199 All numbers supplied as parts in dot notation may be decimal, octal, or hexadecimal, as
5200 specified in the ISO C standard (that is, a leading 0x or 0X implies hexadecimal; otherwise, a
5201 leading 0 implies octal; otherwise, the number is interpreted as decimal).

Networking Services, Issue 4 175

inet_addr() X/OPEN UNIX IP Address Resolution Interfaces

5202 RETURN VALUE
5203 Upon successful completion, inet_addr() returns the Internet address. Otherwise, it returns
5204 (in_addr_t)−1.

5205 Upon successful completion, inet_network() returns the converted Internet network number.
5206 Otherwise, it returns (in_addr_t)−1.

5207 The inet_makeaddr () function returns the constructed Internet address.

5208 The inet_lnaof () function returns the local network address part.

5209 The inet_netof() function returns the network number.

5210 The inet_ntoa () function returns a pointer to the network address in Internet-standard dot
5211 notation.

5212 ERRORS
5213 No errors are defined.

5214 APPLICATION USAGE
5215 The return value of inet_ntoa () may point to static data that may be overwritten by subsequent
5216 calls to inet_ntoa ().

5217 SEE ALSO
5218 endhostent(), endnetent(), <arpa/inet.h>.

5219 CHANGE HISTORY
5220 First released in Issue 4.

176 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX ntohl()

5221 NAME
5222 ntohl, ntohs — convert values between host and network byte order

5223 SYNOPSIS
5224 UX #include <arpa/inet.h>

5225 in_addr_t ntohl(in_addr_t netlong);

5226 in_port_t ntohs(in_port_t netshort);
5227

DESCRIPTION
5228 Refer to htonl().

5229 CHANGE HISTORY
5230 First released in Issue 4.

Networking Services, Issue 4 177

sethostent() X/OPEN UNIX IP Address Resolution Interfaces

5231 NAME
5232 sethostent — network host database function

5233 SYNOPSIS
5234 UX #include <netdb.h>

5235 void sethostent(int stayopen);
5236

DESCRIPTION
5237 Refer to endhostent().

5238 CHANGE HISTORY
5239 First released in Issue 4.

178 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX setnetent()

5240 NAME
5241 setnetent — network database function

5242 SYNOPSIS
5243 UX #include <netdb.h>

5244 void setnetent(int stayopen);
5245

DESCRIPTION
5246 Refer to endnetent().

5247 CHANGE HISTORY
5248 First released in Issue 4.

Networking Services, Issue 4 179

setprotoent() X/OPEN UNIX IP Address Resolution Interfaces

5249 NAME
5250 setprotoent — network protocol database function

5251 SYNOPSIS
5252 UX #include <netdb.h>

5253 void setprotoent(int stayopen);
5254

DESCRIPTION
5255 Refer to endprotoent().

5256 CHANGE HISTORY
5257 First released in Issue 4.

180 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Interfaces X/OPEN UNIX setservent()

5258 NAME
5259 setservent — network services database function

5260 SYNOPSIS
5261 UX #include <netdb.h>

5262 void setservent(int stayopen);
5263

DESCRIPTION
5264 Refer to endservent().

5265 CHANGE HISTORY
5266 First released in Issue 4.

Networking Services, Issue 4 181

IP Address Resolution Interfaces

182 X/Open CAE Specification (1994) (Draft March 15, 1995)

5267

Chapter 11

IP Address Resolution Headers

5268 This chapter provides reference manual pages on the headers for the Address Resolution API.

Networking Services, Issue 4 183

<arpa/inet.h> IP Address Resolution Headers

5269 NAME
5270 arpa/inet.h — definitions for internet operations

5271 SYNOPSIS
5272 UX #include <arpa/inet.h>
5273

DESCRIPTION
5274 The <arpa/inet.h> header defines the type in_port_t and the type in_addr_t as defined in
5275 <netinet/in.h>.

5276 The <arpa/inet.h> header defines the in_addr structure, as defined in <netinet/in.h>.

5277 The following may be declared as functions, or defined as macros, or both:

5278 in_addr_t htonl(in_addr_t hostlong);
5279 in_port_t htons(in_port_t hostshort);
5280 in_addr_t ntohl(in_addr_t netlong);
5281 in_port_t ntohs(in_port_t netshort);

5282 The following are declared as functions, and may also be defined as macros:

5283 in_addr_t inet_addr(const char * cp);
5284 in_addr_t inet_lnaof(struct in_addr in);
5285 struct in_addr inet_makeaddr(in_addr_t net , in_addr_t lna);
5286 in_addr_t inet_netof(struct in_addr in);
5287 in_addr_t inet_network(const char * cp);
5288 char *inet_ntoa(struct in_addr in);

5289 Inclusion of the <arpa/inet.h> header may also make visible all symbols from <netinet/in.h>.

5290 SEE ALSO
5291 htonl(), inet_addr(), <netinet/in.h>.

5292 CHANGE HISTORY
5293 First released in Issue 4.

184 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Headers <netdb.h>

5294 NAME
5295 netdb.h — definitions for network database operations

5296 SYNOPSIS
5297 UX #include <netdb.h>
5298

DESCRIPTION
5299 The <netdb.h> header defines the type in_port_t and the type in_addr_t as defined in
5300 <netinet/in.h>.

5301 The <netdb.h> header defines the hostent structure that includes at least the following
5302 members:

5303 char *h_name Official name of the host.
5304 char **h_aliases A pointer to an array of pointers to alternative host names,
5305 terminated by a null pointer.
5306 int h_addrtype Address type.
5307 int h_length The length, in bytes, of the address.
5308 char **h_addr_list A pointer to an array of pointers to network addresses (in
5309 network byte order) for the host, terminated by a null pointer.

5310 The <netdb.h> header defines the netent structure that includes at least the following members:

5311 char *n_name Official, fully-qualified (including the domain) name of the host.
5312 char **n_aliases A pointer to an array of pointers to alternative network names,
5313 terminated by a null pointer.
5314 int n_addrtype The address type of the network.
5315 in_addr_t n_net The network number, in host byte order.

5316 The <netdb.h> header defines the protoent structure that includes at least the following
5317 members:

5318 char *p_name Official name of the protocol.
5319 char **p_aliases A pointer to an array of pointers to alternative protocol names,
5320 terminated by a null pointer.
5321 int p_proto The protocol number.

5322 The <netdb.h> header defines the servent structure that includes at least the following
5323 members:

5324 char *s_name Official name of the service.
5325 char **s_aliases A pointer to an array of pointers to alternative service names,
5326 terminated by a null pointer.
5327 int s_port The port number at which the service resides, in network byte order.
5328 char *s_proto The name of the protocol to use when contacting the service.

5329 The <netdb.h> header defines the macro IPPORT_RESERVED with the value of the highest
5330 reserved Internet port number.

5331 The <netdb.h> header provides a declaration for h_errno:

5332 extern int h_errno;

5333 The <netdb.h> header defines the following macros for use as error values for gethostbyaddr ()
5334 and gethostbyname():

5335 HOST_NOT_FOUND
5336 NO_DATA
5337 NO_RECOVERY
5338 TRY_AGAIN

Networking Services, Issue 4 185

<netdb.h> IP Address Resolution Headers

5339 The following are declared as functions, and may also be defined as macros:

5340 void endhostent(void);
5341 void endnetent(void);
5342 void endprotoent(void);
5343 void endservent(void);
5344 struct hostent *gethostbyaddr(const void * addr , size_t len , int type);
5345 struct hostent *gethostbyname(const char * name);
5346 struct hostent *gethostent(void);
5347 struct netent *getnetbyaddr(in_addr_t net , int type);
5348 struct netent *getnetbyname(const char * name);
5349 struct netent *getnetent(void);
5350 struct protoent *getprotobyname(const char * name);
5351 struct protoent *getprotobynumber(int proto);
5352 struct protoent *getprotoent(void);
5353 struct servent *getservbyname(const char * name, const char * proto);
5354 struct servent *getservbyport(int port , const char * proto);
5355 struct servent *getservent(void);
5356 void sethostent(int stayopen);
5357 void setnetent(int stayopen);
5358 void setprotoent(int stayopen);
5359 void setservent(int stayopen);

5360 Inclusion of the <netdb.h> header may also make visible all symbols from <netinet/in.h>.

5361 SEE ALSO
5362 endhostent(), endnetent(), endprotoent(), endservent().

5363 CHANGE HISTORY
5364 First released in Issue 4.

186 X/Open CAE Specification (1994) (Draft March 15, 1995)

IP Address Resolution Headers <netinet/in.h>

5365 NAME
5366 netinet/in.h — Internet Protocol family

5367 SYNOPSIS
5368 UX #include <netinet/in.h>
5369

DESCRIPTION
5370 The <netinet/in.h> header defines the following types through typedef:

5371 in_port_t An unsigned integral type of exactly 16 bits.

5372 in_addr_t An unsigned integral type of exactly 32 bits.

5373 The <netinet/in.h> header defines the in_addr structure that includes at least the following
5374 member:

5375 in_addr_t s_addr

5376 The <netinet/in.h> header defines the sockaddr_in structure that includes at least the following
5377 member:

5378 sa_family_t sin_family
5379 in_port_t sin_port
5380 struct in_addr sin_addr
5381 unsigned char sin_zero[8]

5382 The sockaddr_in structure is used to store addresses for the Internet protocol family. Values of
5383 this type must be cast to struct sockaddr for use with the socket interfaces defined in this
5384 document.

5385 The <netinet/in.h> header defines the type sa_family_t as described in <sys/socket.h>.

5386 The <netinet/in.h> header defines the following macros for use as values of the level argument
5387 of getsockopt () and setsockopt ():

5388 IPPROTO_IP Dummy for IP.

5389 IPPROTO_ICMP Control message protocol.

5390 IPPROTO_TCP TCP.

5391 IPPROTO_UDP User datagram protocol.

5392 The <netinet/in.h> header defines the following macros for use as destination addresses for
5393 connect(), sendmsg() and sendto():

5394 INADDR_ANY Local host address.

5395 INADDR_BROADCAST Broadcast address.

5396 SEE ALSO
5397 getsockopt (), setsockopt (). <sys/socket.h>.

5398 CHANGE HISTORY
5399 First released in Issue 4.

Networking Services, Issue 4 187

<unistd.h> Addendum to XSH IP Address Resolution Headers

5400 NAME
5401 unistd.h — standard symbolic constants and types

5402 Note: The XSH specification contains the basic definition of this interface. The following
5403 additional information pertains to IP Address Resolution.

5404 DESCRIPTION
5405 The following is declared as a function and may also be defined as a macro:

5406 int gethostname(char * address , int address_len);

5407 SEE ALSO
5408 gethostname().

5409 CHANGE HISTORY
5410 First released in Issue 4.

188 X/Open CAE Specification (1994) (Draft March 15, 1995)

5411

Appendix A

ISO Transport Protocol Information

5412 A.1 General
5413 This appendix describes the protocol-specific information that is relevant for ISO transport
5414 providers. This appendix also describes the protocol-specific information that is relevant when
5415 ISO transport services are provided over a TCP network6.

5416 In general, this Appendix describes the characteristics that the ISO and ISO-over-TCP transport
5417 providers have in common, with notes indicating where they differ.

5418 Notes:

5419 1. Protocol address:

5420 In an ISO environment, the protocol address is the transport address.

5421 2. Sending data of zero octets:

5422 The transport service definition, both in connection-oriented mode and in
5423 connectionless mode, does not permit sending a TSDU of zero octets. So, in
5424 connectionless mode, if the len parameter is set to zero, the t_sndudata () call will
5425 always return unsuccessfully with −1 and t_errno set to [TBADDATA]. In
5426 connection-oriented mode, if the nbytes parameter is set to zero, the t_snd() call
5427 will return with −1 and t_errno set to [TBADDATA] if either the T_MORE flag is
5428 set, or the T_MORE flag is not set and the preceding t_snd() call completed a
5429 TSDU or ETSDU (that is, the call has requested sending a zero byte TSDU or
5430 ETSDU).

5431 3. An ISO-over-TCP transport provider does not provide the connectionless mode.

5432 __________________

6.5433 The mapping for ISO-over-TCP that is referred to in this Appendix is that defined by RFC-1006: ISO Transport Service on top of the
5434 TCP, Version 3, May 1987, Marshall T Rose and Dwight E Cass, Network Working Group, Northrop Research & Technology
5435 Center. See also the X/Open Guide to IPS-OSI Coexistence and Migration. The relevant sections are 4.6.2 (Implementation of OSI
5436 Services over IPS) and 4.6.3 (Comments).

Networking Services, Issue 4 189

Options ISO Transport Protocol Information

5437 A.2 Options
5438 Options are formatted according to the structure t_opthdr as described in Chapter 6. A
5439 transport provider compliant to this specification supports none, all or any subset of the options
5440 defined in Section A.2.1 and Section A.2.2 on page 194. An implementation may restrict the use
5441 of any of these options by offering them only in the privileged or read-only mode. An ISO-over-
5442 TCP provider supports a subset of the options defined in Section A.2.1.

5443 A.2.1 Connection-mode Service

5444 The protocol level of all subsequent options is ISO_TP.

5445 All options are association-related (see Chapter 6). They may be negotiated in the XTI states
5446 T_IDLE and T_INCON, and are read-only in all other states except T_UNINIT.

5447 A.2.1.1 Options for Quality of Service and Expedited Data

5448 These options are all defined in the ISO 8072:1986 transport service definition (see the ISO
5449 Transport references). The definitions are not repeated here.
5450
5451 Option Name Type of Option Legal Meaning
5452 Value Option Value
5453 TCO_THROUGHPUT struct thrpt octets per second throughput
5454 TCO_TRANSDEL struct transdel time in milliseconds transit delay
5455 TCO_RESERRORRATE struct rate OPT_RATIO residual error rate
5456 transfer failure
5457 probability

TCO_TRANSFFAILPROB struct rate OPT_RATIO

5458 connection establ.
5459 failure probability

TCO_ESTFAILPROB struct rate OPT_RATIO

5460 connection release
5461 failure probability

TCO_RELFAILPROB struct rate OPT_RATIO

5462 connection establ.
5463 delay

TCO_ESTDELAY struct rate time in milliseconds

5464 connection release
5465 delay

TCO_RELDELAY struct rate time in milliseconds

5466 TCO_CONNRESIL struct rate OPT_RATIO connection resilience
5467 TCO_PROTECTION unsigned long see text protection
5468 TCO_PRIORITY unsigned long see text priority
5469 TCO_EXPD unsigned long T_YES/T_NO expedited data

5470 Table A-1 Options for Quality of Service and Expedited Data

5471 OPT_RATIO is defined as OPT_RATIO = −log10(ratio). The ratio is dependent on the parameter,
5472 but is always composed of a number of failures divided by a total number of samples. This may
5473 be, for example, the number of TSDUs transferred in error divided by the total number of TSDU
5474 transfers (TCO_RESERRORRATE).

190 X/Open CAE Specification (1994) (Draft March 15, 1995)

ISO Transport Protocol Information Options

5475 Absolute Requirements

5476 For the options in Table A-1 on page 190, the transport user can indicate whether the request is
5477 an absolute requirement or whether a degraded value is acceptable. For the QOS options based
5478 on struct rate an absolute requirement is specified via the field minacceptvalue , if that field is
5479 given a value different from T_UNSPEC. The value specified for TCO_PROTECTION is an
5480 absolute requirement if the T_ABSREQ flag is set. The values specified for TCO_EXPD and
5481 TCO_PRIORITY are never absolute requirements.

5482 Further Remarks

5483 A detailed description of the options for Quality of Service can be found in the ISO 8072:1986
5484 specification. The field elements of the structures in use for the option values are self-
5485 explanatory. Only the following details remain to be explained.

5486 • If these options are returned with t_listen(), their values are related to the incoming
5487 connection and not to the transport endpoint where t_listen() was issued. To give an
5488 example, the value of TCO_PROTECTION is the value sent by the calling transport user, and
5489 not the value currently effective for the endpoint (that could be retrieved by t_optmgmt()
5490 with the flag T_CURRENT set). The option is not returned at all if the calling user did not
5491 specify it. An analogous procedure applies for the other options. See also Chapter 6.

5492 • If, in a call to t_accept(), the called transport user tries to negotiate an option of higher quality
5493 than proposed, the option is rejected and the connection establishment fails (see Section 6.3.4
5494 on page 39).

5495 • The values of the QOS options TCO_THROUGHPUT, TCO_TRANSDEL,
5496 TCO_RESERRORRATE, TCO_TRANSFFAILPROB, TCO_ESTFAILPROB,
5497 TCO_RELFAILPROB, TCO_ESTDELAY, TCO_RELDELAY and TCO_CONNRESIL have a
5498 structured format. A user requesting one of these options might leave a field of the structure
5499 unspecified by setting it to T_UNSPEC. The transport provider is then free to select an
5500 appropriate value for this field. The transport provider may return T_UNSPEC in a field of
5501 the structure to the user to indicate that it has not yet decided on a definite value for this
5502 field.

5503 T_UNSPEC is not a legal value for TCO_PROTECTION, TCO_PRIORITY and TCO_EXPD.

5504 • TCO_THROUGHPUT and TCO_TRANSDEL
5505 If avgthrpt (average throughput) is not defined (both fields set to T_UNSPEC), the transport
5506 provider considers that the average throughput has the same values as the maximum
5507 throughput (maxthrpt). An analogous procedure applies to TCO_TRANSDEL.

5508 • The ISO specification ISO 8073:1986 does not differentiate between average and maximum
5509 transit delay. Transport providers that support this option adopt the values of the maximum
5510 delay as input for the CR TPDU.

5511 • TCO_PROTECTION
5512 This option defines the general level of protection. The symbolic constants in the following
5513 list are used to specify the required level of protection:

5514 T_NOPROTECT No protection feature.

5515 T_PASSIVEPROTECT Protection against passive monitoring.

5516 T_ACTIVEPROTECT Protection against modification, replay, addition or deletion.

5517 Both flags T_PASSIVEPROTECT and T_ACTIVEPROTECT may be set simultaneously but
5518 are exclusive with T_NOPROTECT. If the T_ACTIVEPROTECT or T_PASSIVEPROTECT
5519 flags are set, the user may indicate that this is an absolute requirement by also setting the

Networking Services, Issue 4 191

Options ISO Transport Protocol Information

5520 T_ABSREQ flag.

5521 • TCO_PRIORITY
5522 Five priority levels are defined by XTI:

5523 T_PRIDFLT Lower level.

5524 T_PRILOW Low level.

5525 T_PRIMID Medium level.

5526 T_PRIHIGH High level.

5527 T_PRITOP Higher level.

5528 • An ISO-over-TCP transport provider may not support Quality of Service parameter
5529 negotiation. If not, an attempt to negotiate a Quality of Service option with an ISO-over-TCP
5530 transport provider will return with the status field set to T_NOTSUPPORT.

5531 • It is recommended that transport users avoid expedited data with an ISO-over-TCP transport
5532 provider, since the RFC 1006 treatment of expedited data does not meet the data reordering
5533 requirements specified in ISO 8072:1986, and may not be supported by the provider.

5534 The number of priority levels is not defined by ISO 8072:1986. The parameter only has meaning
5535 in the context of some management entity or structure able to judge relative importance.

5536 A.2.1.2 Management Options

5537 These options are parameters of an ISO transport protocol according to ISO 8073:1986. They are
5538 not included in the ISO transport service definition ISO 8072:1986, but are additionally offered
5539 by XTI. Transport users wishing to be truly ISO-compliant should thus not adhere to them.
5540 TCO_LTPDU is the only management option supported by an ISO-over-TCP transport provider.

5541 Avoid specifying both QOS parameters and management options at the same time.
5542
5543 Option Name Type of Option Legal Meaning
5544 Value Option Value
5545 TCO_LTPDU unsigned long length in octets maximum length of TPDU
5546 TCO_ACKTIME unsigned long time in milliseconds acknowledge time
5547 TCO_REASTIME unsigned long time in seconds reassignment time
5548 TCO_PREFCLASS unsigned long see text preferred class
5549 TCO_ALTCLASS1 unsigned long see text 1st alternative class
5550 TCO_ALTCLASS2 unsigned long see text 2nd alternative class
5551 TCO_ALTCLASS3 unsigned long see text 3rd alternative class
5552 TCO_ALTCLASS4 unsigned long see text 4th alternative class
5553 TCO_EXTFORM unsigned long T_YES/T_NO/T_UNSPEC extended format
5554 TCO_FLOWCTRL unsigned long T_YES/T_NO/T_UNSPEC flowctr
5555 TCO_CHECKSUM unsigned long T_YES/T_NO/T_UNSPEC checksum
5556 TCO_NETEXP unsigned long T_YES/T_NO/T_UNSPEC network expedited data
5557 use of network
5558 receipt confirmation

TCO_NETRECPTCF unsigned long T_YES/T_NO/T_UNSPEC

5559 Table A-2 Management Options

192 X/Open CAE Specification (1994) (Draft March 15, 1995)

ISO Transport Protocol Information Options

5560 Absolute Requirements

5561 A request for any of these options is considered an absolute requirement.

5562 Further Remarks

5563 • If these options are returned with t_listen() their values are related to the incoming
5564 connection and not to the transport endpoint where t_listen() was issued. That means that
5565 t_optmgmt() with the flag T_CURRENT set would usually yield a different result (see
5566 Chapter 6).

5567 • For management options that are subject to peer-to-peer negotiation the following holds: If,
5568 in a call to t_accept(), the called transport user tries to negotiate an option of higher quality
5569 than proposed, the option is rejected and the connection establishment fails (see Section 6.3.4
5570 on page 39).

5571 • A connection-mode transport provider may allow the transport user to select more than one
5572 alternative class. The transport user may use the options T_ALTCLASS1, T_ALTCLASS2, etc.
5573 to denote the alternatives. A transport provider only supports an implementation-dependent
5574 limit of alternatives and ignores the rest.

5575 • The value T_UNSPEC is legal for all options in Table A-2 on page 192. It may be set by the
5576 user to indicate that the transport provider is free to choose any appropriate value. If
5577 returned by the transport provider, it indicates that the transport provider has not yet
5578 decided on a specific value.

5579 • Legal values for the options T_PREFCLASS, T_ALTCLASS1, T_ALTCLASS2, T_ALTCLASS3
5580 and T_ALTCLASS4 are T_CLASS0, T_CLASS1, T_CLASS2, T_CLASS3, T_CLASS4 and
5581 T_UNSPEC.

5582 • If a connection has been established, TCO_PREFCLASS will be set to the selected value, and
5583 T_ALTCLASS1 through T_ALTCLASS4 will be set to T_UNSPEC, if these options are
5584 supported.

5585 • Warning on the use of TCO_LTPDU: Sensible use of this option requires that the application
5586 programmer knows about system internals. Careless setting of either a lower or a higher
5587 value than the implementation-dependent default may degrade the performance.

5588 Legal values for an ISO transport provider are T_UNSPEC and powers of 2 between 2**7 and
5589 2**13.

5590 Legal values for an ISO-over-TCP provider are T_UNSPEC and any power of 2 between 2**7
5591 and 2**11, and 65531.

5592 The action taken by a transport provider is implementation-dependent if a value is specified
5593 which is not exactly as defined in ISO 8073:1986 or its addendums.

5594 • The management options are not independent of one another, and not independent of the
5595 options defined in Section A.2.1.1 on page 190. A transport user must take care not to request
5596 conflicting values. If conflicts are detected at negotiation time, the negotiation fails according
5597 to the rules for absolute requirements (see Chapter 6). Conflicts that cannot be detected at
5598 negotiation time will lead to unpredictable results in the course of communication. Usually,
5599 conflicts are detected at the time the connection is established.

5600 Some relations that must be obeyed are:

5601 • If TCO_EXP is set to T_YES and TCO_PREFCLASS is set to T_CLASS2, TCO_FLOWCTRL
5602 must also be set to T_YES.

Networking Services, Issue 4 193

Options ISO Transport Protocol Information

5603 • If TCO_PREFCLASS is set to T_CLASS0, TCO_EXP must be set to T_NO.

5604 • The value in TCO_PREFCLASS must not be lower than the value in TCO_ALTCLASS1,
5605 TCO_ALTCLASS2, and so on.

5606 • Depending on the chosen QOS options, further value conflicts might occur.

5607 A.2.2 Connectionless-mode Service

5608 The protocol level of all subsequent options is ISO_TP (as in Section A.2.1 on page 190).

5609 All options are association-related (see Chapter 6). They may be negotiated in all XTI states but
5610 T_UNINIT.

5611 A.2.2.1 Options for Quality of Service

5612 These options are all defined in the ISO 8072/Add.1:1986 transport service definition (see the
5613 ISO Transport references). The definitions are not repeated here. None of these options are
5614 supported by an ISO-over-TCP transport provider, since it does not support connectionless
5615 mode.
5616
5617 Option Name Type of Option Legal Meaning
5618 Value Option Value
5619 TCL_TRANSDEL struct rate time in milliseconds transit delay
5620 TCL_RESERRORRATE struct rate OPT_RATIO residual error rate
5621 TCL_PROTECTION unsigned long see text protection
5622 TCL_PRIORITY unsigned long see text priority

5623 Table A-3 Options for Quality of Service

5624 Absolute Requirements

5625 A request for any of these options is an absolute requirement.

5626 Further Remarks

5627 A detailed description of the options for Quality of Service can be found in ISO
5628 8072/Add.1:1986. The field elements of the structures in use for the option values are self-
5629 explanatory. Only the following details remain to be explained.

5630 • These options are negotiated only between the local user and the local transport provider.

5631 • The meaning, type of option value, and the range of legal option values are identical for
5632 TCO_RESERRORRATE and TCL_RESERRORRATE, TCO_PRIORITY and TCL_PRIORITY,
5633 TCO_PROTECTION and TCL_PROTECTION (see Table A-1 on page 190, ISO 8072:1986).

5634 • TCL_TRANSDEL and TCO_TRANSDEL are different. TCL_TRANSDEL specifies the
5635 maximum transit delay expected during a datagram transmission. Note that the type of
5636 option value is a struct rate contrary to the struct transdel of TCO_TRANSDEL. The range
5637 of legal option values for each field of struct rate is the same as that of TCO_TRANSDEL.

5638 • If these options are returned with t_rcvudata () their values are related to the received
5639 datagram and not to the transport endpoint where t_rcvudata () was issued. On the other
5640 hand, t_optmgmt() with the flag T_CURRENT set returns the values that are currently
5641 effective for outgoing datagrams.

5642 • The function t_rcvuderr() returns the option value of the data unit previously sent that
5643 produced the error.

194 X/Open CAE Specification (1994) (Draft March 15, 1995)

ISO Transport Protocol Information Options

5644 A.2.2.2 Management Options

5645 This option is a parameter of an ISO transport protocol, according to ISO 8602. It is not included
5646 in the ISO transport service definition ISO 8072/Add.1:1986, but is an additional offer by XTI.
5647 Transport users wishing to be truly ISO-compliant should thus not adhere to it.

5648 Avoid specifying both QOS parameters and this management option at the same time.
5649
5650 Option Name Type of Option Legal Meaning
5651 Value Option Value
5652 TCL_CHECKSUM unsigned long T_YES/T_NO checksum computation

5653 Table A-4 Management Option

5654 Absolute Requirements

5655 A request for this option is an absolute requirement.

5656 Further Remarks

5657 TCL_CHECKSUM is the option allows disabling/enabling of the checksum computation. The
5658 legal values are T_YES (checksum enabled) and T_NO (checksum disabled).

5659 If this option is returned with t_rcvudata (), its value indicates whether or not a checksum was
5660 present in the received datagram.

5661 The advisability of turning off the checksum check is controversial.

Networking Services, Issue 4 195

Functions ISO Transport Protocol Information

5662 A.3 Functions
5663 t_accept() The parameter call->udata.len must be in the range 0 to 32. The user may send
5664 up to 32 octets of data when accepting the connection.

5665 If fd is not equal to resfd, resfd should either be in state T_UNBND or be in state
5666 T_IDLE and be bound to the same address as fd with the qlen parameter set to
5667 0.

5668 A process can listen for an incoming indication on a given fd and then accept
5669 the connection on another endpoint resfd which has been bound to the same or
5670 a different protocol address with the qlen parameter (of the t_bind() function)
5671 set to 0. The protocol address bound to the new accepting endpoint (resfd)
5672 should in general be the same as the listening endpoint (fd), because at the
5673 present time, the ISO transport service definition (ISO 8072:1986) does not
5674 authorise acceptance of an incoming connection indication with a responding
5675 address different from the called address, except under certain conditions (see
5676 ISO 8072:1986 paragraph 12.2.4, Responding Address), but it also states that it
5677 may be changed in the future.

5678 t_bind() The addr field of the t_bind() structure represents the local TSAP.

5679 t_connect() The sndcall->addr structure specifies the remote called TSAP. In the present
5680 version, the returned address set in rcvcall->addr will have the same value.

5681 The setting of sndcall->udata is optional for ISO connections, but with no data,
5682 the len field of udata must be set to 0. The maxlen and buf fields of the netbuf
5683 structure, pointed to by rcvcall->addr and rcvcall->opt , must be set before the
5684 call.

5685 t_getinfo() The information returned by t_getinfo () reflects the characteristics of the
5686 transport connection or, if no connection is established, the maximum
5687 characteristics a transport connection could take on using the underlying
5688 transport provider. In all possible states except T_DATAXFER, the function
5689 t_getinfo () returns in the parameter info the same information as was returned
5690 by t_open(). In T_DATAXFER, however, the information returned may differ
5691 from that returned by t_open(), depending on:

5692 — the transport class negotiated during connection establishment (ISO
5693 transport provider only)

5694 — the negotiation of expedited data transfer for this connection.

5695 In T_DATAXFER, the etsdu field in the t_info structure is set to −2 if no
5696 expedited data transfer was negotiated, and to 16 otherwise. The remaining
5697 fields are set according to the characteristics of the transport protocol class in
5698 use for this connection, as defined in the table below.

196 X/Open CAE Specification (1994) (Draft March 15, 1995)

ISO Transport Protocol Information Functions

5699
5700 Parameters Before Call After Call

5701 Connection Connection Connectionless ISO-over-TCP
5702 Class 0 Class 1-4
5703 fd x / / / /
5704 info->addr x x x x
5705 info->options / x (1) x (1) x (1) x (1)
5706 info->tsdu / x (2) x (2) 0->63488 x (2)
5707 info->etsdu / −2 16/−2 (3) −2 16/−2
5708 info->connect / −2 32 −2 32/−2
5709 info->discon / −2 64 −2 64/−2
5710 info->servtype / T_COTS T_COTS T_CLTS T_COTS
5711 info->flags / 0 0 0 0

5712 1. ‘x’ equals −2 or an integral number greater than zero.

5713 2. ‘x’ equals -1 or an integral number greater than zero.

5714 3. Depending on the negotiation of expedited data transfer.

5715 t_listen() The call->addr structure contains the remote calling TSAP. Since, at most, 32
5716 octets of data will be returned with the connect indication, call->udata.maxlen
5717 should be set to 32 before the call to t_listen().

5718 If the user has set qlen greater than 1 (on the call to t_bind()), the user may
5719 queue up several connect indications before responding to any of them. The
5720 user should be forewarned that the ISO transport provider may start a timer
5721 to be sure of obtaining a response to the connect request in a finite time. So if
5722 the user queues the connect indications for too long before responding to
5723 them, the transport provider initiating the connection will disconnect it.

5724 t_open() The function t_open() is called as the first step in the initialisation of a
5725 transport endpoint. This function returns various default characteristics
5726 associated with the different classes. According to ISO 8073:1986, an OSI
5727 transport provider supports one or several out of five different transport
5728 protocols, class 0 through class 4. The default characteristics returned in the
5729 parameter info are those of the highest-numbered protocol class the transport
5730 provider is able to support. If, for example, a transport provider supports
5731 classes 2 and 0, the characteristics returned are those of class 2. If the
5732 transport provider is limited to class 0, the characteristics returned are those of
5733 class 0.

5734 The table below gives the characteristics associated with the different classes.

Networking Services, Issue 4 197

Functions ISO Transport Protocol Information

5735
5736 Parameters Before Call After Call

5737 Connection Connection Connectionless ISO-over-TCP
5738 Class 0 Class 1-4
5739 name x / / / /
5740 oflag x / / / /
5741 info->addr / x x x x
5742 info->options / x (1) x (1) x (1) x (1)
5743 info->tsdu / x (2) x (2) 0->63488 x (2)
5744 info->etsdu / −2 16 −2 16/−2
5745 info->connect / −2 32 −2 32/−2
5746 info->discon / −2 64 −2 64/−2
5747 info->servtype / T_COTS T_COTS T_CLTS T_COTS
5748 info->flags / 0 0 0 0

5749 1. ‘x’ equals −2 or an integral number greater than zero.

5750 2. ‘x’ equals −1 or an integral number greater than zero.

5751 t_rcv() If expedited data arrives after part of a TSDU has been retrieved, receipt of the
5752 remainder of the TSDU will be suspended until the ETSDU has been
5753 processed. Only after the full ETSDU has been retrieved (T_MORE not set),
5754 will the remainder of the TSDU be available to the user.

5755 t_rcvconnect() On return, the call->addr structure contains the remote calling TSAP. Since, at
5756 most, 32 octets of data will be returned to the user, call->udata.maxlen should
5757 be set to 32 before the call to t_rcvconnect().

5758 t_rcvdis() Since, at most, 64 octets of data will be returned to the user, discon-
5759 >udata.maxlen should be set to 64 before the call to t_rcvdis().

5760 t_rcvudata() The unitdata->addr structure specifies the remote TSAP. If the T_MORE flag is
5761 set, an additional t_rcvudata () call is needed to retrieve the entire TSDU. Only
5762 normal data is returned via the t_rcvudata () call. This function is not
5763 supported by an ISO-over-TCP transport provider.

5764 t_rcvuderr() The uderr->addr structure contains the remote TSAP.

5765 t_snd() Zero byte TSDUs are not supported. The T_EXPEDITED flag is not a legal flag
5766 unless expedited data has been negotiated for this connection.

5767 t_snddis() Since, at most, 64 octets of data may be sent with the disconnect, call-
5768 >udata.len will have a value less than or equal to 64.

5769 t_sndudata() The unitdata->addr structure specifies the remote TSAP. The ISO
5770 connectionless transport service does not support the sending of expedited
5771 data. This function is not supported by an ISO-over-TCP transport provider.

198 X/Open CAE Specification (1994) (Draft March 15, 1995)

5772

Appendix B

Internet Protocol-specific Information

5773 B.1 General
5774 This appendix describes the protocol-specific information that is relevant for TCP and UDP
5775 transport providers.

5776 Notes

5777 • T_MORE flag and TSDUs

5778 The notion of TSDU is not supported by a TCP transport provider, so the T_MORE flag will
5779 be ignored when TCP is used. The TCP PUSH flag cannot be used through the XTI interface
5780 because the TCP Military Standard (see Referenced Documents) states that:

5781 ‘‘Successive pushes may not be preserved because two or more units of pushed data may be
5782 joined into a single pushed unit by either the sending or receiving TCP. Pushes are not
5783 visible to the receiving Upper Level Protocol and are not intended to serve as a record
5784 boundary marker’’.

5785 • Expedited data

5786 TCP does not have a notion of expedited data in a sense comparable to ISO expedited data.
5787 TCP defines an urgent mechanism, by which in-line data is marked for urgent delivery. UDP
5788 has no urgent mechanism. See the TCP Military Standard for more detailed information.

5789 • Orderly release

5790 The orderly release functions t_sndrel() and t_rcvrel() were defined to support the orderly
5791 release facility of TCP. However, its use is not recommended so that applications using TCP
5792 may be ported to use ISO Transport. The specification of TCP states that only established
5793 connections may be closed with orderly release; that is, on an endpoint in T_DATAXFER or
5794 T_INREL state.

5795 • Connection establishment

5796 TCP does not allow the possibility of refusing a connection indication. Each connect
5797 indication causes the TCP transport provider to establish the connection. Therefore,
5798 t_listen() and t_accept() have a semantic which is slightly different from that for ISO
5799 providers.

Networking Services, Issue 4 199

Options Internet Protocol-specific Information

5800 B.2 Options
5801 Options are formatted according to the structure t_opthdr as described in Chapter 6. A
5802 transport provider compliant to this specification supports none, all or any subset of the options
5803 defined in Section B.2.1, Section B.2.2 and Section B.2.3. An implementation may restrict the use
5804 of any of these options by offering them only in the privileged or read-only mode.

5805 B.2.1 TCP-level Options

5806 The protocol level is INET_TCP. For this level, Table B-1 shows the options that are defined.
5807
5808 Option Name Type of Option Legal Meaning
5809 Value Option Value
5810 check if connections are aliveTCP_KEEPALIVE struct t_kpalive see text
5811 get TCP maximum segment sizeTCP_MAXSEG unsigned long length in octets
5812 don’t delay send to coalesce packetsTCP_NODELAY unsigned long T_YES/T_NO

5813 Table B-1 TCP-level Options

5814 These options are not association-related. They may be negotiated in all XTI states except
5815 T_UNBND and T_UNINIT. They are read-only in state T_UNBND. See Chapter 6 for the
5816 difference between options that are association-related and those that are not.

5817 Absolute Requirements

5818 A request for TCP_NODELAY and a request to activate TCP_KEEPALIVE is an absolute
5819 requirement. TCP_MAXSEG is a read-only option.

5820 Further Remarks

5821 TCP_KEEPALIVE If this option is set, a keep-alive timer is activated to monitor idle
5822 connections that might no longer exist. If a connection has been idle since
5823 the last keep-alive timeout, a keep-alive packet is sent to check if the
5824 connection is still alive or broken.

5825 Keep-alive packets are not an explicit feature of TCP, and this practice is
5826 not universally accepted. According to RFC 1122:

5827 ‘‘a keep-alive mechanism should only be invoked in server applications
5828 that might otherwise hang indefinitely and consume resources
5829 unnecessarily if a client crashes or aborts a connection during a network
5830 failure’’.

5831 The option value consists of a structure t_kpalive declared as:

5832 struct t_kpalive {
5833 long kp_onoff; /* switch option on/off */
5834 long kp_timeout; /* keep-alive timeout in minutes */
5835 }

5836 Legal values for the field kp_onoff are:

5837 T_NO switch keep-alive timer off
5838 T_YES activate keep-alive timer
5839 T_YES | T_GARBAGE activate keep-alive timer and
5840 send garbage octet

200 X/Open CAE Specification (1994) (Draft March 15, 1995)

Internet Protocol-specific Information Options

5841 Usually, an implementation should send a keep-alive packet with no data
5842 (T_GARBAGE not set). If T_GARBAGE is set, the keep-alive packet
5843 contains one garbage octet for compatibility with erroneous TCP
5844 implementations.

5845 An implementation is, however, not obliged to support T_GARBAGE (see
5846 RFC 1122). Since the kp_onoff value is an absolute requirement, the
5847 request ‘‘T_YES | T_GARBAGE’’ may therefore be rejected.

5848 The field kp_timeout determines the frequency of keep-alive packets being
5849 sent, in minutes. The transport user can request the default value by
5850 setting the field to T_UNSPEC. The default is implementation-
5851 dependent, but at least 120 minutes (see RFC 1122). Legal values for this
5852 field are T_UNSPEC and all positive numbers.

5853 The timeout value is not an absolute requirement. The implementation
5854 may pose upper and lower limits to this value. Requests that fall short of
5855 the lower limit may be negotiated to the lower limit.

5856 The use of this option might be restricted to privileged users.

5857 TCP_MAXSEG This option is read-only. It is used to retrieve the maximum TCP segment
5858 size.

5859 TCP_NODELAY Under most circumstances, TCP sends data as soon as it is presented.
5860 When outstanding data has not yet been acknowledged, it gathers small
5861 amounts of output to be sent in a single packet once an acknowledgement
5862 is received. For a small number of clients, such as window systems (for
5863 example, MIT X Window System) that send a stream of mouse events
5864 which receive no replies, this packetisation may cause significant delays.
5865 TCP_NODELAY is used to defeat this algorithm. Legal option values are
5866 T_YES (‘‘don’t delay’’) and T_NO (‘‘delay’’).

5867 B.2.2 UDP-level Options

5868 The protocol level is INET_UDP. The option defined for this level is shown in Table B-2.
5869
5870 Option Name Type of Option Legal Meaning
5871 Value Option Value
5872 UDP_CHECKSUM unsigned long T_YES/T_NO checksum computation

5873 Table B-2 UDP-level Option

5874 This option is association-related. It may be negotiated in all XTI states except T_UNBND and
5875 T_UNINIT. It is read-only in state T_UNBND. See Chapter 6 for the difference between options
5876 that are association-related and those that are not.

5877 Absolute Requirements

5878 A request for this option is an absolute requirement.

Networking Services, Issue 4 201

Options Internet Protocol-specific Information

5879 Further Remarks

5880 UDP_CHECKSUM The option allows disabling/enabling of the UDP checksum computation.
5881 The legal values are T_YES (checksum enabled) and T_NO (checksum
5882 disabled).

5883 If this option is returned with t_rcvudata (), its value indicates whether a
5884 checksum was present in the received datagram or not.

5885 Numerous cases of undetected errors have been reported when
5886 applications chose to turn off checksums for efficiency. The advisability
5887 of ever turning off the checksum check is very controversial.

5888 B.2.3 IP-level Options

5889 The protocol level is INET_IP. The options defined for this level are listed in Table B-3.
5890
5891 Option Name Type of Option Legal Meaning
5892 Value Option Value
5893 permit sending of
5894 broadcast messages

IP_BROADCAST unsigned int T_YES/T_NO

5895 just use interface addressesIP_DONTROUTE unsigned int T_YES/T_NO
5896 array of unsigned
5897 characters

IP per-packet optionsIP_OPTIONS see text

5898 allow local address reuseIP_REUSEADDR unsigned int T_YES/T_NO
5899 IP per-packet type of serviceIP_TOS unsigned char see text
5900 IP per packet time-to-liveIP_TTL unsigned char time in seconds

5901 Table B-3 IP-level Options

5902 IP_OPTIONS and IP_TOS are both association-related options. All other options are not
5903 association-related. See Chapter 6 for the difference between association-related options and
5904 options that are not.

5905 IP_REUSEADDR may be negotiated in all XTI states except T_UNINIT. All other options may
5906 be negotiated in all other XTI states except T_UNBND and T_UNINIT; they are read-only in the
5907 state T_UNBND.

5908 Absolute Requirements

5909 A request for any of these options is an absolute requirement.

5910 Further Remarks

5911 IP_BROADCAST This option requests permission to send broadcast datagrams. It was
5912 defined to make sure that broadcasts are not generated by mistake. The
5913 use of this option is often restricted to privileged users.

5914 IP_DONTROUTE This option indicates that outgoing messages should bypass the standard
5915 routing facilities. It is mainly used for testing and development.

5916 IP_OPTIONS This option is used to set (retrieve) the OPTIONS field of each outgoing
5917 (incoming) IP datagram. Its value is a string of octets composed of a
5918 number of IP options, whose format matches those defined in the IP
5919 specification with one exception: the list of addresses for the source
5920 routing options must include the first-hop gateway at the beginning of
5921 the list of gateways. The first-hop gateway address will be extracted from

202 X/Open CAE Specification (1994) (Draft March 15, 1995)

Internet Protocol-specific Information Options

5922 the option list and the size adjusted accordingly before use.

5923 The option is disabled if it is specified with ‘‘no value’’; that is, with an
5924 option header only.

5925 The functions t_connect() (in synchronous mode), t_listen(),
5926 t_rcvconnect() and t_rcvudata () return the OPTIONS field, if any, of the
5927 received IP datagram associated with this call. The function t_rcvuderr()
5928 returns the OPTIONS field of the data unit previously sent that produced
5929 the error. The function t_optmgmt() with T_CURRENT set retrieves the
5930 currently effective IP_OPTIONS that is sent with outgoing datagrams.

5931 Common applications never need this option. It is mainly used for
5932 network debugging and control purposes.

5933 IP_REUSEADDR Many TCP implementations do not allow the user to bind more than one
5934 transport endpoint to addresses with identical port numbers. If
5935 IP_REUSEADDR is set to T_YES this restriction is relaxed in the sense
5936 that it is now allowed to bind a transport endpoint to an address with a
5937 port number and an underspecified internet address (‘‘wild card’’
5938 address) and further endpoints to addresses with the same port number
5939 and (mutually exclusive) fully specified internet addresses.

5940 IP_TOS This option is used to set (retrieve) the type-of-service field of an outgoing
5941 (incoming) IP datagram. This field can be constructed by any OR’ed
5942 combination of one of the precedence flags and the type-of-service flags
5943 T_LDELAY, T_HITHRPT and T_HIREL:

5944 — Precedence:

5945 These flags specify datagram precedence, allowing senders to indicate
5946 the importance of each datagram. They are intended for Department
5947 of Defense applications. Legal flags are:

5948 T_ROUTINE
5949 T_PRIORITY
5950 T_IMMEDIATE
5951 T_FLASH
5952 T_OVERRIDEFLASH
5953 T_CRITIC_ECP
5954 T_INETCONTROL
5955 T_NETCONTROL.

5956 Applications using IP_TOS but not the precedence level should use
5957 the value T_ROUTINE for precedence.

5958 — Type of service:

5959 These flags specify the type of service the IP datagram desires. Legal
5960 flags are:

5961 T_NOTOS requests no distinguished type of service
5962 T_LDELAY requests low delay
5963 T_HITHRPT requests high throughput
5964 T_HIREL requests high reliability

5965 The option value is set using the macro SET_TOS(prec,tos), where prec is
5966 set to one of the precedence flags and tos to one or an OR’ed combination
5967 of the type-of-service flags. SET_TOS() returns the option value.

Networking Services, Issue 4 203

Options Internet Protocol-specific Information

5968 The functions t_connect(), t_listen(), t_rcvconnect() and t_rcvudata ()
5969 return the type-of-service field of the received IP datagram associated with
5970 this call. The function t_rcvuderr() returns the type-of-service field of the
5971 data unit previously sent that produced the error.

5972 The function t_optmgmt() with T_CURRENT set retrieves the currently
5973 effective IP_TOS value that is sent with outgoing datagrams.

5974 The requested type-of-service cannot be guaranteed. It is a hint to the
5975 routing algorithm that helps it choose among various paths to a
5976 destination. Note also, that most hosts and gateways in the Internet these
5977 days ignore the type-of-service field.

5978 IP_TTL This option is used to set the time-to-live field in an outgoing IP datagram.
5979 It specifies how long, in seconds, the datagram is allowed to remain in the
5980 Internet. The time-to-live field of an incoming datagram is not returned by
5981 any function (since it is not an association-related option).

204 X/Open CAE Specification (1994) (Draft March 15, 1995)

Internet Protocol-specific Information Functions

5982 B.3 Functions
5983 t_accept() Issuing t_accept() assigns an already established connection to resfd.

5984 Since user data cannot be exchanged during the connection establishment
5985 phase, call->udata.len must be set to 0. Also, resfd must be bound to the same
5986 address as fd. A potential restriction on binding of endpoints to protocol
5987 addresses is described under t_bind() below.

5988 If association-related options (IP_OPTIONS, IP_TOS) are to be sent with the
5989 connect confirmation, the values of these options must be set with
5990 t_optmgmt() before the T_LISTEN event occurs. When the transport user
5991 detects a T_LISTEN, TCP has already established the connection.
5992 Association-related options passed with t_accept() become effective at once,
5993 but since the connection is already established, they are transmitted with
5994 subsequent IP datagrams sent out in the T_DATAXFER state.

5995 t_bind() The addr field of the t_bind structure represents the local socket; that is, an
5996 address which specifically includes a port identifier.

5997 In the connection-oriented mode (that is, TCP), the t_bind() function may only
5998 bind one transport endpoint to any particular protocol address. If that
5999 endpoint was bound in passive mode; that is, qlen > 0, then other endpoints
6000 will be bound to the passive endpoint’s protocol address via the t_accept()
6001 function only; that is, if fd refers to the passive endpoint and resfd refers to the
6002 new endpoint on which the connection is to be accepted, resfd will be bound to
6003 the same protocol address as fd after the successful completion of the
6004 t_accept() function.

6005 t_connect() The sndcall->addr structure specifies the remote socket. In the present version,
6006 the returned address set in rcvcall->addr will have the same value. Since user
6007 data cannot be exchanged during the connection establishment phase, sndcall-
6008 >udata.len must be set to 0.

6009 Note that the peer TCP, and not the peer transport user, confirms the
6010 connection.

6011 t_listen() Upon successful return, t_listen() indicates an existing connection and not a
6012 connection indication.

6013 Since user data cannot be exchanged during the connection establishment
6014 phase, call->udata.maxlen must be set to 0 before the call to t_listen(). The call-
6015 >addr structure contains the remote calling socket.

6016 t_look() As soon as a segment with the TCP urgent pointer set enters the TCP receive
6017 buffer, the event T_EXDATA is indicated. T_EXDATA remains set until all
6018 data up to the byte pointed to by the TCP urgent pointer has been received. If
6019 the urgent pointer is updated, and the user has not yet received the byte
6020 previously pointed to by the urgent pointer, the update is invisible to the user.

6021 t_open() t_open() is called as the first step in the initialisation of a transport endpoint.
6022 This function returns various default characteristics of the underlying
6023 transport protocol by setting fields in the t_info structure.

6024 The following should be the values returned by the call to t_open() and
6025 t_getinfo () with the indicated transport providers.

Networking Services, Issue 4 205

Functions Internet Protocol-specific Information

6026
6027 Parameters Before call After call
6028 TCP/IP UDP/IP
6029 name x / /
6030 oflag x / /
6031 info->addr / x x
6032 info->options / x x
6033 info->tsdu / 0 x
6034 info->etsdu / −1 −2
6035 info->connect / −2 −2
6036 info->discon / −2 −2
6037 info->servtype / T_COTS/T_COTS_ORD T_CLTS
6038 info->flags / T_SNDZERO T_SNDZERO

6039 ‘x’ equals -2 or an integral number greater than zero.

6040 t_rcv() The T_MORE flag should be ignored if normal data is delivered. If a byte in
6041 the data stream is pointed to by the TCP urgent pointer, as many bytes as
6042 possible preceding this marked byte and the marked byte itself are denoted as
6043 urgent data and are received with the T_EXPEDITED flag set. If the buffer
6044 supplied by the user is too small to hold all urgent data, the T_MORE flag will
6045 be set, indicating that urgent data still remains to be read. Note that the
6046 number of bytes received with the T_EXPEDITED flag set is not necessarily
6047 equal to the number of bytes sent by the peer user with the T_EXPEDITED
6048 flag set.

6049 t_rcvconnect() Since user data cannot be exchanged during the connection establishment
6050 phase, call->udata.maxlen must be set to 0 before the call to t_rcvconnect(). On
6051 return, the call->addr structure contains the remote calling socket.

6052 t_rcvdis() Since data may not be sent with a disconnect, the discon->udata structure will
6053 not be meaningful.

6054 t_snd() The T_MORE flag should be ignored. If t_snd() is called with more than one
6055 byte specified and with the T_EXPEDITED flag set, then the last byte of the
6056 buffer will be the byte pointed to by the TCP urgent pointer. If the
6057 T_EXPEDITED flag is set, at least one byte must be sent.

6058 Implementor’s Note: Data for a t_snd() call with the T_EXPEDITED flag set may
6059 not pass data sent previously.

6060 t_snddis() Since data may not be sent with a disconnect, call->udata.len must be set to
6061 zero.

6062 t_sndudata() Be aware that the maximum size of a connectionless TSDU varies among
6063 implementations.

206 X/Open CAE Specification (1994) (Draft March 15, 1995)

6064

Appendix C

Guidelines for Use of XTI

6065 C.1 Transport Service Interface Sequence of Functions
6066 In order to describe the allowable sequence of function calls, this section gives some rules
6067 regarding the maintenance of the state of the interface:

6068 • It is the responsibility of the transport provider to keep a record of the state of the interface as
6069 seen by the transport user.

6070 • The transport provider will not process a function that places the interface out of state.

6071 • If the user issues a function out of sequence, the transport provider will indicate this where
6072 possible through an error return on that function. The state will not change. In this case, if
6073 any data is passed with the function when not in the T_DATAXFER state, that data will not
6074 be accepted or forwarded by the transport provider.

6075 • The uninitialised state (T_UNINIT) of a transport endpoint is the initial state. The endpoint
6076 must be initialised and bound before the transport provider may view it as active.

6077 • The uninitialised state is also the final state, and the transport endpoint must be viewed as
6078 unused by the transport provider. The t_close() function will close the transport endpoint
6079 and free the transport library resources for another endpoint.

6080 • According to Table 5-5 on page 32, t_close() should only be issued from the T_UNBND state.
6081 If it is issued from any other state, and no other user has that endpoint open, the action will
6082 be abortive, the transport endpoint will be successfully closed, and the library resources will
6083 be freed for another endpoint. When t_close() is issued, the transport provider must ensure
6084 that the address associated with the specified transport endpoint has been unbound from
6085 that endpoint. The provider sends appropriate disconnects if t_close() is not issued from the
6086 unbound state.

6087 The following rules apply only to the connection-mode transport service:

6088 • The transport connection release phase can be initiated at any time during the connection
6089 establishment phase or data transfer phase.

6090 • The only time the state of a transport service interface of a transport endpoint may be
6091 transferred to another transport endpoint is when the t_accept() function specifies such
6092 action. The following rules then apply to the cooperating transport endpoints:

6093 — The endpoint that is to accept the current state of the interface must be bound to an
6094 appropriate protocol address and must be in the T_IDLE state.

6095 — The user transferring the current state of an endpoint must have correct permissions for
6096 the use of the protocol address bound to the accepting transport endpoint.

6097 — The endpoint that transfers the state of the transport interface is placed into the T_IDLE
6098 state by the transport provider after the completion of the transfer if there are no more
6099 outstanding connect indications.

Networking Services, Issue 4 207

Example in Connection-oriented Mode Guidelines for Use of XTI

6100 C.2 Example in Connection-oriented Mode
6101 Table C-1 on page 209 shows the allowable sequence of functions of an active user and passive
6102 user communicating using a connection-mode transport service. This example is not meant to
6103 show all the functions that must be called, but rather to highlight the important functions that
6104 request a particular service. Blank lines are used to indicate that the function would be called by
6105 another user prior to a related function being called by the remote user. For example, the active
6106 user calls t_connect() to request a connection and the passive user would receive an indication of
6107 the connect request (via the return from t_listen()) and then would call the t_accept().

6108 The state diagram in Table C-1 on page 209 shows the flow of the events through the various
6109 states. The active user is represented by a solid line and the passive user is represented by a
6110 dashed line. This example shows a successful connection being established and terminated
6111 using connection-mode transport service without orderly release. For a detailed description of
6112 all possible states and events, see Table 5-7 on page 33.

208 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Example in Connection-oriented Mode

6113
6114 Active User Passive User
6115 t_open() t_open()
6116 t_bind() t_bind()
6117 t_listen()
6118 t_connect()
6119 t_accept()
6120 t_rcvconnect()
6121 t_snd()
6122 t_rcv()
6123 t_snddis()
6124 t_rcvdis()
6125 t_unbind() t_unbind()
6126 t_close() t_close()

6127

6128

KEY:

Active User

Passive User

6129

6130 t_sndt_rcv

t_accept

t_closet_open

t_connectt_listen

T_DATAXFER

T_INCON T_OUTCON

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

t_snddist_rcvdis

t_rcvconnect

6131 Table C-1 Sequence of Transport Functions in Connection-oriented Mode

Networking Services, Issue 4 209

Example in Connectionless Mode Guidelines for Use of XTI

6132 C.3 Example in Connectionless Mode
6133 Table C-2 shows the allowable sequence of functions of user A and user B communicating using
6134 a connectionless transport service. This example is not meant to show all the functions that
6135 must be called but rather to highlight the important functions that request a particular service.
6136 Blank lines are used to indicate that a function would be called by another user prior to a related
6137 function being called by the remote user.

6138 The state diagram that follows shows the flow of the events through the various states. This
6139 example shows a successful exchange of data between user A and user B. For a detailed
6140 description of all possible states and events, see Table 5-7 on page 33.

6141
6142 User A User B
6143 t_open() t_open()
6144 t_bind() t_bind()
6145 t_sndudata()
6146 t_rcvudata()
6147 t_unbind() t_unbind()
6148 t_close() t_close()

6149 t_sndudatat_rcvudata

t_closet_open

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

6150 Table C-2 Sequence of Transport Functions in Connectionless Mode

210 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Writing Protocol-independent Software

6151 C.4 Writing Protocol-independent Software
6152 In order to maximise portability of XTI applications between different kinds of machine and to
6153 support protocol independence, there are some general rules:

6154 1. An application should only make use of those functions and mechanisms described as
6155 being mandatory features of XTI.

6156 2. In the connection-mode service, the concept of a transport service data unit (TSDU) may
6157 not be supported by all transport providers. The user should make no assumptions about
6158 the preservation of logical data boundaries across a connection.

6159 3. If an application is not intended to run only over an ISO transport provider, then the name
6160 of the device should not be hard-coded into it. While software may be written for a
6161 particular class of service (for example, connectionless-mode service), it should not be
6162 written to depend on any attribute of the underlying protocol.

6163 4. The protocol-specific service limits returned on the t_open() and t_getinfo () functions must
6164 not be exceeded. It is the responsibility of the user to access these limits and then adhere to
6165 the limits throughout the communication process.

6166 5. The user program should not look at or change options that are specific to the underlying
6167 protocol. The t_optmgmt() function enables a user to access default protocol options from
6168 the transport provider, which may then be blindly passed as an argument on the
6169 appropriate connect establishment function. Optionally, the user can choose not to pass
6170 options as an argument on connect establishment functions.

6171 6. Protocol-specific addressing issues should be hidden from the user program. Similarly, the
6172 user must have some way of accessing destination addresses in an invisible manner, such
6173 as through a name server. However, the details for doing so are outside the scope of this
6174 interface specification.

6175 7. The reason codes associated with t_rcvdis() are protocol-dependent. The user should not
6176 interpret this information if protocol independence is a concern.

6177 8. The error codes associated with t_rcvuderr() are protocol-dependent. The user should not
6178 interpret this information if protocol independence is a concern.

6179 9. The optional orderly release facility of the connection-mode service (that is, t_sndrel() and
6180 t_rcvrel()) should not be used by programs targeted for multiple protocol environments.
6181 This facility is not supported by all connection-based transport protocols. In particular, its
6182 use will prevent programs from successfully communicating with ISO open systems.

6183 10. The semantics of expedited data are different across different transport providers (for
6184 example, ISO and TCP). An application intended to run over different transport providers
6185 should avoid their use.

Networking Services, Issue 4 211

Event Management Guidelines for Use of XTI

6186 C.5 Event Management
6187 In the absence of a standardised Event Management interface, the following guidelines are
6188 offered for the use of existing and widely available mechanisms by XTI applications.

6189 These guidelines provide information additional to that given in Section 3.7 on page 14 and
6190 Section 3.8 on page 16.

6191 For applications to use XTI in a fully asynchronous manner, they will need to use the facilities of
6192 an Event Management (EM) Interface. Such an EM will allow the application to be notified of a
6193 number of XTI events over a range of active endpoints. These events may be associated with:

6194 • connection indication

6195 • data indication

6196 • disconnection indication

6197 • flow control being lifted.

6198 In the same way, the EM mechanism should allow the application to be notified of events
6199 coming from external sources, such as:

6200 • asynchronous I/O completion

6201 • expiration of timer

6202 • resource availability.

6203 When handling multiple transport connections, the application could either:

6204 • fork a process for each new connection to be handled

6205 or:

6206 • handle all connections within a single process by making use of the EM facilities.

6207 The application will have to maintain an appropriate balance and choose the right trade-off
6208 between the number of processes and the number of connections managed per process in order
6209 to minimise the resulting overhead.

6210 Unfortunately, the system facilities to suspend and await notification of an event are presently
6211 system-dependent, although work is in progress within standards bodies to provide a unified
6212 and portable mechanism.

6213 Hence, for the foreseeable future, applications could use whatever underlying system facilities
6214 exist for event notification.

6215 C.5.1 Short-term Solution

6216 Many vendors currently provide either the System V poll () or BSD select() system calls which
6217 both give the ability to suspend until there is activity on a member of a set of file descriptors or a
6218 timeout.

6219 Given the fact that a transport endpoint identifying a transport connection maps to a file
6220 descriptor, applications can take advantage of such EM mechanisms offered by the system (for
6221 example, poll () or select()). The design of more efficient and sophisticated applications, that
6222 make full use of all the XTI features, then becomes easily possible.

6223 Guidelines for the use of poll () and select() are included in manual-page format, following the
6224 end of this section.

212 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Event Management

6225 C.5.2 XTI Events

6226 The XTI events can be divided into two classes of events.

6227 • Class 1: events related to reception of data.
6228
6229 T_LISTEN Connect request indication.
6230 T_CONNECT Connect response indication.
6231 T_DATA Reception of normal data indication.
6232 T_EXDATA Reception of expedited data indication.
6233 T_DISCONNECT Disconnect request indication.
6234 T_ORDREL Orderly release request indication.
6235 T_UDERR Notification of an error in a previously sent datagram.

6236 This class of events should always be monitored by the application.

6237 • Class 2: events related to emission of data (flow control).
6238
6239 T_GODATA Normal data may be sent again.
6240 T_GOEXDATA Expedited data may be sent again.

6241 This class of events informs the application that flow control restrictions have been lifted on
6242 a given file descriptor.

6243 The application should request to be notified of this class of events whenever a flow control
6244 restriction has previously occurred on this endpoint (for example, [TFLOW] error has been
6245 returned on a t_snd() call).

6246 Note that this class of event should not be monitored systematically otherwise the
6247 application would be notified each time a message is sent.

Networking Services, Issue 4 213

The Poll Function Guidelines for Use of XTI

6248 C.6 The Poll Function
6249 poll () is defined in the System V Interface Definition, Third Edition as follows. Note that this
6250 definition may vary slightly in other systems.

6251 UX If the implementation defines _XOPEN_UNIX, refer to the description of poll () in the XSH
6252 specification. Moreover, Chapter 8 on page 105 of the current document gives additional
6253 information on the specific effect of poll () when applied to Sockets.

6254 The manual page definition on the next page is followed by a section giving guidelines for use of
6255 System V poll ().

214 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI poll()

6256 NAME
6257 poll - input/output multiplexing

6258 SYNOPSIS
6259 #include <poll.h>
6260 int poll(struct pollfd fds[], unsigned long nfds, int timeout);

6261 DESCRIPTION
6262 poll () provides users with a mechanism for multiplexing input/output over a set of file
6263 descriptors. poll () identifies those file descriptors on which a user can read or write data, or on
6264 which certain events have occurred. A user can read data using read() and write data using
6265 write(). For STREAMS file descriptors, a user can also receive messages using getmsg() and
6266 getpmsg(), and send messages using putmsg() and putpmsg().

6267 fds specifies the file descriptors to be examined and the events of interest for each file descriptor.
6268 It is a pointer to an array with one element for each open file descriptor of interest. The array’s
6269 elements are pollfd structures which contain the following members:

6270 int fd; /* file descriptor */
6271 short events; /* requested events */
6272 short revents; /* returned events */

6273 where fd specifies an open file descriptor and events and revents are bit-masks constructed by
6274 OR’ing a combination of the following event flags:

6275 POLLIN Data other than high-priority data may be read without blocking. For
6276 STREAMS, this flag is set even if the message is of zero length.

6277 POLLRDNORM Normal data (priority band equals 0) may be read without blocking. For
6278 STREAMS, this flag is set even if the message is of zero length.

6279 POLLRDBAND Data from a non-zero priority band may be read without blocking. For
6280 STREAMS, this flag is set even if the message is of zero length.

6281 POLLPRI High-priority data may be received without blocking. For STREAMS, this flag
6282 is set even if the message is of zero length.

6283 POLLOUT Normal data may be written without blocking.

6284 POLLWRBAND Priority data (priority band greater than 0) may be written.

6285 POLLER An error has occurred on the device or STREAM. This flag is only valid in the
6286 revents bitmask; it is not used in the events field.

6287 POLLUP The device has been disconnected. This event and POLLOUT are mutually
6288 exclusive; a STREAM can never be writable if a hangup has occurred.
6289 However, this event and POLLIN, POLLRDNORM, POLLRDBAND or
6290 POLLPRI are not mutually exclusive. This flag is only valid in the revents
6291 bitmask; it is not used in the events field.

6292 POLLNVAL The specified fd value is invalid. This flag is only valid in the revents field; it is
6293 not used in the events field.

6294 For each element of the array pointed to by fds, poll () examines the given file descriptor for the
6295 event(s) specified in events. The number of file descriptors to be examined is specified by nfds.

6296 If the value of fd is less than zero, events is ignored and revents is set to zero in that entry on
6297 return from poll ().

6298 The results of the poll () query are stored in the revents field in the pollfd structure. Bits are set in
6299 the revents bitmask to indicate which of the requested events are true. If none of the requested

Networking Services, Issue 4 215

poll() Guidelines for Use of XTI

6300 events are true, none of the specified bits is set in revents when the poll () call returns. The events
6301 flags POLLUP, POLLERR and POLLNVAL, are always set in the revents if the conditions they
6302 indicate are true; this occurs even though these flags were not present in events.

6303 If none of the defined events have occurred on any selected file descriptor, poll () waits at least
6304 timeout milliseconds for an event to occur on any of the selected file descriptors. On a computer
6305 where millisecond timing accuracy is not available, timeout is rounded up to the nearest legal
6306 value available on that system. If the value of timeout is 0, poll () returns immediately. If the
6307 value of timeout is −1 poll () blocks until a requested event occurs or until the call is interrupted.
6308 poll () is not affected by the O_NDELAY and O_NONBLOCK flags.

6309 RETURN VALUES
6310 Upon successful completion, the function poll () returns a non-negative value. A positive value
6311 indicates the total number of file descriptors that have been selected (that is, file descriptors for
6312 which the revents field is non-zero). A value of 0 indicates that the call timed out and no file
6313 descriptors have been selected. Upon failure, the function poll () returns a value −1 and sets errno
6314 to indicate an error.

6315 ERRORS
6316 Under the following conditions, the function poll () fails and sets errno to:

6317 EAGAIN If the allocation of internal data structures failed but the request should be
6318 attempted again.

6319 EINTR If a signal was caught during the poll () system call.

6320 EINVAL If the argument nfds is less than zero or greater than {OPEN_MAX}.

216 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI poll()

6321 C.7 Use of Poll
6322 For an application to be notified of any XTI events on each of its active endpoints, the array
6323 pointed to by fds should contain as many elements as active endpoints identified by the file
6324 descriptor fd, and the events member of those elements should be set to the combination of event
6325 flags as specified below:

6326 • For Class 1 events:

6327 POLLIN | POLLPRI (for System V Release 3)

6328 or:

6329 POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI (for System V Release 4).

6330 • For Class 2 events:

6331 POLLOUT (for System V Release 3)

6332 or:

6333 POLLOUT | POLLWRBAND (for System V Release 4).

6334 In a System V Release 3, the meaning of POLLOUT may differ for different XTI
6335 implementations. It could either mean:

6336 • that both normal and expedited data may be sent

6337 or:

6338 • that normal data may be sent and the flow of expedited data cannot be monitored via poll ().

6339 A truly portable XTI application should, therefore, not assume that the flow of expedited data is
6340 monitored by poll (). This is not a serious restriction, since an application usually only sends
6341 small amounts of expedited data and flow restrictions are not a major problem.

6342 In a System V Release 4, the meaning of POLLOUT and POLLWRBAND is intended to be the
6343 same for all XTI implementations.

6344 POLLOUT Normal data may be sent.

6345 POLLWRBAND Expedited data may be sent.

6346 The following description gives the outline of an XTI server program making use of the System
6347 V poll ().

Networking Services, Issue 4 217

Use of Poll Guidelines for Use of XTI

6348 /*
6349 * This is a simple server application example to show how poll() can
6350 * be used in a portable manner to wait for the occurrence of XTI events.
6351 * In this example, poll() is used to wait for the events T_LISTEN,
6352 * T_DISCONNECT, T_DATA and T_GODATA.
6353 * The number of poll flags has increased from System V Release 3 to
6354 * System V Release 4. Hence, if this program is to be used in a
6355 * System V Release 3, the constant SVR3 must be defined during
6356 * compile time.
6357 *
6358 * A transport endpoint is opened in asynchronous mode over a
6359 * message-oriented transport provider (for example, ISO). The endpoint
6360 * is bound with qlen = 1 and the application enters an endless loop
6361 * to wait for all incoming XTI events on all its active endpoints.
6362 * For all connect indications received, a new endpoint is opened
6363 * with qlen = 0 and the connect request is accepted on that endpoint.
6364 * For all established connections, the application waits for data
6365 * to be received from one of its clients, sends the received data
6366 * back to the sender and waits for data again.
6367 * The cycle repeats until all the connections are released by
6368 * the clients. The disconnect indications are processed and the
6369 * endpoints closed.
6370 *
6371 * The example references two fictitious functions:
6372 *
6373 * - int get_provider(int tpid, char * tpname)
6374 * Given a number as transport provider id, the function returns in
6375 * tpname a string as transport provider name that can be used with
6376 * t_open(). This function hides the different naming schemes of
6377 * different XTI implementations.
6378 *
6379 * - int get_address(char * symb_name, struct netbuf address)
6380 * Given a symbolic name symb_name and a pointer to a struct netbuf
6381 * with allocated buffer space as input, the function returns a
6382 * protocol address. This function hides the different addressing
6383 * schemes of different XTI implementations.
6384 */

6385 /*
6386 * General Includes
6387 */
6388 #include <sys/types.h>
6389 #include <fcntl.h>
6390 #include <stdio.h>
6391 #include <xti.h>

6392 /*
6393 * Include files for poll()
6394 */
6395 #include <stropts.h>
6396 #include <poll.h>

6397 /*
6398 * Various Defines
6399 */
6400 /*
6401 * The XTI events T_CONNECT, T_DISCONNECT, T_LISTEN, T_ORDREL and T_UDERR
6402 * are related to one of the poll flags in INEVENTS (to which one, depends
6403 * on the implementation). POLLOUT means that (at least) normal data may

218 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Poll

6404 * be sent, and POLLWRBAND that expedited data may be sent.
6405 */

6406 #ifdef SVR3
6407 #define ERREVENTS (POLLERR | POLLHUP | POLLNVAL)
6408 #define INEVENTS (POLLIN | POLLPRI)
6409 #define OUTEVENTS POLLOUT
6410 #else
6411 #define ERREVENTS (POLLERR | POLLHUP | POLLNVAL)
6412 #define INEVENTS (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)
6413 #define OUTEVENTS (POLLOUT | POLLWRBAND)
6414 #endif
6415 #define MY_PROVIDER 1 /* transport provider id */
6416 #define MAXSIZE 4000 /* size of send/receive buffer */
6417 #define TPLEN 30 /* maximum length of provider name */
6418 #define MAXCNX 10 /* maximum number of connections */

6419 extern int errno;

6420 /*
6421 * Declaration of non-integer external functions
6422 */
6423 void exit();
6424 void perror();

6425 /* == */

6426 main()
6427 {

6428 register int i; /* loop variable */
6429 register int num; /* return value of t_snd() */
6430 /* and t_rcv() */
6431 int discflag = 0; /* flag to indicate a */
6432 /* disc indication */
6433 int errflag = 0; /* flag to indicate an error */
6434 int event; /* stores events returned */
6435 /* by t_look() */
6436 int fd; /* current file descriptor */
6437 int fdd; /* file descriptor */
6438 /* for t_accept() */
6439 int flags; /* used with t_rcv() */
6440 char *datbuf; /* current send/receive buffer */
6441 unsigned int act = 0; /* active endpoints */
6442 struct t_info info; /* used with t_open() */
6443 struct t_bind *preq; /* used with t_bind() */
6444 struct t_call *pcall; /* used with t_listen() */
6445 /* and t_accept() */
6446 struct t_discon discon; /* used with t_rcvdis() */
6447 char tpname[TPLEN]; /* transport provider name */
6448 char buf[MAXCNX][MAXSIZE]; /* send/receive buffers */
6449 int rcvdata[MAXCNX]; /* amount of data */
6450 /* already received */
6451 int snddata[MAXCNX]; /* amount of data already sent */

Networking Services, Issue 4 219

Use of Poll Guidelines for Use of XTI

6452 struct pollfd fds[MAXCNX]; /* used with poll() */

6453 /*
6454 * Get name of transport provider
6455 */
6456 if (get_provider(MY_PROVIDER, tpname) == -1) {
6457 perror(">>> get_provider failed");
6458 exit(1);
6459 }

6460 /*
6461 * Establish a transport endpoint in asynchronous mode
6462 */
6463 if ((fd = t_open(tpname, O_RDWR | O_NONBLOCK, &info)) == -1) {
6464 t_error(">>> t_open failed");
6465 exit(1);
6466 }

6467 /*
6468 * Allocate memory for the parameters passed with t_bind().
6469 */
6470 if ((preq = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
6471 t_error(">>> t_alloc(T_BIND) failed");
6472 t_close(fd);
6473 exit(1);
6474 }

6475 /*
6476 * Given a symbolic name ("MY_NAME"), get_address returns an address
6477 * and its length in preq->addr.buf and preq->addr.len.
6478 */
6479 if (get_address("MY_NAME", &(preq->addr)) == -1) {
6480 perror(">>> get_address failed");
6481 t_close(fd);
6482 exit(1);
6483 }
6484 preq->qlen = 1; /* is a listening endpoint */

6485 /*
6486 * Bind the local protocol address to the transport endpoint.
6487 * The returned information is discarded.
6488 */
6489 if (t_bind(fd, preq, NULL) == -1) {
6490 t_error(">>> t_bind failed");
6491 t_close(fd);
6492 exit(1);
6493 }
6494 if (t_free(preq, T_BIND) == -1) {
6495 t_error(">>> t_free failed");
6496 t_close(fd);
6497 exit(1);
6498 }

6499 /*
6500 * Allocate memory for the parameters used with t_listen.
6501 */
6502 if ((pcall = (struct t_call *) t_alloc(fd, T_CALL, T_ALL)) == NULL) {

220 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Poll

6503 t_error(">>> t_alloc(T_CALL) failed");
6504 t_close(fd);
6505 exit(1);
6506 }

6507 /*
6508 * Initialise entry 0 of the fds array to the listening endpoint.
6509 * To be portable across different XTI implementations,
6510 * register for INEVENTS and not for POLLIN.
6511 */
6512 fds[act].fd = fd;
6513 fds[act].events = INEVENTS;
6514 fds[act].revents = 0;
6515 rcvdata[act] = 0;
6516 snddata[act] = 0;
6517 act = 1;

6518 /*
6519 * Enter an endless loop to wait for all incoming events.
6520 * Connect requests are accepted on new opened endpoints.
6521 * The example assumes that data is first sent by the client.
6522 * Then, the received data is sent back again and so on, until
6523 * the client disconnects.
6524 * Note that the total number of active endpoints (act) should
6525 * at least be 1, corresponding to the listening endpoint.
6526 */
6527 fprintf(stderr, "Waiting for XTI events...\n");
6528 while (act > 0) {
6529 /*
6530 * Wait for any events
6531 *
6532 */
6533 if (poll(&fds, (size_t)act, (int) -1) == -1) {
6534 perror(">>> poll failed");
6535 exit(1);
6536 }
6537 /*
6538 * Process incoming events on all active endpoints
6539 */
6540 for (i = 0 ; i < act ; i++) {
6541 if (fds[i].revents == 0)
6542 continue; /* no event for this endpoint */
6543 if (fds[i].revents & ERREVENTS) {
6544 fprintf(stderr, "[%d] Unexpected poll events: 0x%x\n",
6545 fds[i].fd, fds[i].revents);
6546 continue;
6547 }
6548 /*
6549 * set the current endpoint
6550 * set the current send/receive buffer
6551 */
6552 fd = fds[i].fd;
6553 datbuf = buf[i];

6554 /*
6555 * Check for events
6556 */
6557 switch((event = t_look(fd))) {
6558 case T_LISTEN:

Networking Services, Issue 4 221

Use of Poll Guidelines for Use of XTI

6559 /*
6560 * Must be a connect indication
6561 */
6562 if (t_listen(fd, pcall) == -1) {
6563 t_error(">>> t_listen failed");
6564 exit(1);
6565 }
6566 /*
6567 * If it will exceed the maximum number
6568 * of connections that the server can handle,
6569 * reject the connect indication.
6570 */
6571 if (act >= MAXCNX) {
6572 fprintf(stderr, ">>> Connection request rejected\n");
6573 if (t_snddis(fd, pcall) == -1)
6574 t_error(">>> t_snddis failed");
6575 continue;
6576 }
6577 /*
6578 * Establish a transport endpoint
6579 * in asynchronous mode
6580 */
6581 if ((fdd = t_open(tpname, O_RDWR | O_NONBLOCK, &info))
6582 == -1) {
6583 t_error(">>> t_open failed");
6584 continue;
6585 }
6586 /*
6587 * Accept connection on this endpoint.
6588 * fdd no longer needs to be bound,
6589 * t_accept() will do it.
6590 */
6591 if (t_accept(fd, fdd, pcall) == -1) {
6592 t_error(">>> t_accept failed");
6593 t_close(fdd);
6594 continue;
6595 }
6596 fprintf(stderr, "Connection [%d] opened\n", fdd);

6597 /*
6598 * Register for all flags that might indicate
6599 * a T_DATA or T_DISCONNECT event, i. e.,
6600 * register for INEVENTS (to be portable
6601 * through all XTI implementations).
6602 */
6603 fds[act].fd = fdd;
6604 fds[act].events = INEVENTS;
6605 fds[act].revents = 0;
6606 rcvdata[act] = 0;
6607 snddata[act] = 0;
6608 act++;
6609 break;

6610 case T_DATA:
6611 /*
6612 * Must be a data indication
6613 */
6614 if ((num = t_rcv(fd, (datbuf + rcvdata[i]),
6615 (MAXSIZE - rcvdata[i]), &flags)) == -1) {

222 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Poll

6616 switch (t_errno) {
6617 case TNODATA:
6618 /* No data is currently
6619 * available: repeat the loop
6620 */
6621 continue;
6622 case TLOOK:
6623 /* Must be a T_DISCONNECT event:
6624 * set discflag
6625 */
6626 event = t_look(fd);
6627 if (event == T_DISCONNECT) {
6628 discflag = 1;
6629 break;
6630 }
6631 else
6632 fprintf(stderr, "Unexpected event %d\n",
6633 event);
6634 default:
6635 /* Unexpected failure */
6636 t_error(">>> t_rcv failed");
6637 fprintf(stderr, "connection id: [%d]\n", fd);
6638 errflag = 1;
6639 break;
6640 }
6641 }

6642 if (discflag || errflag)
6643 /* exit from the event switch */
6644 break;
6645 fprintf(stderr, "[%d] %d bytes received\n", fd, num);
6646 rcvdata[i] += num;
6647 if (rcvdata[i] < MAXSIZE)
6648 continue;
6649 if (flags & T_MORE) {
6650 fprintf(stderr, "[%d] TSDU too long for receive
6651 buffer\n", fd);
6652 errflag = 1;
6653 break; /* exit from the event switch */
6654 }

6655 /*
6656 * Send the data back:
6657 * Repeat t_snd() until either the whole TSDU
6658 * is sent back, or an event occurs.
6659 */
6660 fprintf(stderr, "[%d] sending data back\n", fd);
6661 do {
6662 if ((num = t_snd(fd, (datbuf + snddata[i]),
6663 (MAXSIZE - snddata[i]), 0)) == -1) {
6664 switch (t_errno) {
6665 case TFLOW:
6666 /*
6667 * Register for the flags
6668 * OUTEVENTS to get awaken by
6669 * T_GODATA, and for INEVENTS
6670 * to get aware of T_DISCONNECT
6671 * or T_DATA.
6672 */

Networking Services, Issue 4 223

Use of Poll Guidelines for Use of XTI

6673 fds[i].events |= OUTEVENTS;
6674 continue;

6675 case TLOOK:
6676 /*
6677 * Must be a T_DISCONNECT event:
6678 * set discflag
6679 */
6680 event = t_look(fd);
6681 if (event == T_DISCONNECT) {
6682 discflag = 1;
6683 break;
6684 }
6685 else
6686 fprintf(stderr, "Unexpected event %d\n",
6687 event);

6688 default:
6689 t_error(">>> t_snd failed");
6690 fprintf(stderr, "connection id: [%d]\n", fd);
6691 errflag = 1;
6692 break;
6693 }
6694 }
6695 else {
6696 snddata[i] += num;
6697 }
6698 } while (MAXSIZE > snddata[i] && !discflag && !errflag);
6699 /*
6700 * Reset send/receive counters
6701 */
6702 rcvdata[i] = 0;
6703 snddata[i] = 0;
6704 break;

6705 case T_GODATA:
6706 /*
6707 * Flow control restriction has been lifted
6708 * restore initial event flags
6709 */
6710 fds[i].events = INEVENTS;
6711 continue;
6712 case T_DISCONNECT:
6713 /*
6714 * Must be a disconnect indication
6715 */
6716 discflag = 1;
6717 break;
6718 case -1:
6719 /*
6720 * Must be an error
6721 */
6722 t_error(">>> t_look failed");
6723 errflag = 1;
6724 break;
6725 default:
6726 /*
6727 * Must be an unexpected event
6728 */

224 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Poll

6729 fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
6730 errflag = 1;
6731 break;
6732 } /* end event switch */

6733 if (discflag) {
6734 /*
6735 * T_DISCONNECT has been received.
6736 * User data is not expected.
6737 */
6738 if (t_rcvdis(fd, &discon) == -1)
6739 t_error(">>> t_rcvdis failed");
6740 else
6741 fprintf(stderr, "[%d] Disconnect reason: 0x%x\n",
6742 fd, discon.reason);
6743 }

6744 if (discflag || errflag) {
6745 /*
6746 * Close transport endpoint and
6747 * decrement number of active connections
6748 */
6749 t_close(fd);
6750 act--;
6751 /* Move last entry of fds array to current slot,
6752 * adjust internal counters and flags
6753 */
6754 fds[i].events = fds[act].events;
6755 fds[i].revents = fds[act].revents;
6756 fds[i].fd = fds[act].fd;
6757 discflag = 0; /* clear disconnect flag */
6758 errflag = 0; /* clear error flag */
6759 i--; /* Redo the for() event loop to consider
6760 * events related to the last entry of
6761 * fds array */
6762 fprintf(stderr, "Connection [%d] closed\n", fd);
6763 }

6764 } /* end of for() event loop */

6765 } /* end of while() loop */
6766 fprintf(stderr, ">>> Warning: no more active endpoints\n");
6767 exit(1);
6768 }

Networking Services, Issue 4 225

The Select Function Guidelines for Use of XTI

6769 C.8 The Select Function
6770 select() is defined in the 4.3 Berkeley Software Distribution as follows. Note that this definition
6771 may vary slightly in other systems.

6772 UX If the implementation defines _XOPEN_UNIX, refer to the description of select() in the XSH
6773 specification. Moreover, Chapter 8 on page 105 of the current document gives additional
6774 information on the specific effect of select() when applied to Sockets.

6775 The manual page for this definition is given on the next page, and this is followed by as section
6776 giving guidelines for Use of BSD select().

226 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI select()

6777 NAME
6778 select - synchronous I/O multiplexing

6779 SYNOPSIS
6780 #include <sys/types.h>
6781 #include <sys/time.h>

6782 nfound = select(nfds, readfds, writefds, exceptfds, timeout)
6783 int nfound, nfds;
6784 fd_set ∗readfds, ∗writefds, ∗exceptfds;
6785 struct timeval ∗timeout;

6786 FD_SET(fd, &fdset)
6787 FD_CLR(fd, &fdset)
6788 FD_ISSET(fd, &fdset)
6789 FD_ZERO(&fdset)
6790 int fd;
6791 fd_set fdset;

6792 DESCRIPTION
6793 select() examines the I/O descriptor sets whose addresses are passed in readfds, writefds and
6794 exceptfds to see if some of their descriptors are ready for reading, ready for writing, or have an
6795 exceptional condition pending, respectively. The first nfds descriptors are checked in each set;
6796 that is, the descriptors from 0 through nfds -1 in the descriptor sets are examined. On return,
6797 select() replaces the given descriptor sets with subsets consisting of those descriptors that are
6798 ready for the requested operation. The total number of ready descriptors in all the sets is
6799 returned in nfound.

6800 The descriptor sets are stored as bit fields in arrays of integers. The following macros are
6801 provided for manipulating such descriptor sets: FD_ZERO(&fdset) initialises a descriptor set
6802 fdset to the null set. FD_SET(fd, &fdset) includes a particular descriptor fd in fdset. FD_CLR(fd,
6803 &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is non-zero if fd is a member of fdset, zero
6804 otherwise. The behaviour of these macros is undefined if a descriptor value is less than zero or
6805 greater than or equal to FD_SETSIZE, which is normally at least equal to the maximum number
6806 of descriptors supported by the system.

6807 If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
6808 complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the timeout
6809 argument should be non-zero, pointing to a zero-valued timeval structure.

6810 Any of readfds, writefds and exceptfds may be given as zero pointers if no descriptors are of
6811 interest.

6812 RETURN VALUES
6813 select() returns the number of ready descriptors that are contained in the descriptor sets, or −1 if
6814 an error occurred. If the time limit expires then select() returns 0. If select() returns with an
6815 error, including one due to an interrupted call, the descriptor sets will be unmodified.

6816 ERRORS
6817 An error return from select() indicates:

6818 [EBADF] One of the descriptor sets specified an invalid descriptor.

Networking Services, Issue 4 227

select() Guidelines for Use of XTI

6819 [EINTR] A signal was delivered before the time limit expired and before any of the selected
6820 events occurred.

6821 [EINVAL] The specified time limit is invalid. One of its components is negative or too large.

228 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Select

6822 C.9 Use of Select
6823 Many systems provide the macros FD_SET, FD_CLR, FD_ISSET and FD_ZERO in <sys/types.h>
6824 or other header files to manipulate these bit masks. If not available they should be defined by
6825 the user (see the program example below).

6826 For an application to be notified of any XTI events on each of its active endpoints identified by a
6827 file descriptor fd, this file descriptor fd should be included in the appropriate descriptor sets
6828 readfds, exceptfds or writefds as specified below:

6829 • For Class 1 events:

6830 Set the bit masks readfds and exceptfds by FD_SET(fd, readfds) and FD_SET(fd, exceptfds).

6831 • For Class 2 events:

6832 Set the bit mask writefds by FD_SET(fd, writefds).

6833 If, on return of select(), the bit corresponding to fd is set in writefds, this can have a different
6834 meaning for different XTI implementations. It could either mean:

6835 • that both normal and expedited data may be sent

6836 or:

6837 • that normal data may be sent and the flow of expedited data cannot be monitored via select().

6838 A truly portable XTI application should, therefore, not assume that the flow of expedited data is
6839 monitored by select(). This is not a serious restriction, since an application usually only sends
6840 small amounts of expedited data and flow restrictions are not a major problem.

6841 The remainder of this section describes the outline of an XTI server program making use of the
6842 BSD select().

Networking Services, Issue 4 229

Use of Select Guidelines for Use of XTI

6843 /*
6844 * This is a simple server application example to show how select() can
6845 * be used in a portable manner to wait for the occurrence of XTI events.
6846 * In this example, select() is used to wait for the events T_LISTEN,
6847 * T_DISCONNECT, T_DATA and T_GODATA.
6848 *
6849 * A transport endpoint is opened in asynchronous mode over a
6850 * message-oriented transport provider (for example, ISO). The endpoint is
6851 * bound with qlen = 1, and the application enters an endless loop to wait
6852 * for all incoming XTI events on all its active endpoints.
6853 * For all connect indications received, a new endpoint is opened with
6854 * qlen = 0 and the connect request is accepted on that endpoint.
6855 * For all established connections, the application waits for data to be
6856 * received from one of its clients, sends the received data back to the
6857 * sender and waits for data again.
6858 * The cycle repeats until all the connections are released by the clients.
6859 * The disconnect indications are processed and the endpoints closed.
6860 *
6861 * The example references two fictitious functions:
6862 *
6863 * - int get_provider(int tpid, char * tpname)
6864 * Given a number as transport provider id, the function returns in
6865 * tpname a string as transport provider name that can be used with
6866 * t_open(). This function hides the different naming schemes of
6867 * different XTI implementations.
6868 *
6869 * - int get_address(char * symb_name, struct netbuf address)
6870 * Given a symbolic name symb_name and a pointer to a struct netbuf
6871 * with allocated buffer space as input, the function returns a
6872 * protocol address. This function hides the different addressing
6873 * schemes of different XTI implementations.
6874 */
6875 /*
6876 * General Includes
6877 */
6878 #include <fcntl.h>
6879 #include <stdio.h>
6880 #include <xti.h>
6881 /*
6882 * Include files for select(). Some UNIX derivatives use other includes,
6883 * for example, <sys/times.h> instead of <sys/time.h>.
6884 * <sys/select.h> instead of <sys/types.h>.
6885 */
6886 #include <sys/types.h>
6887 #include <time.h>

6888 /*
6889 * Includes that are only relevant, if the type fd_set and the macros
6890 * FD_SET, FD_CLR, FD_ISSET and FD_ZERO have to be explicitly defined
6891 * in this program.
6892 */
6893 #include <limits.h>
6894 #include <string.h> /* for memset() */

6895 /*
6896 * Various Defines
6897 */

230 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Select

6898 #define MY_PROVIDER 1 /* transport provider id */
6899 #define MAXSIZE 4000 /* size of send/receive buffer */
6900 #define TPLEN 30 /* maximum length of provider name */
6901 #define MAXCNX 10 /* maximum number of connections */

6902 /*
6903 * Select uses bit masks of file descriptors in longs. Most systems
6904 * provide a type "fd_set" and macros in <sys/types.h> or <sys/select.h>
6905 * to ease the use of select().
6906 * They are explicitly defined below in case that they are not defined in
6907 * <sys/types.h> or <sys/select.h>.
6908 */
6909 /*
6910 * OPEN_MAX should be >= number of maximum open files per process
6911 */
6912 #ifndef OPEN_MAX
6913 #define OPEN_MAX 256
6914 #endif
6915 #ifndef NFDBITS
6916 #define NFDBITS (sizeof(long) * CHAR_BIT) /* bits per mask */
6917 #endif
6918 #ifndef howmany
6919 #define howmany(x, y) (((x)+((y)-1))/(y))
6920 #endif
6921 #ifndef FD_SET
6922 typedef struct fd_set {
6923 long fds_bits[howmany(OPEN_MAX, NFDBITS)];
6924 } fd_set;
6925 #define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] |= (1 << ((n) % NFDBITS)))
6926 #define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ˜(1 << ((n) % NFDBITS)))
6927 #define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n) % NFDBITS)))
6928 #define FD_ZERO(p) memset(*(p), (u_char) 0, sizeof(*(p)))
6929 #endif /* ! FD_SET */

6930 extern int errno;

6931 /*
6932 * Declaration of non-integer external functions.
6933 */
6934 void exit();
6935 void perror();

6936 /* == */

6937 main()
6938 {

6939 register int i; /* loop variable */
6940 register int num; /* return value of t_snd() */
6941 /* and t_rcv() */

6942 int discflag = 0; /* flag to indicate a */
6943 /* disc indication */
6944 int errflag = 0; /* flag to indicate an error */
6945 int event; /* stores events returned */

Networking Services, Issue 4 231

Use of Select Guidelines for Use of XTI

6946 /* by t_look() */
6947 int fd; /* current file descriptor */
6948 int fdd; /* file descriptor */
6949 /* for t_accept() */
6950 int flags; /* used with t_rcv() */
6951 char *datbuf; /* current send/receive */
6952 /* buffer */
6953 size_t act = 0; /* active endpoints */
6954 struct t_info info; /* used with t_open() */
6955 struct t_bind *preq; /* used with t_bind() */
6956 struct t_call *pcall; /* used with t_listen() */
6957 /* and t_accept() */
6958 struct t_discon discon; /* used with t_rcvdis() */
6959 char tpname[TPLEN]; /* transport provider name */

6960 int fds[MAXCNX]; /* array of file descriptors */
6961 char buf[MAXCNX][MAXSIZE] /* send/receive buffers */
6962 int rcvdata[MAXCNX]; /* amount of data */
6963 /* already received */
6964 int snddata[MAXCNX]; /* amount of data already sent */

6965 fd_set rfds, wfds, xfds; /* file descriptor sets */
6966 /* for select() */
6967 fd_set rfdds, wfdds, xfdds; /* initial values of */
6968 /* file descriptor sets */
6969 /* rfds, wfds and xfds */

6970 /*
6971 * Get name of transport provider
6972 */
6973 if (get_provider(MY_PROVIDER, tpname) == -1) {
6974 perror(">>> get_provider failed");
6975 exit(1);
6976 }

6977 /*
6978 * Establish a transport endpoint in asynchronous mode
6979 */
6980 if ((fd = t_open(tpname, O_RDWR | O_NONBLOCK, &info)) == -1) {
6981 t_error(">>> t_open failed");
6982 exit(1);
6983 }

6984 /*
6985 * Allocate memory for the parameters passed with t_bind().
6986 */
6987 if ((preq = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
6988 t_error(">>> t_alloc(T_BIND) failed");
6989 t_close(fd);
6990 exit(1);
6991 }

6992 /*
6993 * Given a symbolic name ("MY_NAME"), get_address returns an address
6994 * and its length in preq->addr.buf and preq->addr.len.
6995 */
6996 if (get_address("MY_NAME", &(preq->addr)) == -1) {
6997 perror(">>> get_address failed");
6998 t_close(fd);

232 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Select

6999 exit(1);
7000 }
7001 preq->qlen = 1; /* is a listening endpoint */

7002 /*
7003 * Bind the local protocol address to the transport endpoint.
7004 * The returned information is discarded.
7005 */
7006 if (t_bind(fd, preq, NULL) == -1) {
7007 t_error(">>> t_bind failed");
7008 t_close(fd);
7009 exit(1);
7010 }
7011 if (t_free(preq, T_BIND) == -1) {
7012 t_error(">>> t_free failed");
7013 t_close(fd);
7014 exit(1);
7015 }

7016 /*
7017 * Allocate memory for the parameters used with t_listen.
7018 */
7019 if ((pcall = (struct t_call *) t_alloc(fd, T_CALL, T_ALL)) == NULL) {
7020 t_error(">>> t_alloc(T_CALL) failed");
7021 t_close(fd);
7022 exit(1);
7023 }

7024 /*
7025 * Initialise listening endpoint in descriptor set.
7026 * To be portable across different XTI implementations,
7027 * register for descriptor set rfdds and xfdds
7028 */
7029 FD_ZERO(&rfdds);
7030 FD_ZERO(&xfdds);
7031 FD_ZERO(&wfdds);
7032 FD_SET(fd, &rfdds);
7033 FD_SET(fd, &xfdds);
7034 fds[act] = fd;
7035 rcvdata[act] = 0;
7036 snddata[act] = 0;
7037 act = 1;

7038 /*
7039 * Enter an endless loop to wait for all incoming events.
7040 * Connect requests are accepted on a new opened endpoint.
7041 * The example assumes that data is first sent by the client.
7042 * Then, the received data is sent back again and so on, until
7043 * the client disconnects.
7044 * Note that the total number of active endpoints (act) should
7045 * at least be 1, corresponding to the listening endpoint.
7046 */
7047 fprintf(stderr, "Waiting for XTI events...\n");
7048 while (act > 0) {
7049 /*
7050 * Wait for any events
7051 */

7052 /*

Networking Services, Issue 4 233

Use of Select Guidelines for Use of XTI

7053 * Set the mask sets rfds, xfds and wfds to their initial values
7054 */
7055 rfds = rfdds;
7056 xfds = xfdds;
7057 wfds = wfdds;
7058 if (select(OPEN_MAX, &rfds, &wfds, &xfds,
7059 (struct timeval *) NULL) == -1) {
7060 perror(">>> select failed");
7061 exit(1);
7062 }
7063 /*
7064 * Process incoming events on all active endpoints
7065 */
7066 for (i = 0 ; i < act ; i++) {
7067 /*
7068 * set the current endpoint
7069 * set the current send/receive buffer
7070 */
7071 fd = fds[i];
7072 datbuf = buf[i];

7073 if (FD_ISSET(fd, &xfds)) {
7074 fprintf(stderr, "[%d] Unexpected select events\n", fd);
7075 continue;
7076 }
7077 if (!FD_ISSET(fd, &rfds) && !FD_ISSET(fd, &wfds))
7078 continue; /* no event for this endpoint */

7079 /*
7080 * Check for events
7081 */
7082 switch((event = t_look(fd))) {
7083 case T_LISTEN:
7084 /*
7085 * Must be a connect indication
7086 */
7087 if (t_listen(fd, pcall) == -1) {
7088 t_error(">>> t_listen failed");
7089 exit(1);
7090 }

7091 /*
7092 * If it will exceed the maximum number
7093 * of connections that the server can handle,
7094 * reject the connect indication.
7095 */
7096 if (act >= MAXCNX) {
7097 fprintf(stderr, ">>> Connection request
7098 rejected\n");
7099 if (t_snddis(fd, pcall) == -1)
7100 t_error(">>> t_snddis failed");
7101 continue;
7102 }
7103 /*
7104 * Establish a transport endpoint
7105 * in asynchronous mode
7106 */
7107 if ((fdd = t_open(tpname, O_RDWR | O_NONBLOCK,
7108 &info)) == -1) {

234 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Select

7109 t_error(">>> t_open failed");
7110 continue;
7111 }
7112 /*
7113 * Accept connection on this endpoint.
7114 * fdd no longer needs to be bound,
7115 * t_accept() will do it
7116 */
7117 if (t_accept(fd, fdd, pcall) == -1) {
7118 t_error(">>> t_accept failed");
7119 t_close(fdd);
7120 continue;
7121 }
7122 fprintf(stderr, "Connection [%d] opened\n", fdd);

7123 /*
7124 * Register for all flags that might indicate
7125 * a T_DATA or T_DISCONNECT event, i. e.,
7126 * register for rfdds and xfdds (to be portable
7127 * through all XTI implementations).
7128 */
7129 fds[act] = fdd;
7130 FD_SET(fdd, &rfdds);
7131 FD_SET(fdd, &xfdds);
7132 rcvdata[act] = 0;
7133 snddata[act] = 0;
7134 act++;
7135 break;

7136 case T_DATA:
7137 /* Must be a data indication
7138 */
7139 if ((num = t_rcv(fd, (datbuf + rcvdata[i]),
7140 (MAXSIZE - rcvdata[i]), &flags)) == -1) {
7141 switch (t_errno) {
7142 case TNODATA:
7143 /* No data is currently
7144 * available: repeat the loop
7145 */
7146 continue;
7147 case TLOOK:
7148 /* Must be a T_DISCONNECT event:
7149 * set discflag
7150 */
7151 event = t_look(fd);
7152 if (event == T_DISCONNECT) {
7153 discflag = 1;
7154 break;
7155 }
7156 else
7157 fprintf(stderr, "Unexpected event %d\n", event);

7158 default:
7159 /* Unexpected failure */
7160 t_error(">>> t_rcv failed");
7161 fprintf(stderr, "connection id: [%d]\n", fd);
7162 errflag = 1;
7163 break;
7164 }

Networking Services, Issue 4 235

Use of Select Guidelines for Use of XTI

7165 }

7166 if (discflag || errflag)
7167 /* exit from the event switch */
7168 break;
7169 fprintf(stderr, "[%d] %d bytes received\n", fd, num);
7170 rcvdata[i] += num;
7171 if (rcvdata[i] < MAXSIZE)
7172 continue;
7173 if (flags & T_MORE) {
7174 fprintf(stderr, "[%d] TSDU too long for receive
7175 buffer\n", fd);
7176 errflag = 1;
7177 break; /* exit from the event switch */
7178 }

7179 /*
7180 * Send the data back.
7181 * Repeat t_snd() until either the whole TSDU
7182 * is sent back, or an event occurs.
7183 */
7184 fprintf(stderr, "[%d] sending data back\n", fd);
7185 do {
7186 if ((num = t_snd(fd, (datbuf + snddata[i]),
7187 (MAXSIZE - snddata[i]), 0)) == -1) {
7188 switch (t_errno) {
7189 case TFLOW:
7190 /*
7191 * Register for wfds to get
7192 * awaken by T_GODATA, and for
7193 * rfds and xfds to get aware of
7194 * T_DISCONNECT or T_DATA.
7195 */
7196 FD_SET(fd, &wfdds);
7197 continue;

7198 case TLOOK:
7199 /*
7200 * Must be a T_DISCONNECT event:
7201 * set discflag
7202 */
7203 event = t_look(fd);
7204 if (event == T_DISCONNECT) {
7205 discflag = 1;
7206 break;
7207 }
7208 else
7209 fprintf(stderr, "Unexpected event
7210 %d\n", event);

7211 default:
7212 t_error(">>> t_snd failed");
7213 fprintf(stderr, "connection id: [%d]\n", fd);
7214 errflag = 1;
7215 break;
7216 }
7217 }
7218 else {
7219 snddata[i] += num;

236 X/Open CAE Specification (1994) (Draft March 15, 1995)

Guidelines for Use of XTI Use of Select

7220 }
7221 } while (MAXSIZE > snddata[i] && !discflag && !errflag);
7222 /*
7223 * Reset send/receive counter
7224 */
7225 rcvdata[i] = 0;
7226 snddata[i] = 0;
7227 break;

7228 case T_GODATA:
7229 /*
7230 * Flow control restriction has been lifted
7231 * restore initial event flags
7232 */
7233 FD_CLR(fd, &wfdds);
7234 continue;
7235 case T_DISCONNECT:
7236 /*
7237 * Must be a disconnect indication
7238 */
7239 discflag = 1;
7240 break;
7241 case -1:
7242 /*
7243 * Must be an error
7244 */
7245 t_error(">>> t_look failed");
7246 errflag = 1;
7247 break;
7248 default:
7249 /*
7250 * Must be an unexpected event
7251 */
7252 fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
7253 errflag = 1;
7254 break;
7255 } /* end event switch */

7256 if (discflag) {
7257 /*
7258 * T_DISCONNECT has been received.
7259 * User data is not expected.
7260 */
7261 if (t_rcvdis(fd, &discon) == -1)
7262 t_error(">>> t_rcvdis failed");
7263 else
7264 fprintf(stderr, "[%d] Disconnect reason: 0x%x\n",
7265 fd, discon.reason);
7266 }

7267 if (discflag || errflag) {
7268 /*
7269 * Close transport endpoint and
7270 * decrement number of active connections
7271 */
7272 t_close(fd);
7273 act--;
7274 /*
7275 * Unregister fd from initial mask sets

Networking Services, Issue 4 237

Use of Select Guidelines for Use of XTI

7276 */
7277 FD_CLR(fd, &rfdds);
7278 FD_CLR(fd, &xfdds);
7279 FD_CLR(fd, &wfdds);
7280 /* Move last entry of fds array to current slot,
7281 * adjust internal counters and flags
7282 */
7283 fds[i] = fds[act];
7284 discflag = 0; /* clear disconnect flag */
7285 errflag = 0; /* clear error flag */
7286 i--; /* Redo the for() event loop to consider
7287 * events related to the last entry of
7288 * fds array */
7289 fprintf(stderr, "Connection [%d] closed\n", fd);
7290 }

7291 } /* end of for() event loop */

7292 } /* end of while() loop */
7293 fprintf(stderr, ">>> Warning: no more active endpoints\n");
7294 exit(1);
7295 }

238 X/Open CAE Specification (1994) (Draft March 15, 1995)

7296

Appendix D

Use of XTI to Access NetBIOS

7297 D.1 Introduction
7298 NetBIOS represents an important de facto standard for networking DOS and OS/2 PCs. The
7299 X/Open Specification Protocols for X/Open PC Interworking: SMB (see the referenced
7300 NetBIOS specification) provides mappings of NetBIOS services to OSI and IPS transport
7301 protocols.7.

7302 The following CAE Specification extends that work to provide a standard programming
7303 interface to NetBIOS transport providers in X/Open-compliant systems, using an existing
7304 X/Open Common Applications Environment (CAE) interface, XTI.

7305 The X/Open Transport Interface (XTI) defines a transport service interface that is independent of
7306 any specific transport provider.

7307 This CAE Specification defines a standard for using XTI to access NetBIOS transport providers.
7308 Applications that use XTI to access NetBIOS transport providers are referred to as ‘‘transport
7309 users’’.

7310 D.2 Objectives
7311 The objectives of this standardisation are:

7312 1. to facilitate the development and portability of CAE applications that interwork with the
7313 large installed base of NetBIOS applications in a Local Area Network (LAN) environment;

7314 2. to enable a single application to use the same XTI interface to communicate with remote
7315 applications through either an IPS profile, an OSI profile or a NetBIOS profile (that is, RFC
7316 1001/1002 or TOP/NetBIOS),

7317 3. to provide a common interface that can be used for IPC with clients using either (PC)NFS
7318 or SMB protocols for resources sharing.

7319 This CAE Specification provides a migration step to users moving from proprietary systems in a
7320 NetBIOS environment to open systems, that is, the X/Open CAE.

7321 __________________

7.7322 The mappings are defined by the Specification of NetBIOS Interface and Name Service Support by Lower Layer OSI Protocols,
7323 and RFC-1001/RFC-1002 respectively. See the referenced NetBIOS specification. The relevant chapters are Chapter 13,
7324 NetBIOS Interface to ISO Transport Services, Chapter 14, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport:
7325 Concepts and Methods and Chapter 15, Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Detailed
7326 Specification.

Networking Services, Issue 4 239

Scope Use of XTI to Access NetBIOS

7327 D.3 Scope
7328 No extensions to XTI, as it is defined in the main body of this CAE Specification, are made in this
7329 NetBIOS CAE Specification. This NetBIOS CAE Specification is concerned only with
7330 standardisation of the mapping of XTI to the NetBIOS facilities, and not a new definition of XTI
7331 itself.

7332 This CAE Specification applies only to the use of XTI in the single NetBIOS subnetwork case,
7333 and does not provide for the support of applications operating in multiple, non-overlapping
7334 NetBIOS name spaces.

7335 The following NetBIOS facilities found in various NetBIOS implementations are considered
7336 outside the scope of XTI (note that this list is not necessarily definitive):

7337 • LAN.STATUS.ALERT

7338 • RESET

7339 • SESSION STATUS

7340 • TRACE

7341 • UNLINK

7342 • RPL (Remote Program Load)

7343 • ADAPTER STATUS

7344 • FIND NAME

7345 • SEND.NOACK

7346 • CHAIN.SEND.NOACK

7347 • CANCEL

7348 • receiving a datagram on any name

7349 • receiving data on any connection.

7350 It must also be noted that not all commands are specified in the protocols.

7351 Omitting these does not restrict interoperability with the majority of NetBIOS implementations,
7352 since they have local significance only (RESET, SESSION STATUS), are concerned with systems
7353 management (UNLINK, RPL, ADAPTER STATUS), or are LAN- and vendor-specific (FIND
7354 NAME). If and how these functions are made available to the programmer is left to the
7355 implementor of this particular XTI implementation.

240 X/Open CAE Specification (1994) (Draft March 15, 1995)

Use of XTI to Access NetBIOS Issues

7356 D.4 Issues
7357 The primary issues for XTI as a transport interface to NetBIOS concern the passing of NetBIOS
7358 names and name type information through XTI, specification of restrictions on XTI functions in
7359 the NetBIOS environment, and handling the highly dynamic assignment of NetBIOS names.

Networking Services, Issue 4 241

NetBIOS Names and Addresses Use of XTI to Access NetBIOS

7360 D.5 NetBIOS Names and Addresses
7361 NetBIOS uses 16-octet alphanumeric names as ‘‘transport’’ addresses. NetBIOS names must be
7362 exactly 16 octets, with shorter names padded with spaces to 16 octets. In addition, NetBIOS
7363 names are either unique names or group names, and must be identified as such in certain
7364 circumstances.

7365 The following restrictions should be applied to NetBIOS names. Failure to observe these
7366 restrictions may result in unpredictable results.

7367 1. Byte 0 of the name is not allowed to be hexadecimal 00 (0x00).

7368 2. Byte 0 of the name is not allowed to be an asterisk, except as noted elsewhere in this
7369 specification to support broadcast datagrams.

7370 3. Names should not begin with company names or trademarks.

7371 4. Names should not begin with hexadecimal FF (0xFF).

7372 5. Byte 15 of the name should not be in the range 0x00 - 0x1F.

7373 The concept of a permanent node name, as provided in the native NetBIOS environment, is not
7374 supported in the X/Open CAE.

7375 The following definitions are supplied with any implementation of XTI on top of NetBIOS. They
7376 should be included in <xti.h>.

7377 #define NB_UNIQUE 0
7378 #define NB_GROUP 1
7379 #define NB_NAMELEN 16
7380 #define NB_BCAST_NAME "* " /* asterisk plus 15 spaces */

7381 The protocol addresses passed in calls to t_bind(), t_connect(), etc., are structured as follows:

7382 1 2 17
7383 +----+-------------------------------+
7384 |Type| NetBIOS Name |
7385 +----+-------------------------------+

7386 Type The first octet specifies the type of the NetBIOS name. It may be set to
7387 NB_UNIQUE or NB_GROUP.

7388 NetBIOS Name Octets 2 through 17 contain the 16-octet NetBIOS name.

7389 All NetBIOS names, complete with the name type identifier, are passed through XTI in a netbuf
7390 address structure (that is, struct netbuf addr), where addr.buf points to a NetBIOS protocol
7391 address as defined above. This applies to all XTI functions that pass or return a (NetBIOS)
7392 protocol address (for example, t_bind(), t_connect(), t_rcvudata (), etc.).

7393 Note, however, that only the t_bind() and t_getprotaddr () functions use the name type
7394 information. All other functions ignore it.

7395 If the NetBIOS protocol address is returned, the name type information is to be ignored since the
7396 NetBIOS transport providers do not provide the type information in the connection
7397 establishment phase.

7398 NetBIOS names can become invalid even after they have been registered successfully due to the
7399 NetBIOS name conflict resolution process (for example, Top/NetBIOS NameConflictAdvise
7400 indication). For existing NetBIOS connections this has no effect since the connection endpoint
7401 can still be identified by the fd. However, in the connection establishment phase 2t_listen() and
7402 t_connect()) this event is indicated by setting t_errno to [TBADF].

242 X/Open CAE Specification (1994) (Draft March 15, 1995)

Use of XTI to Access NetBIOS NetBIOS Connection Release

7403 D.6 NetBIOS Connection Release
7404 Native NetBIOS implementations provide a linger-on-close release mechanism whereby a
7405 transport disconnect request (NetBIOS HANGUP) will not complete until all outstanding send
7406 commands have completed. NetBIOS attempts to deliver all queued data by delaying, if
7407 necessary, disconnection for a period of time. The period of time might be configurable; a value
7408 of 20 seconds is common practice. Data still queued after this time period may get discarded so
7409 that delivery cannot be guaranteed.

7410 XTI, however, offers two different modes to release a connection: an abortive mode via
7411 t_snddis()/t_rcvdis(), and a graceful mode via t_sndrel()/t_rcvrel(). If a connection release is
7412 initiated by a t_snddis(), queued send data may be discarded. Only the use of t_sndrel()
7413 guarantees that the linger-on-close mechanism is enabled as described above. The support of
7414 t_sndrel()/t_rcvrel() is optional and only provided by implementations with servtype
7415 T_COTS_ORD (see t_getinfo () in Section D.8 on page 245).

7416 A call to t_sndrel() initiates the linger-on-close mechanism and immediately returns with the XTI
7417 state changed to T_OUTREL. The NetBIOS provider sends all outstanding data followed by a
7418 NetBIOS Close Request. After receipt of a NetBIOS Close Response, the NetBIOS provider
7419 informs the transport user, via the event T_ORDREL, that is to be consumed by calling t_rcvrel().
7420 If a timeout occurs, however, a T_DISIN with a corresponding reason code is generated.

7421 Receive data arriving before the NetBIOS Close Request is sent is indicated by T_DATA and can
7422 be read by the transport user.

7423 Calling t_snddis() initiates an abortive connection release and immediately returns with the XTI
7424 state changed to T_IDLE. Outstanding send and receive data may be discarded. The NetBIOS
7425 provider sends as many outstanding data as possible prior to closing the connection, but
7426 discards any receive data. Some outstanding data may be discarded by the t_snddis()
7427 mechanism, so that not all data can be sent by the NetBIOS provider. Furthermore, an occurring
7428 timeout condition could not be indicated to the transport user.

7429 An incoming connection release will always result in a T_DISCONNECT event, never in a
7430 T_ORDREL event. To be precise, if the NetBIOS provider receives a Close Request, it discards
7431 any pending send and receive data, sends a Close Response and informs the transport user via
7432 T_DISCONNECT.

Networking Services, Issue 4 243

Options Use of XTI to Access NetBIOS

7433 D.7 Options
7434 No NetBIOS-specific options are defined. An implementation may, however, provide XTI-level
7435 options (see t_optmgmt() on page 76.

244 X/Open CAE Specification (1994) (Draft March 15, 1995)

Use of XTI to Access NetBIOS XTI Functions

7436 D.8 XTI Functions
7437 t_accept() No user data may be returned to the caller (call->udata.len=0).

7438 This function may only be used with connection-oriented transport endpoints.
7439 The t_accept() function will fail if a user attempts to accept a connection
7440 request on a connectionless endpoint and t_errno will be set to
7441 [TNOTSUPPORT].

7442 t_alloc() No special considerations for NetBIOS transport providers.

7443 t_bind() The NetBIOS name and name type values are passed to the transport provider
7444 in the req parameter (req->addr.buf) and the actual bound address is returned
7445 in the ret parameter (ret->addr.buf), as described earlier in Section D.5 on page
7446 242. If the NetBIOS transport provider is unable to register the name specified
7447 in the req parameter, the call to t_bind() will fail with t_errno set to
7448 [TADDRBUSY] if the name is already in use, or to [TBADADDR] if it was an
7449 illegal NetBIOS name.

7450 If the req parameter is a null pointer or req->addr.len=0, the transport provider
7451 may assign an address for the user. This may be useful for outgoing
7452 connections on which the name of the caller is not important.

7453 If the name specified in req parameter is NB_BCAST_NAME, qlen must be
7454 zero, and the transport endpoint the name is bound to is enabled to receive
7455 broadcast datagrams. In this case, the transport endpoint must support
7456 connectionless service, otherwise the t_bind() function will fail and t_errno
7457 will be set to [TBADADDR].

7458 t_close() No special considerations for NetBIOS transport providers.

7459 It is assumed that the NetBIOS transport provider will release the NetBIOS
7460 name associated with the closed endpoint if this is the only endpoint bound to
7461 this name and the name has not already been released as the result of a
7462 previous t_unbind() call on this endpoint.

7463 t_connect() The NetBIOS name of the destination transport user is provided in the sndcall
7464 parameter (sndcall->addr.buf), and the NetBIOS name of the responding
7465 transport user is returned in the rcvcall parameter (rcvcall->addr.buf), as
7466 described in Section D.5 on page 242. If the connection is successful, the
7467 NetBIOS name of the responding transport user will always be the same as
7468 that specified in the sndcall parameter.

7469 Local NetBIOS connections are supported. NetBIOS datagrams are sent, if
7470 applicable, to local names as well as remote names. No user data may be sent
7471 during connection establishment (udata.len=0 in sndcall).

7472 This function may only be used with connection-oriented transport endpoints.
7473 The t_connect() function will fail if a user attempts to initiate a connection on a
7474 connectionless endpoint and t_errno will be set to [TNOTSUPPORT].

7475 [TBADF] may be returned in the case that the NetBIOS name associated with
7476 the fd referenced in the t_connect() call is no longer in the CAE system name
7477 table (see Section D.5 on page 242.

7478 t_error() No special considerations for NetBIOS transport providers.

7479 t_free() No special considerations for NetBIOS transport providers.

Networking Services, Issue 4 245

XTI Functions Use of XTI to Access NetBIOS

7480 t_getinfo() The values of the parameters in the t_info structure will reflect NetBIOS
7481 transport limitations, as follows:

7482 addr sizeof () the NetBIOS protocol address, as defined in Section D.5
7483 on page 242.

7484 options Equals −2, indicating no user-settable options.

7485 tsdu Equals the size returned by the transport provider. If the fd is
7486 associated with a connection-oriented endpoint it is a positive
7487 value, not larger than 131070. If the fd is associated with a
7488 connectionless endpoint it is a positive value not larger than
7489 655358.

7490 etsdu Equals −2, indicating expedited data is not supported.

7491 connect Equals −2, indicating data cannot be transferred during
7492 connection establishment.

7493 discon Equals −2, indicating data cannot be transferred during
7494 connection release.

7495 servtype Set to T_COTS if the fd is associated with a connection-oriented
7496 endpoint, or T_CLTS if associated with a connectionless
7497 endpoint. Optionally, may be set to T_COTS_ORD if the fd is
7498 associated with a connection-oriented endpoint and the
7499 transport provider supports the use of t_sndrel()/t_rcvrel() as
7500 described in Section D.6 on page 243.

7501 flags Equals T_SNDZERO, indicating that zero TSDUs may be sent.

7502 t_getprotaddr() The NetBIOS name and name type of the transport endpoint referred to by the
7503 fd are passed in the boundaddr parameter (boundaddr->addr.buf), as described
7504 in Section D.5 on page 242; 0 is returned in boundaddr->addr.len if the
7505 transport endpoint is in the T_UNBND state. The NetBIOS name currently
7506 connected to fd, if any, is passed in the peeraddr parameter (peeraddr-
7507 >addr.buf); the value 0 is returned in peeraddr->addr.len if the transport
7508 endpoint is not in the T_DATAXFER state.

7509 t_getstate() No special considerations for NetBIOS transport providers.

7510 t_listen() On return, the call parameter provides the NetBIOS name of the calling
7511 transport user (that issued the connection request), as described in Section D.5
7512 on page 242.

7513 No user data may be transferred during connection establishment (call-
7514 >udata.len=0 on return).

7515 This function may only be used with connection-oriented transport endpoints.
7516 The t_listen() function will fail if a user attempts to listen on a connectionless
7517 endpoint and t_errno will be set to [TNOTSUPPORT]. [TBADF] may be
7518 returned in the case that the NetBIOS name associated with the fd referenced
7519 in the t_listen() function is no longer in the CAE system name table, as may
7520 occur as a result of the NetBIOS name conflict resolution process (for example,

7521 __________________

8.7522 For the mappings to OSI and IPS protocols, the value cannot exceed 512 or 1064 respectively.

246 X/Open CAE Specification (1994) (Draft March 15, 1995)

Use of XTI to Access NetBIOS XTI Functions

7523 TOP/NetBIOS NameConflictAdvise indication).

7524 t_look() Since expedited data is not supported in NetBIOS, the T_EXDATA and
7525 T_GOEXDATA events cannot be returned.

7526 t_open() No special considerations for NetBIOS transport providers, other than
7527 restrictions on the values returned in the t_info structure. These restrictions
7528 are described in t_getinfo () on page 63.

7529 t_optmgmt() No special considerations for NetBIOS transport providers.

7530 t_rcv() This function may only be used with connection-oriented transport endpoints.
7531 The t_rcv() function will fail if a user attempts a receive on a connectionless
7532 endpoint and t_errno will be set to [TNOTSUPPORT].

7533 The flags parameter will never be set to T_EXPEDITED, as expedited data is
7534 not supported.

7535 Data transfer in the NetBIOS environment is record-oriented, and the
7536 transport user should expect to see usage of the T_MORE flag when the
7537 message size exceeds the available buffer size.

7538 t_rcvconnect() The NetBIOS name of the transport user responding to the previous
7539 connection request is provided in the call parameter (call->addr.buf), as
7540 described in Section D.5 on page 242.

7541 No user data may be returned to the caller (call->udata.len=0 on return).

7542 This function may only be used with connection-oriented transport endpoints.
7543 The t_rcvconnect() function will fail if a user attempts to establish a connection
7544 on a connectionless endpoint and t_errno will be set to [TNOTSUPPORT].

7545 t_rcvdis() The following disconnect reason codes are valid for any implementation of a
7546 NetBIOS provider under XTI:

7547 #define NB_ABORT 0x18 /* session ended abnormally */
7548 #define NB_CLOSED 0x0A /* session closed */
7549 #define NB_NOANSWER 0x14 /* no answer (cannot find */
7550 /* name called */
7551 #define NB_OPREJ 0x12 /* session open rejected */

7552 These definitions should be included in <xti.h>.

7553 t_rcvrel() As described in Section D.6 on page 243, a T_ORDREL event will never occur
7554 in the T_DATAXFER state, but only in the T_OUTREL state. A transport user
7555 thus has only to prepare for a call to t_rcvrel() if it previously initiated a
7556 connection release by calling t_sndrel(). As a side effect, the state T_INREL is
7557 unreachable for the transport user.

7558 If T_COTS_ORD is not supported by the underlying NetBIOS transport
7559 provider, this function will fail with t_errno set to [TNOTSUPPORT].

7560 t_rcvudata() The NetBIOS name of the sending transport user is provided in the unitdata
7561 parameter (unitdata->addr.buf), as described in Section D.5 on page 242.

7562 The fd associated with the t_rcvudata () function must refer to a connectionless
7563 transport endpoint. The function will fail if a user attempts to receive on a
7564 connection-oriented endpoint and t_errno will be set to [TNOTSUPPORT].
7565 [TBADF] may be returned in the case that the NetBIOS name associated with
7566 the fd referenced in the t_rcvudata () function is no longer in the CAE system
7567 name table, as may occur as a result of the NetBIOS name conflict resolution

Networking Services, Issue 4 247

XTI Functions Use of XTI to Access NetBIOS

7568 process (for example, TOP/NetBIOS NameConflictAdvise indication).

7569 To receive a broadcast datagram, the endpoint must be bound to the NetBIOS
7570 name NB_BCAST_NAME.

7571 t_rcvuderr() If attempted on a connectionless transport endpoint, this function will fail
7572 with t_errno set to [TNOUDERR], as no NetBIOS unit data error codes are
7573 defined. If attempted on a connection-oriented transport endpoint, this
7574 function will fail with t_errno set to [TNOTSUPPORT].

7575 t_snd() The T_EXPEDITED flag may not be set, as NetBIOS does not support
7576 expedited data transfer.

7577 This function may only be used with connection-oriented transport endpoints.
7578 The t_snd() function will fail if a user attempts a send on a connectionless
7579 endpoint and t_errno will be set to [TNOTSUPPORT].

7580 The maximum value of the nbytes parameter is determined by the maximum
7581 TSDU size allowed by the transport provider. The maximum TSDU size can
7582 be obtained from the t_getinfo () call.

7583 Data transfer in the NetBIOS environment is record-oriented. The transport
7584 user can use the T_MORE flag in order to fragment a TSDU and send it via
7585 multiple calls to t_snd(). See t_snd() on page 93 for more details.

7586 NetBIOS does not support the notion of expedited data. A call to t_snd() with
7587 the T_EXPEDITED flag will fail with t_errno set to [TBADDATA].

7588 If the NetBIOS provider has received a HANGUP request from the remote
7589 user and still has receive data to deliver to the local user, XTI may not detect
7590 the HANGUP situation during a call to t_snd(). The actions that are taken are
7591 implementation-dependent:

7592 • t_snd() might fail with t_errno set to [TPROTO]

7593 • t_snd() might succeed, although the data is discarded by the transport
7594 provider, and an implementation-dependent error (generated by the
7595 NetBIOS provider) will result on a subsequent XTI call. This could be a
7596 [TSYSERR], a [TPROTO] or a connection release indication after all the
7597 receive data has been delivered.

7598 t_snddis() The t_snddis() function initiates an abortive connection release. The function
7599 returns immediately. Outstanding send and receive data may be discarded.
7600 See Section D.6 on page 243 for further details.

7601 No user data may be sent in the disconnect request (call->udata.len=0).

7602 This function may only be used with connection-oriented transport endpoints.
7603 The t_snddis() function will fail if a user attempts a disconnect request on a
7604 connectionless endpoint and t_errno will be set to [TNOTSUPPORT].

248 X/Open CAE Specification (1994) (Draft March 15, 1995)

Use of XTI to Access NetBIOS XTI Functions

7605 t_sndrel() The t_sndrel() function initiates the NetBIOS release mechanism that attempts
7606 to complete outstanding sends within a timeout period before the connection
7607 is released. The function returns immediately. The transport user is informed
7608 by T_ORDREL when all sends have been completed and the connection has
7609 been closed successfully. If, however, the timeout occurs, the transport user is
7610 informed by T_DISIN and an appropriate disconnect reason code. See Section
7611 D.6 on page 243 for further details.

7612 If the NetBIOS transport provider did not return T_COTS_ORD with t_open(),
7613 this function will fail with t_errno set to [TNOTSUPPORT].

7614 t_sndudata() The NetBIOS name of the destination transport user is provided in the
7615 unitdata parameter (unitdata->addr.buf), as described in Section D.5 on page
7616 242.

7617 The fd associated with the t_sndudata () function must refer to a connectionless
7618 transport endpoint. The function will fail if a user attempts this function on a
7619 connection-oriented endpoint and t_errno will be set to [TNOTSUPPORT].
7620 [TBADF] may be returned in the case that the NetBIOS name associated with
7621 the fd referenced in the t_sndudata () function is no longer in the CAE system
7622 name table, as may occur as a result of the NetBIOS name conflict resolution
7623 process (for example, TOP/NetBIOS NameConflictAdvise indication).

7624 To send a broadcast datagram, the NetBIOS name in the NetBIOS address
7625 structure provided in unitdata->addr.buf must be NB_BCAST_NAME.

7626 t_strerror() No special considerations for NetBIOS transport providers.

7627 t_sync() No special considerations for NetBIOS transport providers.

7628 t_unbind() No special considerations for NetBIOS transport providers.

7629 It is assumed that the NetBIOS transport provider will release the NetBIOS
7630 name associated with the endpoint if this is the only endpoint bound to this
7631 name.

Networking Services, Issue 4 249

Use of XTI to Access NetBIOS

250 X/Open CAE Specification (1994) (Draft March 15, 1995)

7632

Appendix E

XTI and TLI

7633 XTI is based on the SVID Issue 2, Volume III, Networking Services Extensions (see Referenced
7634 Documents).

7635 XTI provides refinement of the Transport Level Interface (TLI) where such refinement is
7636 considered necessary. This refinement takes the form of:

7637 • additional commentary or explanatory text, in cases where the TLI text is either ambiguous
7638 or not sufficiently detailed

7639 • modifications to the interface, to cater for service and protocol problems which have been
7640 fully considered. In this case, it must be emphasised that such modifications are kept to an
7641 absolute minimum, and are intended to avoid any fundamental changes to the interface
7642 defined by TLI

7643 • the removal of dependencies on specific UNIX versions and specific transport providers.

7644 E.1 Restrictions Concerning the Use of XTI
7645 It is important to bear in mind the following points when considering the use of XTI:

7646 • It was stated that XTI ‘‘recommends’’ a subset of the total set of functions and facilities
7647 defined in TLI, and also that XTI introduces modifications to some of these functions and/or
7648 facilities where this is considered essential. For these reasons, an application which is written
7649 in conformance to XTI may not be immediately portable to work over a provider which has
7650 been written in conformance to TLI.

7651 • XTI does not address management aspects of the interface, that is:

7652 — how addressing may be done in such a way that an application is truly portable

7653 — no selection and/or negotiation of service and protocol characteristics.

7654 For addressing, the same is also true for TLI. In this case, it is envisaged that addresses will
7655 be managed by a higher-level directory function. For options selection and/or negotiation,
7656 XTI attempts to define a basic mechanism by which such information may be passed across
7657 the transport service interface, although again, this selection/negotiation may be done by a
7658 higher-level management function (rather than directly by the user). Since address structure
7659 is not currently defined, the user protocol address is system-dependent.

Networking Services, Issue 4 251

Relationship between XTI and TLI XTI and TLI

7660 E.2 Relationship between XTI and TLI
7661 The following features can be considered as XTI extensions to the System V Release 3 version of
7662 TLI:

7663 • Some functions may return more error types. The use of the [TOUTSTATE] error is
7664 generalised to almost all protocol functions.

7665 • The transport provider identifier has been generalised to remove the dependence on a device
7666 driver implementation.

7667 • Additional events have been defined to help applications make full use of the asynchronous
7668 features of the interface.

7669 • Additional features have been introduced to t_snd(), t_sndrel() and t_rcvrel() to allow fuller
7670 use of TCP transport providers.

7671 • Usage of options for certain types of transport service has been defined to increase
7672 application portability.

7673 • Because most XTI functions require read/write access to the transport provider, the usage of
7674 flags O_RDONLY and O_WRONLY has been withdrawn from the XTI.

7675 • XTI checks the value of qlen and prevents an application from waiting forever when issuing
7676 t_listen().

7677 • XTI allows an application to call t_accept() with a resfd which is not bound to a local address.

7678 • XTI provides the additional utility functions t_strerror() and t_getprotaddr ().

252 X/Open CAE Specification (1994) (Draft March 15, 1995)

7679

Appendix F

Headers and Definitions for XTI

7680 Section 7.1 on page 47 contains a normative requirement that the contents and structures found
7681 in this appendix appear in the <xti.h> header.

7682 /*
7683 * The following are the error codes needed by both the kernel
7684 * level transport providers and the user level library.
7685 */

7686 #define TBADADDR 1 /* incorrect addr format */
7687 #define TBADOPT 2 /* incorrect option format */
7688 #define TACCES 3 /* incorrect permissions */
7689 #define TBADF 4 /* illegal transport fd */
7690 #define TNOADDR 5 /* couldn’t allocate addr */
7691 #define TOUTSTATE 6 /* out of state */
7692 #define TBADSEQ 7 /* bad call sequence number */
7693 #define TSYSERR 8 /* system error */
7694 #define TLOOK 9 /* event requires attention */
7695 #define TBADDATA 10 /* illegal amount of data */
7696 #define TBUFOVFLW 11 /* buffer not large enough */
7697 #define TFLOW 12 /* flow control */
7698 #define TNODATA 13 /* no data */
7699 #define TNODIS 14 /* discon_ind not found on queue */
7700 #define TNOUDERR 15 /* unitdata error not found */
7701 #define TBADFLAG 16 /* bad flags */
7702 #define TNOREL 17 /* no ord rel found on queue */
7703 #define TNOTSUPPORT 18 /* primitive/action not supported */
7704 #define TSTATECHNG 19 /* state is in process of changing */
7705 #define TNOSTRUCTYPE 20 /* unsupported struct-type requested */
7706 #define TBADNAME 21 /* invalid transport provider name */
7707 #define TBADQLEN 22 /* qlen is zero */
7708 #define TADDRBUSY 23 /* address in use */
7709 #define TINDOUT 24 /* outstanding connection indications */
7710 #define TPROVMISMATCH 25 /* transport provider mismatch */
7711 #define TRESQLEN 26 /* resfd specified to accept w/qlen >0 */
7712 #define TRESADDR 27 /* resfd not bound to same addr as fd */
7713 #define TQFULL 28 /* incoming connection queue full */
7714 #define TPROTO 29 /* XTI protocol error */

Networking Services, Issue 4 253

Headers and Definitions for XTI

7715 /*
7716 * The following are the events returned.
7717 */

7718 #define T_LISTEN 0x0001 /* connection indication received */
7719 #define T_CONNECT 0x0002 /* connect confirmation received */
7720 #define T_DATA 0x0004 /* normal data received */
7721 #define T_EXDATA 0x0008 /* expedited data received */
7722 #define T_DISCONNECT 0x0010 /* disconnect received */
7723 #define T_UDERR 0x0040 /* datagram error indication */
7724 #define T_ORDREL 0x0080 /* orderly release indication */
7725 #define T_GODATA 0x0100 /* sending normal data is again possible */
7726 #define T_GOEXDATA 0x0200 /* sending expedited data is again */
7727 /* possible */

7728 /*
7729 * The following are the flag definitions needed by the
7730 * user level library routines.
7731 */

7732 #define T_MORE 0x001 /* more data */
7733 #define T_EXPEDITED 0x002 /* expedited data */
7734 #define T_NEGOTIATE 0x004 /* set opts */
7735 #define T_CHECK 0x008 /* check opts */
7736 #define T_DEFAULT 0x010 /* get default opts */
7737 #define T_SUCCESS 0x020 /* successful */
7738 #define T_FAILURE 0x040 /* failure */
7739 #define T_CURRENT 0x080 /* get current options */
7740 #define T_PARTSUCCESS 0x100 /* partial success */
7741 #define T_READONLY 0x200 /* read-only */
7742 #define T_NOTSUPPORT 0x400 /* not supported */

7743 /*
7744 * XTI error return.
7745 */

7746 extern int t_errno;

7747 /* XTI LIBRARY FUNCTIONS */

7748 UX #ifndef _XOPEN_SOURCE_EXTENDED
7749 /* XTI Library Function: t_accept - accept a connect request*/
7750 extern int t_accept();
7751 /* XTI Library Function: t_alloc - allocate a library structure*/
7752 extern char *t_alloc();
7753 /* XTI Library Function: t_bind - bind an address to a transport endpoint*/
7754 extern int t_bind();
7755 /* XTI Library Function: t_close - close a transport endpoint*/
7756 extern int t_close();
7757 /* XTI Library Function: t_connect - establish a connection */
7758 extern int t_connect();
7759 /* XTI Library Function: t_error - produce error message*/
7760 extern int t_error();
7761 /* XTI Library Function: t_free - free a library structure*/
7762 extern int t_free();
7763 /* XTI Library Function: t_getprotaddr - get protocol addresses*/
7764 extern int t_getprotaddr();
7765 /* XTI Library Function: t_getinfo - get protocol-specific service */
7766 /* information*/
7767 extern int t_getinfo();

254 X/Open CAE Specification (1994) (Draft March 15, 1995)

Headers and Definitions for XTI

7768 /* XTI Library Function: t_getstate - get the current state*/
7769 extern int t_getstate();
7770 /* XTI Library Function: t_listen - listen for a connect indication*/
7771 extern int t_listen();
7772 /* XTI Library Function: t_look - look at current event on a transport */
7773 /* endpoint*/
7774 extern int t_look();
7775 /* XTI Library Function: t_open - establish a transport endpoint*/
7776 extern int t_open();
7777 /* XTI Library Function: t_optmgmt - manage options for a transport */
7778 /* endpoint*/
7779 extern int t_optmgmt();
7780 /* XTI Library Function: t_rcv - receive data or expedited data on a */
7781 /* connection*/
7782 extern int t_rcv();
7783 /* XTI Library Function: t_rcvdis - retrieve information from disconnect*/
7784 extern int t_rcvdis();
7785 /* XTI Library Function: t_rcvrel - acknowledge receipt of */
7786 /* an orderly release indication */
7787 extern int t_rcvrel();
7788 /* XTI Library Function: t_rcvudata - receive a data unit*/
7789 extern int t_rcvudata();
7790 /* XTI Library Function: t_rcvuderr - receive a unit data error indication*/
7791 extern int t_rcvuderr();
7792 /* XTI Library Function: t_snd - send data or expedited data over a */
7793 /* connection */
7794 extern int t_snd();
7795 /* XTI Library Function: t_snddis - send user-initiated disconnect request*/
7796 extern int t_snddis();
7797 /* XTI Library Function: t_sndrel - initiate an orderly release*/
7798 extern int t_sndrel();
7799 /* XTI Library Function: t_sndudata - send a data unit*/
7800 extern int t_sndudata();
7801 /* XTI Library Function: t_strerror - generate error message string */
7802 extern char *t_strerror();
7803 /* XTI Library Function: t_sync - synchronise transport library*/
7804 extern int t_sync();
7805 /* XTI Library Function: t_unbind - disable a transport endpoint*/
7806 extern int t_unbind();
7807 UX #else
7808 extern int t_accept(int, int, struct t_call *);
7809 extern char *t_alloc(int, int, int);
7810 extern int t_bind(int, struct t_bind *, struct t_bind *);
7811 extern int t_close(int);
7812 extern int t_connect(int, struct t_call *, struct t_call *);
7813 extern int t_error(char *);
7814 extern int t_free(char *, int);
7815 extern int t_getinfo(int, struct t_info *);
7816 extern int t_getprotaddr(int, struct t_bind *, struct t_bind *);
7817 extern int t_getstate(int);
7818 extern int t_listen(int, struct t_call *);
7819 extern int t_look(int);
7820 extern int t_open(char *, int, struct t_info *);
7821 extern int t_optmgmt(int, struct t_optmgmt *, struct t_optmgmt *);
7822 extern int t_rcv(int, char *, unsigned int , int *);
7823 extern int t_rcvconnect(int, struct t_call *);
7824 extern int t_rcvdis(int, struct t_discon *);
7825 extern int t_rcvrel(int);
7826 extern int t_rcvudata(int, struct t_unitdata *, int *);

Networking Services, Issue 4 255

Headers and Definitions for XTI

7827 extern int t_rcvuderr(int, struct t_uderr *);
7828 extern char *t_strerror(int);
7829 extern int t_snd(int, char *, unsigned int , int);
7830 extern int t_snddis(int, struct t_call *);
7831 extern int t_sndrel(int);
7832 extern int t_sndudata(int, struct t_unitdata *);
7833 extern int t_sync(int);
7834 extern int t_unbind(int);
7835 #endif

7836 /*
7837 * Protocol-specific service limits.
7838 */
7839 struct t_info {
7840 long addr; /* max size of the transport protocol address */
7841 long options; /* max number of bytes of protocol-specific options */
7842 long tsdu; /* max size of a transport service data unit */
7843 long etsdu; /* max size of expedited transport service data unit */
7844 long connect; /* max amount of data allowed on connection */
7845 /* establishment functions */
7846 long discon; /* max data allowed on t_snddis and t_rcvdis functions */
7847 long servtype; /* service type supported by transport provider */
7848 long flags; /* other info about the transport provider */
7849 };

7850 /*
7851 * Service type defines.
7852 */

7853 #define T_COTS 01 /* connection-oriented transport service */
7854 #define T_COTS_ORD 02 /* connection-oriented with orderly release */
7855 #define T_CLTS 03 /* connectionless transport service */

7856 /*
7857 * Flags defines (other info about the transport provider).
7858 */

7859 #define T_SENDZERO 0x001 /* supports 0-length TSDUs */

7860 /*
7861 * netbuf structure.
7862 */

7863 struct netbuf {
7864 unsigned int maxlen;
7865 unsigned int len;
7866 char *buf;
7867 };

256 X/Open CAE Specification (1994) (Draft March 15, 1995)

Headers and Definitions for XTI

7868 /*
7869 * t_opthdr structure
7870 */
7871 struct t_opthdr {
7872 unsigned long len; /* total length of option; that is, */
7873 /* sizeof (struct t_opthdr) + length */
7874 /* of option value in bytes */
7875 unsigned long level; /* protocol affected */
7876 unsigned long name; /* option name */
7877 unsigned long status; /* status value */
7878 /* followed by the option value */
7879 };

7880 /*
7881 * t_bind - format of the address and options arguments of bind.
7882 */

7883 struct t_bind {
7884 struct netbuf addr;
7885 unsigned qlen;
7886 };

7887 /*
7888 * Options management structure.
7889 */

7890 struct t_optmgmt {
7891 struct netbuf opt;
7892 long flags;
7893 };

7894 /*
7895 * Disconnect structure.
7896 */

7897 struct t_discon {
7898 struct netbuf udata; /* user data */
7899 int reason; /* reason code */
7900 int sequence; /* sequence number */
7901 };

7902 /*
7903 * Call structure.
7904 */

7905 struct t_call {
7906 struct netbuf addr; /* address */
7907 struct netbuf opt; /* options */
7908 struct netbuf udata; /* user data */
7909 int sequence; /* sequence number */
7910 };

Networking Services, Issue 4 257

Headers and Definitions for XTI

7911 /*
7912 * Datagram structure.
7913 */

7914 struct t_unitdata {
7915 struct netbuf addr; /* address */
7916 struct netbuf opt; /* options */
7917 struct netbuf udata; /* user data */
7918 };

7919 /*
7920 * Unitdata error structure.
7921 */

7922 struct t_uderr {
7923 struct netbuf addr; /* address */
7924 struct netbuf opt; /* options */
7925 long error; /* error code */
7926 };

7927 /*
7928 * The following are structure types used when dynamically
7929 * allocating the above structures via t_alloc().
7930 */

7931 #define T_BIND 1 /* struct t_bind */
7932 #define T_OPTMGMT 2 /* struct t_optmgmt */
7933 #define T_CALL 3 /* struct t_call */
7934 #define T_DIS 4 /* struct t_discon */
7935 #define T_UNITDATA 5 /* struct t_unitdata */
7936 #define T_UDERROR 6 /* struct t_uderr */
7937 #define T_INFO 7 /* struct t_info */

7938 /*
7939 * The following bits specify which fields of the above
7940 * structures should be allocated by t_alloc().
7941 */

7942 #define T_ADDR 0x01 /* address */
7943 #define T_OPT 0x02 /* options */
7944 #define T_UDATA 0x04 /* user data */
7945 #define T_ALL 0xffff /* all the above fields supported */

258 X/Open CAE Specification (1994) (Draft March 15, 1995)

Headers and Definitions for XTI

7946 /*
7947 * The following are the states for the user.
7948 */

7949 #define T_UNBND 1 /* unbound */
7950 #define T_IDLE 2 /* idle */
7951 #define T_OUTCON 3 /* outgoing connection pending */
7952 #define T_INCON 4 /* incoming connection pending */
7953 #define T_DATAXFER 5 /* data transfer */
7954 #define T_OUTREL 6 /* outgoing release pending */
7955 #define T_INREL 7 /* incoming release pending */

7956 /*
7957 * General purpose defines.
7958 */

7959 #define T_YES 1
7960 #define T_NO 0
7961 #define T_UNUSED −1
7962 #define T_NULL 0
7963 #define T_ABSREQ 0x8000
7964 #define T_INFINITE −1
7965 #define T_INVALID −2

7966 /* T_INFINITE and T_INVALID are values of t_info */

7967 /*
7968 * General definitions for option management
7969 */
7970 #define T_UNSPEC (˜0 − 2) /* applicable to u_long, long, char .. */
7971 #define T_ALLOPT 0
7972 #define T_ALIGN(p) (((unsigned long)(p) + (sizeof (long) − 1)) \
7973 & ˜(sizeof (long) − 1))
7974 #define OPT_NEXTHDR(pbuf, buflen, popt) \
7975 (((char *)(popt) + T_ALIGN((popt)->len) < \
7976 (char *)(pbuf) + (buflen)) ? \
7977 (struct t_opthdr *)((char *)(popt) + T_ALIGN((popt)->len)) : \
7978 (struct t_opthdr *)0)

7979 /* OPTIONS ON XTI LEVEL */

7980 /* XTI-level */

7981 #define XTI_GENERIC 0xffff

7982 /*
7983 * XTI-level Options
7984 */

7985 #define XTI_DEBUG 0x0001 /* enable debugging */
7986 #define XTI_LINGER 0x0080 /* linger on close if data present */
7987 #define XTI_RCVBUF 0x1002 /* receive buffer size */
7988 #define XTI_RCVLOWAT 0x1004 /* receive low-water mark */
7989 #define XTI_SNDBUF 0x1001 /* send buffer size */

Networking Services, Issue 4 259

Headers and Definitions for XTI

7990 #define XTI_SNDLOWAT 0x1003 /* send low-water mark */

7991 /*
7992 * Structure used with linger option.
7993 */
7994 struct t_linger {
7995 long l_onoff; /* option on/off */
7996 long l_linger; /* linger time */
7997 };

7998 /* SPECIFIC ISO OPTION AND MANAGEMENT PARAMETERS */

7999 /*
8000 * Definition of the ISO transport classes
8001 */

8002 #define T_CLASS0 0
8003 #define T_CLASS1 1
8004 #define T_CLASS2 2
8005 #define T_CLASS3 3
8006 #define T_CLASS4 4

8007 /*
8008 * Definition of the priorities.
8009 */

8010 #define T_PRITOP 0
8011 #define T_PRIHIGH 1
8012 #define T_PRIMID 2
8013 #define T_PRILOW 3
8014 #define T_PRIDFLT 4

8015 /*
8016 * Definitions of the protection levels
8017 */

8018 #define T_NOPROTECT 1
8019 #define T_PASSIVEPROTECT 2
8020 #define T_ACTIVEPROTECT 4

8021 /*
8022 * Default value for the length of TPDUs.
8023 */

8024 #define T_LTPDUDFLT 128 /* define obsolete in XPG4 */

8025 /*
8026 * rate structure.
8027 */
8028 struct rate {
8029 long targetvalue; /* target value */
8030 long minacceptvalue; /* value of minimum acceptable quality */
8031 };

260 X/Open CAE Specification (1994) (Draft March 15, 1995)

Headers and Definitions for XTI

8032 /*
8033 * reqvalue structure.
8034 */
8035 struct reqvalue {
8036 struct rate called; /* called rate */
8037 struct rate calling; /* calling rate */
8038 };

8039 /*
8040 * thrpt structure.
8041 */
8042 struct thrpt {
8043 struct reqvalue maxthrpt; /* maximum throughput */
8044 struct reqvalue avgthrpt; /* average throughput */
8045 };

8046 /*
8047 * transdel structure
8048 */
8049 struct transdel {
8050 struct reqvalue maxdel; /* maximum transit delay */
8051 struct reqvalue avgdel; /* average transit delay */
8052 };

8053 /*
8054 * Protocol Levels
8055 */

8056 #define ISO_TP 0x0100

8057 /*
8058 * Options for Quality of Service and Expedited Data (ISO 8072:1986)
8059 */

8060 #define TCO_THROUGHPUT 0x0001
8061 #define TCO_TRANSDEL 0x0002
8062 #define TCO_RESERRORRATE 0x0003
8063 #define TCO_TRANSFFAILPROB 0x0004
8064 #define TCO_ESTFAILPROB 0x0005
8065 #define TCO_RELFAILPROB 0x0006
8066 #define TCO_ESTDELAY 0x0007
8067 #define TCO_RELDELAY 0x0008
8068 #define TCO_CONNRESIL 0x0009
8069 #define TCO_PROTECTION 0x000a
8070 #define TCO_PRIORITY 0x000b
8071 #define TCO_EXPD 0x000c

8072 #define TCL_TRANSDEL 0x000d
8073 #define TCL_RESERRORRATE TCO_RESERRORRATE
8074 #define TCL_PROTECTION TCO_PROTECTION
8075 #define TCL_PRIORITY TCO_PRIORITY

Networking Services, Issue 4 261

Headers and Definitions for XTI

8076 /*
8077 * Management Options
8078 */

8079 #define TCO_LTPDU 0x0100
8080 #define TCO_ACKTIME 0x0200
8081 #define TCO_REASTIME 0x0300
8082 #define TCO_EXTFORM 0x0400
8083 #define TCO_FLOWCTRL 0x0500
8084 #define TCO_CHECKSUM 0x0600
8085 #define TCO_NETEXP 0x0700
8086 #define TCO_NETRECPTCF 0x0800
8087 #define TCO_PREFCLASS 0x0900
8088 #define TCO_ALTCLASS1 0x0a00
8089 #define TCO_ALTCLASS2 0x0b00
8090 #define TCO_ALTCLASS3 0x0c00
8091 #define TCO_ALTCLASS4 0x0d00

8092 #define TCL_CHECKSUM TCO_CHECKSUM

8093 /* INTERNET SPECIFIC ENVIRONMENT */

8094 /*
8095 * TCP level
8096 */

8097 #define INET_TCP 0x6

8098 /*
8099 *TCP-level Options
8100 */

8101 #define TCP_NODELAY 0x1 /* don’t delay packets to coalesce */
8102 #define TCP_MAXSEG 0x2 /* get maximum segment size */
8103 #define TCP_KEEPALIVE 0x8 /* check, if connections are alive */

8104 /*
8105 * Structure used with TCP_KEEPALIVE option.
8106 */
8107 struct t_kpalive {
8108 long kp_onoff; /* option on/off */
8109 long kp_timeout; /* timeout in minutes */
8110 };

8111 #define T_GARBAGE 0x02

8112 /*
8113 * UDP level
8114 */

8115 #define INET_UDP 0x11

8116 /*
8117 * UDP-level Options
8118 */

262 X/Open CAE Specification (1994) (Draft March 15, 1995)

Headers and Definitions for XTI

8119 #define UDP_CHECKSUM TCO_CHECKSUM /* checksum computation */

8120 /*
8121 * IP level
8122 */

8123 #define INET_IP 0x0

8124 /*
8125 * IP-level Options
8126 */

8127 #define IP_OPTIONS 0x1 /* IP per-packet options */
8128 #define IP_TOS 0x2 /* IP per-packet type of service */
8129 #define IP_TTL 0x3 /* IP per-packet time to live /
8130 #define IP_REUSEADDR 0x4 /* allow local address reuse */
8131 #define IP_DONTROUTE 0x10 /* just use interface addresses */
8132 #define IP_BROADCAST 0x20 /* permit sending of broadcast msgs */

8133 /*
8134 * IP_TOS precedence levels
8135 */

8136 #define T_ROUTINE 0
8137 #define T_PRIORITY 1
8138 #define T_IMMEDIATE 2
8139 #define T_FLASH 3
8140 #define T_OVERRIDEFLASH 4
8141 #define T_CRITIC_ECP 5
8142 #define T_INETCONTROL 6
8143 #define T_NETCONTROL 7

8144 /*
8145 * IP_TOS type of service
8146 */

8147 #define T_NOTOS 0
8148 #define T_LDELAY 1 << 4
8149 #define T_HITHRPT 1 << 3
8150 #define T_HIREL 1 << 2

8151 #define SET_TOS(prec, tos) ((0x7 & (prec)) < < 5 | (0x1c & (tos)))

Networking Services, Issue 4 263

Headers and Definitions for XTI

264 X/Open CAE Specification (1994) (Draft March 15, 1995)

8152

Appendix G

Abbreviations

8153 CO Connection-oriented

8154 CL Connectionless

8155 EM Event Management

8156 ETSDU Expedited Transport Service Data Unit

8157 ISO International Organization for Standardization

8158 OSI Open System Interconnection

8159 SVID System V Interface Definition

8160 TC Transport Connection

8161 TCP Transmission Control Protocol

8162 TLI Transport Level Interface

8163 TSAP Transport Service Access Point

8164 TSDU Transport Service Data Unit

8165 UDP User Datagram Protocol

8166 XTI X/Open Transport Interface

8167 XEM X/Open Event Management Interface

Networking Services, Issue 4 265

Abbreviations

266 X/Open CAE Specification (1994) (Draft March 15, 1995)

8168

Appendix H

Minimum OSI Functionality (Preliminary
Specification)

8169 H.1 General
8170 The purpose of this specification is to provide a simple API exposing a minimum set of OSI
8171 Upper Layers functionality (mOSI).

8172 H.1.1 Rationale for using XTI-mOSI

8173 This appendix uses the concept of a minimal set of OSI upper layer facilities that support basic
8174 communication applications. A Basic Communication Application simply requires the ability to
8175 open and close communications with a peer and to send and receive messages with a peer.

8176 XTI-mOSI is designed specifically for Basic Communication Applications that are in one of these
8177 categories:

8178 • applications that are to be migrated from the Internet world (TCP or UDP) or from a
8179 NetBIOS environment to OSI

8180 • applications accessing the OSI transport service that wish to migrate to an OSI seven-layer,
8181 conformant environment

8182 • applications that require a simple octet-stream connection between peer processes. The
8183 benefit of XTI-mOSI to these applications is that it extends the family of transport services that
8184 are available via a single, protocol independent, API.

8185 H.1.2 Migrant Applications

8186 For the first kind of applications (those migrating to OSI or intended to work over a variety of
8187 transport mechanisms), the migration effort will be greatly simplified if they were already using
8188 XTI — mOSI offers several new options, but, as described later in this section, default values are
8189 generally provided.

8190 In addition to applications already using XTI, the X Window System (X) and Internet Protocol
8191 Suite applications (in general) are examples of potential Migrant applications.

8192 H.1.3 OSI Functionality

8193 mOSI is suited to applications that require only the Minimal Upper Layer facilities which are
8194 described in the profile (ISO/IEC pDISP 11188 — Common Upper Layer Requirements, Part 3:
8195 Minimal OSI upper layer facilities — OIW/EWOS working documents). These are:

8196 • ACSE Kernel functional unit

8197 • Presentation Kernel functional unit

8198 • Session Kernel and Full Duplex functional units.

8199 The XTI-mOSI interface provides access to OSI ACSE and Presentation services. With mOSI, the
8200 optional parameters available to the application have been selected with the intent of facilitating
8201 interoperability and diagnostic of problems. They are described later in this section.

8202 Most applications only need the Kernel functionality. This is even true for most of the OSI
8203 standard applications: Remote Database Access (RDA), Directory (X.500), FTAM without

Networking Services, Issue 4 267

General Minimum OSI Functionality (Preliminary Specification)

8204 recovery, OSI Distributed Transaction Processing (TP) without 2-phase commitment, OSI
8205 Management.

8206 H.1.4 mOSI API versus XAP

8207 X/Open has developed XAP (ACSE/Presentation API), which offers full access to ACSE and
8208 Presentation functionality and is well suited for system programmers/integrators needing to use
8209 all of its functionality (including minor and major synchronisation points...).

8210 XAP needs to be used when some of the following pieces of functionality (not available with
8211 mOSI) are required:

8212 • use of Functional Units different from Kernel and Full Duplex

8213 • access to AP and AE invocation identifiers, to session connection identifier (which may be
8214 useful with some of the resynchronisation/activity management functional units).

8215 In general, XAP will be used for applications targetted at the OSI environment that may need to
8216 take advantage of additional OSI facilities in the future. XAP is a flexible, extensible API;
8217 extensions to cover OSI Remote Operation Services (ROSE) and OSI Transaction Processing are
8218 under development.

8219 H.1.5 Upper Layers Functionality Exposed via mOSI

8220 These are presented as they are exposed via mOSI options and specific parameters.

8221 H.1.5.1 Naming and Addressing Information used by mOSI

8222 The addr structure (used in t_bind, t_connect, t_accept) is a combined naming and addressing
8223 datatype, identifying one end or the other of the association.

8224 The address part is a Presentation Address. The Calling and Called addresses are required
8225 parameters while the use of a Responding address is optional.

8226 The name part (Application Process (AP) Title and Application Entity (AE) Qualifier) is always
8227 optional.

8228 ISO Directory facilities, when available, can relate the name parts (identifying specific
8229 applications) to the addresses of the real locations where they can be accessed.

8230 The general format of the addr structure can be found in Section H.5 on page 283, while its
8231 precise structure is implementation dependent.

8232 H.1.5.2 XTI Options Specific to mOSI

8233 • Application Context Name

8234 An application context name identifies a set of tasks to be performed by an application. It is
8235 exchanged during association establishment with the purpose of conveying a common
8236 understanding of the work to be done.

8237 This parameter is exposed to offer some negotiation capabilities to the application and to
8238 increase the chances of interoperability.

8239 When receiving a non suitable or unknown value from a peer application, the application
8240 may propose an alternate value or decide to terminate prematurely the association.

8241 A default value (in the form of an Object Identifier) is provided, identifying a generic XTI-
8242 mOSI application. Its value can be found in Section H.5 on page 283.

268 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) General

8243 • Presentation Contexts

8244 A presentation context is the association of an abstract syntax with a transfer syntax. The
8245 presentation context is used by the application to identify how the data is structured and by
8246 the OSI Application Layer to identify how the data should be encoded/decoded.

8247 A generic presentation context is defined for a stream-oriented, unstructured, data transfer
8248 service with null encoding:

8249 abstract syntax: The single data type of this abstract syntax is a sequence of octets that are
8250 defined in the application protocol specification as being consecutive octets on a stream-
8251 oriented transport mechanism, without regard for any semantic or other boundaries.

8252 transfer syntax: The data value shall be represented as an octet-aligned presentation data
8253 value. If two or more data values are concatenated together they are considered to be a
8254 single (longer) data value. (This is the null encoding rule).

8255 The value of the Object Identifiers for this generic presentation context can be found in
8256 Section H.5 on page 283.

8257 • Presentation Context Definition List, Result List, Defined Context Set

8258 As negotiation occurs between the peer OSI Application layers, the presentation context(s)
8259 proposed by the application may not be accepted.

8260 The Presentation Context Definition Result List indicates, for each of the proposed
8261 presentation context, if it is accepted or, if not, provides a reason code; the application may
8262 choose to terminate the association prematurely if it does not suit its requirements.

Networking Services, Issue 4 269

Options Minimum OSI Functionality (Preliminary Specification)

8263 H.2 Options
8264 Options are formatted according to the structure t_opthdr as described in Chapter 6 on page 35.
8265 An OSI provider compliant to this specification supports all, none or a subset of the options
8266 defined in Section H.2.1. An implementation may restrict the use of any of the options by
8267 offering them in privileged or read_only mode.

8268 An explanation of when an application may benefit from using the XTI options specific to mOSI
8269 can be found in Section H.1 on page 267.

8270 H.2.1 ACSE/Presentation Connection-oriented Service

8271 The protocol level for all subsequent options is ISO_APCO.

8272 All options are association-related (see Chapter 6 on page 35. They may be negotiated in the XTI
8273 states T_IDLE and T_INCON, and are read-only in all other states except T_UNINIT. The
8274 structures referenced are specified in Section H.5 on page 283.
8275
8276 Option Name Type of Option Legal Meaning
8277 Value Option Value
8278 Object identifier item
8279 (see Section H.5 on
8280 page 283)

see text
default: see text

Application Context NameAP_CNTX_NAME

8281 Presentation Context
8282 Definition list (see
8283 Section H.5 on page
8284 283)

see text
default: see text

Presentation Context Definition ListAP_PCDL

8285 Presentation Context
8286 Definition Result list
8287 (see Section H.5 on
8288 page 283)

see text
default: none

Presentation Context Definition
Result List

AP_PCDRL

8289 AP_MCPC unsigned long T_YES/T_NO multiple choice presentation contexts
8290 default:T_NO

8291 Table H-1 APCO-level Options

8292 Further Remarks

8293 • Application Context Name

8294 A default value (for a generic XTI-mOSI application) is provided. It is defined in Section H.5
8295 on page 283.

8296 The application may choose to propose, through this option, a value different from the
8297 default one. The application may also use this option to check the value returned by the peer
8298 application and decide if the association should be kept or terminated.

8299 • Presentation Context Definition List

8300 A default is provided: a list with one presentation context (the stream oriented, unstructured,
8301 data transfer service with null encoding — this is described in section Section H.1 on page
8302 267. The abstract syntax is the default abstract syntax and the transfer syntax is the default
8303 transfer syntax, as specified in Section H.5 on page 283.

270 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Options

8304 • Presentation Context Definition Result List

8305 The codes for the result of negotiation and reason for rejection are defined in Section H.5 on
8306 page 283. The responding application, afetr reading this option, may choose to continue or
8307 terminate the association.

8308 • Multiple Choice Presentation Contexts

8309 The default behaviour (AP_MCPC set to T_NO) frees the application from having to make
8310 choices for encoding of user-data parameters. In that case, the responder is requested to pick
8311 up one of the user-data presentation contexts offered by the initiator; this rule is enforced by
8312 the API (Note that the ACSE presentation context is required, but this is handled by the API
8313 implementation.

8314 If a unique user presentation context is too limiting, the application may prefer to perform all
8315 encodings (all PDV list, with indication of the PCI used). In this case, on the association
8316 responder side, AP_MCPC must be set to T_YES to let the API pass all the user-data
8317 presentation contexts offered to the application, responsible for the negotiation (otherwise
8318 the API will select a unique one).

8319 On the association initiator or responder side, when AP_MCPC is set to T_YES, the first user
8320 data buffer of each more bit sequence of data buffers starts with a long datatype containing
8321 an identifier corresponding to the PCI.

8322 Management Options

8323 No management options are defined.

8324 H.2.2 ACSE/Presentation Connectionless Service

8325 The protocol level for all subsequent options is ISO_APCL.

8326 All options are association-related (see Chapter 6 on page 35). They may be negotiated in all XTI
8327 states except T_UNINIT. The structures referenced are specified in Section H.5 on page 283.
8328
8329 Option Name Type of Option Legal Meaning
8330 Value Option Value
8331 Object identifier item
8332 (see Section H.5 on
8333 page 283)

see text
default: see text

Application Context
Name

AP_CNTX_NAME

8334 Presentation Context
8335 Definition list (see
8336 Section H.5 on page
8337 283)

see text
default: see text

Presentation Context
Definition List

AP_PCDL

8338 Table H-2 APCL-level Options

Networking Services, Issue 4 271

Options Minimum OSI Functionality (Preliminary Specification)

8339 Further Remarks

8340 • Application Context Name

8341 A default value (for a generic XTI-mOSI application) is provided. It is defined in Section H.5
8342 on page 283.

8343 The application may choose to propose, through this option, a value different from the
8344 default one. The application may also use this option to check the value returned by the peer
8345 application and decide if the datagram should be kept or discarded.

8346 • Presentation Context Definition List

8347 In connectionless mode, the transfer syntaxes are not negotiated. Their use are determined
8348 by the sending application entity, and must be acceptable by the receiving application entity.
8349 A default value is provided by XTI: a list with one element, the generic presentation context
8350 (the stream-oriented, unstructured, data transfer service with null encoding described in
8351 Section H.1 on page 267). The corresponding abstract and transfer syntaxes are specified in
8352 Section H.5 on page 283.

8353 Management Options

8354 No management options are defined.

8355 H.2.3 Transport Service Options

8356 Some of the options defined for XTI ISO Transport Connection-oriented Service or Transport
8357 Connectionless Service may be made available to mOSI users: the Options for Quality of
8358 Service.

8359 These Options are defined in Section A.2.1.1 on page 190 and Section A.2.2.1 on page 194. The
8360 Quality of Service parameters are passed directly by the OSI Upper Layers to the Transport
8361 Layer. These options can thus be used to specify OSI Upper Layers quality of service parameters
8362 via XTI.

8363 This facility is implementation dependent. An attempt to specify an unsupported option will
8364 return with the status field set to T_NOTSUPPORT.

8365 None of these options are available with an ISO-over-TCP transport provider.

272 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Functions

8366 H.3 Functions
8367 t_accept() If fd is not equal to resfd, resfd should either be in state T_UNBND or be in state
8368 T_IDLE and be bound to the same address as fd with the qlen parameter set to
8369 0.

8370 The addr parameter passed to/returned from t_bind when resfd is bound may
8371 be different from the addr parameter corresponding to fd.

8372 The opt parameter may be used to change the Application Context Name
8373 received.

8374 t_alloc() No special considerations for mOSI providers.

8375 t_bind() The addr field of the t_bind() structure represents the local presentation
8376 address and optionally the local AP Title and AE Qualifier (see Section H.1 on
8377 page 267 and Section H.5 on page 283 for more details).

8378 This local addr field is used, depending on the XTI primitive, as the calling,
8379 called or responding address, the called address being different from the
8380 responding address only when two different file descriptors (fd, resfd), bound
8381 to different addresses, are used.

8382 t_close() Any connections that are still active at the endpoint are abnormally
8383 terminated. The peer applications will be informed of the disconnection by a
8384 [T_DISCONNECT] event. The value of the disconnect reason will be
8385 [AC_ABRT_PEER].

8386 t_connect() The sndcall->addr structure specifies the Called Presentation Address. The
8387 rcvcall->addr structure specifies the Responding Presentation Address. The
8388 structure may also be used to assign values for the Called AP Title and Called
8389 AE Qualifier.

8390 Before the call, the sndcall->opt structure may be used to request an
8391 Application Context name or Presentation Context different from the default
8392 value.

8393 t_error() No special considerations for mOSI providers.

8394 t_free() No special considerations for mOSI providers.

8395 t_getinfo() The information supported by t_getinfo() reflects the characteristics of the
8396 transport connection, or if no connection is established, the default
8397 characteristics of the underlying OSI layers. In all possible states except
8398 T_DATAXFER, the function t_getinfo() returns in the parameter info the same
8399 information as was returned by t_open(). In state T_DATAXFER, however, the
8400 information returned in info->connect and info->discon may differ.

8401 The parameters of the t_getinfo() function are summarised in the table below.

Networking Services, Issue 4 273

Functions Minimum OSI Functionality (Preliminary Specification)

8402
8403 Parameters Before call After call
8404 Connection-oriented Connectionless
8405 fd x / /
8406 info->addr / x x
8407 info->options / x x
8408 info->tsdu / -1 -1
8409 info->etsdu / -2 -2
8410 info->connect / x -2
8411 info->discon / x -2
8412 info->servtype / T_COTS_ORD T_CLTS
8413 info->flags / 0 0

8414 x equals an integral number greater than 0.

8415 The values of the parameters in the t_info structure for the t_getinfo()
8416 function reflect the mOSI provider particularities.

8417 • connect, discon

8418 The values returned in info->connect and info->discon in state
8419 T_DATAXFER may differ from the values returned by t_open():
8420 negotiation takes place during association establishment and, as a result,
8421 these values may be reduced. For info->connect, this change of value may
8422 be indicated by the provider, but is of little use to the application.

8423 • flags

8424 mOSI does not support sending of TSDU of zero length, so this value
8425 equals 0.

8426 t_getprotaddr() The protocol addresses are naming and addressing parameters as defined in
8427 Section H.1 on page 267 and Section H.5 on page 283.

8428 t_getstate() No special considerations for mOSI providers.

8429 t_listen() The call->addr structure contains the remote Calling Presentation Address,
8430 and optionally the remote Calling AP Title and AE Qualifier.

8431 t_look() Since expedited data is not supported for a mOSI provider, T_EXDATA and
8432 T_GOEXDATA events cannot occur.

8433 t_open() t_open() is called as the first step in the initialisation of a transport endpoint.
8434 This function returns various default characteristics of the underlying OSI
8435 layers.

8436 The parameters of the t_open() function are summarised in the table below.

274 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Functions

8437
8438 Parameters Before call After call
8439 Connection-oriented Connectionless
8440 name x / /
8441 oflag / /
8442 info->addr / x x
8443 info->options / x x
8444 info->tsdu / -1 -1
8445 info->etsdu / -2 -2
8446 info->connect / x -2
8447 info->discon / x -2
8448 info->servtype / T_COTS_ORD T_CLTS
8449 info->flags / 0 0

8450 x equals an integral number greater than 0.

8451 The values of the parameters in the t_info structure reflect mOSI limitations as
8452 follows:

8453 • connect, discon

8454 These values are limited by the version of the session supported by the
8455 mOSI provider, and are generally much larger than those supported by an
8456 ISO Transport or TCP provider.

8457 • flags

8458 mOSI does not support sending of TSDU of zero length, so this value
8459 equals 0.

8460 Note: The name (device file) parameter passed to t_open() will differ when
8461 the application accesses an mOSI provider or an ISO Transport
8462 provider.

8463 t_optmgt() The options available with mOSI providers are described in section Section
8464 H.2 on page 270.

8465 t_rcv() The flags parameter will never be set to [T_EXPEDITED], as expedited data
8466 transfer is not supported.

8467 t_rcvconnect() The call->addr structure specifies the remote Responding Presentation
8468 Address.

8469 The call->opt structure may also contain an Application Context Name
8470 and/or Presentation Context Definition Result List.

8471 t_rcvdis() Possible values for disconnect reason codes are specified in Section H.5 on
8472 page 283.

8473 t_rcvrel() With this primitive, user data cannot be received on normal release: any user
8474 data in the received flow is discarded (see Section H.6 on page 287, XTI
8475 Change Request 20-01).

8476 t_rcvudata() The unitdata->addr structure specifies the remote Presentation address, and
8477 optionally the remote AP Title and AE Qualifier. If the T_MORE flag is set, an
8478 additional t_rcvudata() call is needed to retrieve the entire A-UNIT-DATA
8479 service unit. Only normal data is returned via the t_rcvudata() call.

8480 t_rcvuderr() This function is not supported by a mOSI provider since badly formed A-
8481 UNIT-DATA APDUs are discarded.

Networking Services, Issue 4 275

Functions Minimum OSI Functionality (Preliminary Specification)

8482 t_snd() Zero-length TSDUs are not supported.

8483 Since expedited data transfer is not supported for a mOSI provider, the
8484 parameter flags shall not have [T_EXPEDITED] set.

8485 t_snddis() No special considerations for mOSI providers.

8486 t_sndrel() With this primitive, user data cannot be sent on normal release (see Section
8487 H.6 on page 287, XTI Change Request 20-01).

8488 t_sndudata() The unitdata->addr structure specifies the remote Presentation address, and
8489 optionally the remote AP Title and AE Qualifier. Only normal data is sent via
8490 the t_sndudata() call.

8491 t_strerror() No special considerations for mOSI providers.

8492 t_sync() No special considerations for mOSI providers.

8493 t_unbind() No special considerations for mOSI providers.

276 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Implementors´ Notes

8494 H.4 Implementors´ Notes

8495 H.4.1 Upper Layers FUs, Versions and Protocol Mechanisms

8496 The implementation negotiates:

8497 Session: Kernel, Full Duplex, version 2, or version 1 if version 2 not supported, no
8498 segmentation.

8499 Other session protocol mechanisms are out of scope, except Basic
8500 Concatenation which is mandatory and transparent to the application.

8501 Presentation: Kernel, Normal Mode

8502 ACSE: Kernel

8503 If invalid (non-negotiable) options are requested by the peer and detected by the provider once
8504 the association is already established (such as the ACSE presentation context missing in the
8505 Defined Context Set), the association is rejected via an A-(P)-ABORT generated by the
8506 implementation.

8507 H.4.2 Mandatory and Optional Parameters

8508 • If the Local Presentation Address is not passed to t_bind() in req->addr, then it is returned in
8509 ret->addr.

8510 • The following parameters must be explicitly set by the application:

8511 — Remote (called) Presentation Address (in t_connect(), sndcall->addr).

8512 — If, in t_accept(), a new accepting endpoint is specified (resfd != fd), a Presentation Address
8513 must be bound to the new accepting endpoint (the Responding Presentation Address). If
8514 the same endpoint is used, the Responding Presentation Address is equal to the Local
8515 (Called) Presentation Address.

8516 • The following parameters are mandatory for the protocol machine, but default values are
8517 provided. If the application does not wish to set the corresponding parameter, the default
8518 value will be used. The default value may be changed through t_optmgt (see Section H.2 on
8519 page 270):

8520 — Application Context Name (opt parameter)

8521 — Presentation Contexts (opt parameter).

8522 The presentation context of ACSE is required and used. The user should not request it as
8523 the implementation will insert it automatically in the context list.

8524 If the user does not specifically request an Application Context name via the opt
8525 parameter of t_accept (that is, for the A-Associate response), the implementation uses the
8526 Application Context name that was received in the A-Associate indication.

8527 • The following parameters are optional for the protocol and default values of null are defined.
8528 If the application does not set them otherwise, they are omitted from the outgoing protocol
8529 stream.

8530 — local AP-title (in t_bind(), req->addr)

8531 — called AP-title (in t_connect(), sndcall->addr)

8532 — responding AP-title (if t_accept() specifies a new accepting endpoint resfd, in the protocol
8533 address bound to resfd)

Networking Services, Issue 4 277

Implementors´ Notes Minimum OSI Functionality (Preliminary Specification)

8534 — local AE-qualifier (in t_bind(), req->addr)

8535 — called AE-qualifier (in t_connect(), sndcall->addr)

8536 — responding AE-qualifier (if t_accept() specifies a new accepting endpoint resfd, in the
8537 protocol address bound to resfd).

8538 • The following parameters are optional for the protocol machine and not supported through
8539 the XTI interface. Their handling is implementation-defined. Received values in the
8540 incoming protocol stream, if any, are discarded:

8541 — ACSE Protocol Version (default= version 1)

8542 — Presentation Protocol Version (default= version 1)

8543 — ACSE Implementation Information

8544 — AP invocation identifiers (called, calling, and responding)

8545 — AE invocation identifiers (called, calling, and responding)

8546 — Session connection identifiers.

8547 H.4.3 Mapping XTI Functions to ACSE/Presentation Services

8548 In the following tables, for a given primitive, the presence of each parameter in the protocol flow
8549 is described in the OSI column by M or O, as specified in Annex A of Common Upper Layer
8550 Requirements, Part 3: Minimal OSI upper layer facilities - OIW/EWOS working document.
8551 Connectionless protocols are not yet included in CURL part 3.

8552 For items sent, the status column is from the Sender Status for Category II specification column in
8553 Annex A of CURL - part 3. The Receiver Status is always set to M, as parameters which are
8554 optional on the sending side must be acceptable (that is, not generate aborts) on the receiving
8555 side, even if they are subsequently to be ignored.

8556 M Mandatory: Support for the feature is mandatory — as sender, as receiver or as both sender
8557 and receiver.

8558 O Optional: Support for the item is the option of the referencing specification — as sender, as
8559 receiver or as both sender and receiver.

8560 H.4.3.1 Connection-oriented Services

8561 Association Establishment (successful, unsuccessful)

8562 Note: XTI does not support the concept of a negative association establishment; that is, the
8563 equivalent of a negative A-ASSOCIATE response. That is, an XTI-mOSI
8564 implementation does not generate an AARE- APDU.

8565 To reject an association request, the responding application issues t_snddis(), which is mapped to
8566 a A-ABORT.

8567 However, a negative A-ASSOCIATE confirm (AARE- APDU) may be received from a non-XTI
8568 OSI peer. The negative A-ASSOCIATE confirm event is mapped to t_rcvdis().

278 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Implementors´ Notes

8569 Table H-3 Association Establishment

8570
XTI call Parameter Service Parameter OSI8571

t_connect A-ASSOCIATE req
8572 sndcall->addr Called Presentation Address M
8573 sndcall->addr (1) Called AP Title O
8574 sndcall->addr (1) Called AE Qualifier O
8575 sndcall->opt (2) Application Context Name M
8576 sndcall->opt (3) P-context Definition List M
8577 sndcall->udata User Information O
8578 {t_bind} req|ret->addr Calling Presentation Address M
8579 {t_bind} req|ret->addr Calling AP Title O
8580 {t_bind} req|ret->addr Calling AE Qualifier O

8581 t_listen A-ASSOCIATE ind
8582 call->addr Calling Presentation Address M
8583 call->addr (1) Calling AP Title M
8584 call->addr (1) Calling AE Qualifier M
8585 call->opt Application Context Name M
8586 call->opt (4) P-context Definition List M
8587 call->udata User Information M
8588 {t_bind} req|ret->addr Called Presentation Address M
8589 {t_bind} req|ret->addr (1) Called AP Title M
8590 {t_bind} req|ret->addr (1) Called AE Qualifier M

8591 t_accept A-ASSOCIATE rsp+
8592 call->addr not used: Calling Presentation Address O
8593 call->opt Application Context Name M
8594 call->opt P-context Definition Result List M
8595 call->udata User Information O
8596 {internal} ::="accepted" Result M
8597 {t_bind} req|ret->addr Responding Presentation Address M
8598 {t_bind} req|ret->addr (1) Responding AP Title O
8599 {t_bind} req|ret->addr (1) Responding AE Qualifier M

8600 not sent A-ASSOCIATE rsp-

8601 t_connect (synchronous mode) A-ASSOCIATE cnf+
8602 rcvcall->addr Responding Presentation Address M
8603 rcvcall->addr Responding AP Title M
8604 rcvcall->addr Responding AE Qualifier M
8605 rcvcall->opt Application Context Name M
8606 rcvcall->opt P-context Definition Result List M
8607 rcvcall->udata User Information M
8608 {internal} ::="accepted" Result M
8609 {internal} ::="ACSE service-user" Result Source M

8610 t_rcvconnect (asynchronous mode) A-ASSOCIATE cnf+
8611 call->addr Responding Presentation Address M
8612 call->addr Responding AP Title M
8613 call->addr Responding AE Qualifier M
8614 call->opt Application Context Name M
8615 call->opt P-context Definition Result List M
8616 call->udata User Information M
8617 {discarded} ::="accepted" Result M
8618 {discarded} ::="ACSE service-user" Result Source-diagnostic M

8619 t_rcvdis A-ASSOCIATE cnf-

Networking Services, Issue 4 279

Implementors´ Notes Minimum OSI Functionality (Preliminary Specification)

8620 XTI call Parameter Service Parameter OSI
8621 discon->udata User Information M
8622 discon->reason (5) Result M
8623 {internal} ACSE serv-user|pres serv-prov Result Source-diagnostic M
8624 {discarded} Application Context Name M
8625 {discarded} P-context Definition Result List M

8626 Notes:

8627 (1) if either the AP title or AE qualifier is selected for sending, the other must be
8628 selected.

8629 (2) sndcall→opt or, if no option specified, default value

8630 (3) sndcall→opt or, if no option specified, default value, with ACSE added by
8631 provider

8632 (4) call→opt with ACSE context removed from the list passed to user

8633 (5) combines Result and Result Source-diagnostic

8634 Data Transfer
8635
8636 XTI call Parameter Service Parameter OSI
8637 t_snd P-DATA req
8638 buf User Data M

8639 t_rcv P-DATA ind
8640 buf User Data M

8641 Table H-4 Data Transfer

280 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Implementors´ Notes

8642 Association Release (orderly, abortive)

8643 This table makes the assumption that the XTI-mOSI provider supports the orderly release
8644 facility with user data (t_sndrel2() and t_rcvrel2(), see Section H.6 on page 287). When this is not
8645 the case, User Information is not sent, Reason is supplied via an internal mechanism with A-
8646 RELEASE request and response, User Information and Reason received in A-RELEASE
8647 indication and confirmation are discarded.
8648
8649 XTI call Parameter Service Parameter OSI
8650 t_sndrel2 A-RELEASE req
8651 reldata->reason Reason M
8652 reldata->udata User Information O

8653 t_rcvrel2 A-RELEASE ind
8654 reldata->reason Reason M
8655 reldata->udata User Information M

8656 t_sndrel2 A-RELEASE rsp
8657 reldata->reason Reason M
8658 reldata->udata User Information O

8659 t_rcvrel2 A-RELEASE cnf
8660 reldata->reason Reason M
8661 reldata->udata User Information M

8662 t_snddis A-ABORT req
8663 n/s Diagnostic M
8664 call->udata User Information O

8665 t_rcvdis A-ABORT ind
8666 discon->reason Diagnostic M
8667 discon->udata User Information M

8668 t_rcvdis A-P-ABORT ind
8669 discon->reason Diagnostic M

8670 Table H-5 Association Release

Networking Services, Issue 4 281

Implementors´ Notes Minimum OSI Functionality (Preliminary Specification)

8671 H.4.3.2 Connectionless Services
8672

XTI call Parameter Service Parameter OSI8673
t_sndudata A-UNIT-DATA source

8674 unitdata->addr Called Presentation Address M
8675 unitdata->addr Called AP Title O
8676 unitdata->addr Called AE Qualifier O
8677 unitdata->opt (1) Application Context Name M
8678 unitdata->opt (2) P-context Definition List O (4)
8679 unitdata->udata User Information M
8680 {t_bind} req|ret->addr Calling Presentation Address M
8681 {t_bind} req|ret->addr Calling AP Title O
8682 {t_bind} req|ret->addr Calling AE Qualifier O

8683 t_rcvudata A-UNIT-DATA sink
8684 unitdata->addr Calling Presentation Address M
8685 unitdata->addr Calling AP Title M
8686 unitdata->addr Calling AE Qualifier M
8687 unitdata->opt Application Context Name M
8688 unitdata->opt (3) P-context Definition List M (4)
8689 unitdata->udata User Information M
8690 {t_bind} req|ret->addr Called Presentation Address M
8691 {t_bind} req|ret->addr Called AP Title M
8692 {t_bind} req|ret->addr Called AE Qualifier M

8693 Table H-6 Connectionless-mode ACSE Service

8694 Notes:

8695 (1) unitdata->opt or, if no option specified, default value

8696 (2) unitdata->opt or, if no option specified, default value, with ACSE added by
8697 provider

8698 (3) unitdata->opt with ACSE context removed from the list passed to user

8699 (4) ISO 8822 AM1 (connectionless Presentation service) defines this parameter as user
8700 option; CURL part 3 does not currently cover connection-less services.

282 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Complements to <xti.h>

8701 H.5 Complements to <xti.h>

8702 SPECIFIC ISO ACSE/PRESENTATION OPTIONS

8703 Naming and Addressing Datatype

8704 The buf[] part of the addr structure is an mosiaddr structure defined in the following way:

8705 struct t_mosiaddr {
8706 unsigned int osi_apt_len;
8707 unsigned int osi_aeq_len;
8708 unsigned int osi_paddr_len;
8709 unsigned char osi_addr[MAX_ADDR];
8710 }

8711 Where:

8712 the apt address starts at osi_addr[0]
8713 the eaq address starts at osi_addr[T_ALIGN(osi_apt_len)]
8714 the paddr is at osi_addr[T_ALIGN(osi_apt_len) + T_ALIGN(osi_aeq_len)]
8715 MAX_ADDR is an implementation-defined constant.

8716 The application is responsible for encoding/decoding the AP title and AE qualifier; alternatively,
8717 a lookup routine may be provided (outside the scope of this specification).

8718 ACSE/Presentation Option Levels and Names

8719 #define ISO_APCO 0x0200
8720 #define ISO_APCL 0x0300
8721 #define AP_CNTX_NAME 0x1
8722 #define AP_PCDL 0x2
8723 #define AP_PCDRL 0x3
8724 #define AP_MCPC 0x4

8725 Object Identifier Representation within Options

8726 The presentation context definition list and application context both utilise object identifiers. An
8727 object identifier is held as a variable length item of the following form:

8728 | len | object_value. ... | // |
8729 -----------------------------
8730 ulong ˆ
8731 |
8732 alignment
8733 characters

8734 The application is responsible for encoding/decoding the Object id value; alternatively, a lookup
8735 routine may be provided (outside the scope of this specification).

Networking Services, Issue 4 283

Complements to <xti.h> Minimum OSI Functionality (Preliminary Specification)

8736 Application Context Name Option

8737 The application context name option consists of an object identifier item as defined above.

8738 Presentation Context Definition List Option

8739 The presentation context definition list option is used to propose one or more presentation
8740 contexts, giving their abstract syntax and allowable transfer syntaxes.

8741 The presentation context definition list option is a variable size option consisting of a long giving
8742 the number of presentation contexts followed that number of presentation context definition
8743 elements.

8744 Each presentation context definition element consists of a presentation context item header
8745 defined as:

8746 struct t_ap_pcd_hdr {
8747 long pci;
8748 long t_sytx_size;
8749 }

8750 followed by an object identifier item for the abstract syntax and t_sytx_size number of object
8751 identifier items, one for each of the proposed transfer syntaxes.

8752 Presentation Context Definition Result List Option

8753 A presentation definition context result list option gives the result of negotiation, and consists of
8754 a long giving the number of presentation contexts followed by that number of presentation
8755 context definition result elements, each defined as:

8756 struct t_ap_pcdr {
8757 long res; /* result of negotiation */
8758 long prov_rsn; /* reason for rejection */
8759 }

8760 /*
8761 * codes for res and prov_rsn
8762 */

8763 #define PCDRL_ACCPT 0x0
8764 /*pres. context accepted */
8765 #define PCDRL_USER_REJ 0x1
8766 /*pres. context rejected by peer application */
8767 #define PCDRL_PREJ_RSN_NSPEC 0x0100
8768 /*prov. reject: no reason specified */
8769 #define PCDRL_PREJ_A_SYTX_NSUP 0x0101
8770 /*prov. reject: abstract syntax not supported*/
8771 #define PCDRL_PREJ_T_SYTX_NSUP 0x0102
8772 /*prov. reject:transfer syntax not supported */
8773 #define PCDRL_PREJ_LMT_DCS_EXCEED 0x0103
8774 /*prov. reject: local limit on DCS exceeded */

8775 For the default abstract syntax, transfer syntax and application context, this Appendix uses
8776 object identifiers which are specified in the profile (ISO/IEC pDISP 11188 - Common Upper
8777 Layer Requirements, Part 3: Minimal OSI upper layer facilities - OIW/EWOS working
8778 document). Thus the descriptions provided in this Appendix are informative only.

284 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) Complements to <xti.h>

8779 Default Abstract Syntax for mOSI

8780 The following OBJECT IDENTIFIER have been defined in CURL part 3:

8781 {iso(1) standard(0) curl(11188) mosi(3) default-abstract-syntax(1) version(1)}

8782 This object identifier can be used as the abstract syntax when the application protocol (above
8783 ACSE) can be treated as single presentation data values (PDVs). Each PDV is a sequence of
8784 consecutive octets without regard for semantic or other boundaries. The object identifier may
8785 also be used when, for pragmatic reasons, the actual abstract syntax of the application is not
8786 identified in Presentation Layer negotiation.

8787 Notes:

8788 1. Applications specified using ASN.1 should not use the default abstract syntax.

8789 2. As this object identifier is used by all applications using the default abstract
8790 syntax for mOSI, it cannot be used to differentiate between applications. One of
8791 the ACSE parameters; for example, AE Title or Presentation address, may be used
8792 to differentiate between applications.

8793 Default Transfer Syntax for mOSI

8794 If the default transfer syntax and the abstract syntax are identical, the OBJECT IDENTIFIER for
8795 the default abstract syntax is used. If they are not identical, the OBJECT identifier for the default
8796 transfer syntax is:

8797 {iso(1) standard(0) curl(11188) mosi(3) default-transfer-syntax(2) version(1)}

8798 Note: In the presentation data value of the PDV list of Presentation Protocol or in the
8799 encoding of User Information of ACSE Protocol, only octet-aligned or arbitrary can be
8800 used for default transfer syntax for mOSI. Single-ASN1-type cannot be used for default
8801 transfer syntax for mOSI.

8802 Default Application Context for mOSI

8803 The following OBJECT IDENTIFIER has been defined in CURL part 3:

8804 {iso(1) standard(0) curl(11188) mosi(3) default-application-context(3) version(1)}

8805 This application context supports the execution of any application using the default abstract
8806 syntax for mOSI.

Networking Services, Issue 4 285

Complements to <xti.h> Minimum OSI Functionality (Preliminary Specification)

8807 Reason Codes for Disconnections

8808 #define AC_U_AARE__NONE 0x0001 /*connection rejected by */
8809 /*peer user: no reason given */
8810 #define AC_U_AARE_ACN 0x0002 /*connection rejected: */
8811 /*application context name */
8812 /*not supported */
8813 #define AC_U_AARE_APT 0x0003 /*connection rejected: */
8814 /*AP title not recognised */
8815 #define AC_U_AARE_AEQ 0x0005 /*connection rejected: */
8816 /*AE qualifier not recognised */
8817 #define AC_U_AARE_PEER_AUTH 0x000e /*connection rejected: */
8818 /*authentication required */
8819 #define AC_P_ABRT_NSPEC 0x0011 /*aborted by peer provider: */
8820 /*no reason given */
8821 #define AC_P_AARE_VERSION 0x0012 /*connection rejected: */
8822 /*no common version */

8823 Other reason codes may be specified as implementation defined constants. In order to be
8824 portable, an application should not interpret such information, which should only be used for
8825 troubleshooting purposes.

286 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) XTI mOSI CR

8826 H.6 XTI mOSI CR
8827 Several references are made in this Appendix to XTI CR 20-01. This change request proposes
8828 extending the functionality of the X/Open Transport interface. It is intended that this change
8829 proposal will be decided along with other proposals to extend XTI functionality, in the near
8830 future.

8831 The content of XTI CR 20-01 is presented in this section, for convenience. If accepted, it will be
8832 removed from this Appendix when the extended functionality it proposes is incorporated with
8833 other XTI functions.

8834 Document: X/Open Transport Interface (XTI), CAE Specification, Version 2

8835 Change Number: 20-01

8836 Title: Orderly release with user data

8837 Qualifier: Major Technical

8838 Rationale: XTI permits to send and receive user data with the
8839 abortive release primitives (t_snddis, t_rcvdis) but not
8840 with the orderly release primitives (t_sndrel, t_rcvrel).

8841 This is consistent with TCP specifications.

8842 For ISO ACSE, providing an orderly release mechanism, user
8843 data is a parameter of the release service. OSI
8844 applications that use A-RELEASE user data are FTAM and VT
8845 (Virtual Terminal); for ROSE applications, the argument
8846 of UNBIND is mapped to A-RELEASE user data.

8847 When mapping XTI primitives to ACSE/Presentation
8848 (XTI-mOSI Appendix), disconnect user data may thus be
8849 received from peer applications. Three alternatives are
8850 possible:

8851 1. Discard user data - detrimental to those applications
8852 that want to receive user data from the peer, but
8853 still possible for the others.
8854 2. User data delivered (via t_rcv); this would happen
8855 just before the T_ORDREL event, with introduction of a
8856 new flag T_ORDREL_DATA.
8857 3. Addition of a new primitive, t_rcvrel2, with user data
8858 parameter - this method is more straightforward than
8859 alternative 2 (both for the application and the
8860 library implementation), and additive (does not break
8861 existing applications).
8862 See part 1 of the proposed change.

8863 If user data can be received with t_rcvrel2, it makes sense
8864 to propose a similar handling for the emission of user data,
8865 thus a new primitive t_sndrel2, with user data parameter, is
8866 proposed below (if this new primitive is not present, the
8867 only alternative is that user data is not supported by the
8868 provider). See part 2 of the proposed change.

8869 Support of these new primitives needs to be indicated,
8870 see part 3 of the change.

Networking Services, Issue 4 287

XTI mOSI CR Minimum OSI Functionality (Preliminary Specification)

8871 Change:

8872 Part 1: Add a new manual page after t_rcvrel():
8873 ---

8874 Name:
8875 t_rcvrel2 - receipt of an orderly release indication or
8876 confirmation containing user data.

8877 SYNOPSIS
8878 #include <xti.h>

8879 int t_rcvrel2(fd, discon)
8880 int fd;
8881 struct t_discon *discon;

8882 DESCRIPTION

8883 Parameters Before call | After call
8884 -----------------------+----------------+------------
8885 fd | x | /
8886 discon->udata.maxlen | x | /
8887 discon->udata.len | / | x
8888 discon->udata.buf | ? |(?)
8889 discon->reason | / | x
8890 discon->sequence | / | /

8891 This function is used to acknowledge receipt of an
8892 orderly release indication or confirmation and to
8893 retrieve any user data sent with the release. The
8894 argument fd identifies the local transport endpoint
8895 where the connection exists, and discon points to a
8896 t_discon structure containing the following members:

8897 struct netbuf udata;
8898 int reason;
8899 int sequence;

8900 After receipt of this indication, the user may not
8901 attempt to receive more data because such an attempt
8902 will block forever. However, the user may continue to
8903 send data over the connection if t_sndrel() or t_sndrel2()
8904 has not been called by the user.

8905 The field reason specifies the reason for the
8906 disconnect through a protocol-dependent reason code
8907 and udata identifies any user data that was sent with the
8908 disconnect; the field sequence is not used.

8909 If a user does not care if there is incoming data and
8910 does not need to know the value of reason, discon may
8911 be a null pointer, and any user data associated with
8912 the disconnect will be discarded.

8913 This function is an optional service of the transport
8914 provider, only supported by providers of service type
8915 T_COTS_ORD. The flag T_ORDRELDATA in the info->flag
8916 field returned by t_open or t_getinfo indicates that
8917 the provider does not discard received disconnect user data.

288 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) XTI mOSI CR

8918 This function may not be available on all systems.

8919 VALID STATES

8920 T_DATAXFER, T_OUTREL

8921 ERRORS

8922 On failure, t_errno is set to one of the following:

8923 [TBADF] The specified file descriptor does not refer
8924 to a transport endpoint.

8925 [TNOREL] No orderly release indication currently
8926 exists on the specified transport endpoint.

8927 [TLOOK] An asynchronous event has occurred on this
8928 transport endpoint and requires immediate
8929 attention.

8930 [TNOTSUPPORT] Orderly release is not supported by the
8931 underlying transport provider.

8932 [TSYSERR] A system error has occurred during execution
8933 of this function.

8934 [TOUTSTATE] The function was issued in the wrong
8935 sequence on the transport endpoint
8936 referenced by fd.

8937 [TPROTO] This error indicates that a communication
8938 problem has been detected between XTI and
8939 the transport provider for which there is
8940 no other suitable XTI(t_errno).

8941 [TBUFOVFLW] The number of bytes allocated for
8942 incoming data (maxlen) is greater than
8943 0 but not sufficient to store the data,
8944 and the disconnect information to be
8945 returned in discon will be discarded.
8946 The provider state, as seen by the
8947 user, will be changed as if the data
8948 was successfully retrieved.

8949 RETURN VALUE

8950 Upon successful completion, a value of 0 is returned.
8951 Otherwise, a value of -1 is returned and t_errno is set
8952 to indicate an error.

8953 SEE ALSO

8954 t_getinfo(), t_open(), t_sndrel2(), t_rcvrel(), t_sndrel().

Networking Services, Issue 4 289

XTI mOSI CR Minimum OSI Functionality (Preliminary Specification)

8955 Part 2: Add a new manual page after t_sndrel():
8956 ---

8957 Name:
8958 t_sndrel2 - initiate/respond to an orderly release with
8959 user data

8960 SYNOPSIS
8961 #include <xti.h>

8962 int t_sndrel2(fd, discon)
8963 int fd;
8964 struct t_discon *discon;

8965 DESCRIPTION

8966 Parameters | Before call | After call
8967 -----------------------+----------------+------------
8968 fd | x | /
8969 discon->udata.maxlen | / | /
8970 discon->udata.len | x | /
8971 discon->udata.buf | ?(?) | /
8972 discon->reason | ? | /
8973 discon->sequence | / | /

8974 This function is used to initiate an orderly release or
8975 to respond to an orderly release indication and to send
8976 user data with the release. The argument fd identifies
8977 the local transport endpoint where the connection
8978 exists, and discon points to a t_discon structure
8979 containing the following members:

8980 struct netbuf udata;
8981 int reason;
8982 int sequence;

8983 After calling t_sndrel2(), the user may not send any
8984 more data over the connection. However, a user may
8985 continue to receive data if an orderly release
8986 indication has not been received.

8987 The field reason specifies the reason for the
8988 disconnect through a protocol-dependent reason code
8989 and udata identifies any user data that is sent with the
8990 disconnect; the field sequence is not used.

8991 The udata structure specifies the user data to be sent
8992 to the remote user. The amount of user data must not
8993 exceed the limits supported by the transport provider,
8994 as returned in the dicson filed of the info argument of
8995 t_open() or t_getinfo(). If the len field of udata is
8996 zero, no data will be sent to the remote user.

8997 If a user does not wish to send data and reason code to
8998 the remote user, the value of discon may be a null
8999 pointer.

9000 This function is an optional service of the transport
9001 provider, only supported by providers of service type

290 X/Open CAE Specification (1994) (Draft March 15, 1995)

Minimum OSI Functionality (Preliminary Specification) XTI mOSI CR

9002 T_COTS_ORD. The flag T_ORDRELDATA in the info->flag
9003 field returned by t_open or t_getinfo indicates that
9004 the provider will accept to send disconnect user data.
9005 This function may not be available on all systems.

9006 VALID STATES

9007 T_DATAXFER, T_INREL

9008 ERRORS

9009 On failure, t_errno is set to one of the following:

9010 [TBADF] The specified file descriptor does not refer
9011 to a transport endpoint.

9012 [TFLOW] O_NONBLOCK was set, but the flow
9013 control mechanism prevented the
9014 transport provider from accepting the
9015 function at this time.

9016 [TLOOK] An asynchronous event has occurred on this
9017 transport endpoint and requires immediate
9018 attention.

9019 [TNOTSUPPORT] Orderly release is not supported by the
9020 underlying transport provider.

9021 [TOUTSTATE] The function was issued in the wrong
9022 sequence on the transport endpoint
9023 referenced by fd.

9024 [TSYSERR] A system error has occurred during execution
9025 of this function.

9026 [TPROTO] This error indicates that a
9027 communication problem has been detected
9028 between XTI and the transport provider
9029 for which there is no other suitable
9030 XTI(t_errno).

9031 [TBADDATA] The amount of user data specified was
9032 not within the bounds allowed by the
9033 transport provider or the provider did not
9034 return T_ORDRELDATA in the t_open flags.

9035 RETURN VALUE

9036 Upon successful completion, a value of 0 is returned.
9037 Otherwise, a value of -1 is returned and t_errno is set
9038 to indicate an error.

9039 SEE ALSO

9040 t_getinfo(), t_open(), t_rcvrel2(), t_rcvrel(), t_sndrel().

Networking Services, Issue 4 291

XTI mOSI CR Minimum OSI Functionality (Preliminary Specification)

9041 Part 3: indication by provider of support of the new
9042 primitives
9043 ---

9044 - Section 4.3, XTI features:
9045 Change:
9046 "The orderly release mechanism (using t_sndrel() and
9047 t_rcvrel()) is supported only for T_COTS_ORD type providers."

9048 into:
9049 "The orderly release mechanism (using t_sndrel(), t_sndrel2(),
9050 t_rcvrel() and t_rcvrel2()) is supported only for T_COTS_ORD
9051 type providers."

9052 Other sections with editorial changes resulting from this CR:
9053 ---
9054 Mention t_rcvrel2(), t_sndrel2() in addition to existing
9055 functions in:
9056 - Table 3-1,
9057 - Section 4.1.4, Overview of Connection Release,
9058 - Section 4.3.1, XTI Functions versus Protocols,
9059 - Table 5-2,
9060 - Section 5.6, Events and TLOOK error indication.

292 X/Open CAE Specification (1994) (Draft March 15, 1995)

9061

Appendix I

SNA Transport Provider

9062 I.1 Introduction
9063 This Appendix includes:

9064 • Protocol-specific information that is relevant for Systems Network Architecture (SNA)
9065 transport providers.

9066 It assumes native SNA users, that is, those prepared to use SNA addresses and other SNA
9067 transport characteristics (for example, mode name for specifying quality of service).

9068 • Information on the mapping of XTI functions to Full Duplex (FDX) LU 6.2.

9069 Systems that do not support LU 6.2 full duplex can simulate them using twin-opposed half-
9070 duplex conversations. Protocols for doing so will be published separately.

9071 The half-duplex verbs have been published for several years. The full-duplex verbs will be
9072 published in 1993. Copies are available9 on request.

9073 __________________

9.9074 Until the full-duplex verbs are published in the public domain, copies of the relevant specification CPI-C Full Duplex
9075 Conversations and Expedited Data, Nov 30 1992 may be requested from IBM Corporation, via X/Open.

Networking Services, Issue 4 293

SNA Transport Protocol Information SNA Transport Provider

9076 I.2 SNA Transport Protocol Information
9077 This section describes the protocol-specific information that is relevant for Systems Network
9078 Architecture (SNA) transport providers.

9079 I.2.1 General

9080 1. Protocol address

9081 For information about SNA addresses, see Section I.2.2 on page 295.

9082 2. Connection establishment

9083 Native SNA has no confirmed allocation protocol for full duplex conversations. When a
9084 conversation is allocated, the connection message is buffered and sent with the first data
9085 that is sent on the conversation. When the t_connect() or t_rcvconnect() function completes,
9086 connectivity has been established to the partner node, but not to the partner program.
9087 Since notification that the partner is not available may occur later, the disconnect reasons
9088 returned on t_rcvdis() include [SNA_CONNECTION_SETUP_FAILURE], indicating that
9089 the connection establishment never completed successfully.

9090 An SNA program that needs to know that the partner is up and running before it proceeds
9091 sending data must have its own user-level protocol to determine if this is so.

9092 3. Parallel connections

9093 LU 6.2 allows multiple, simultaneous connections between the same pair of addresses.
9094 The number of connections possible between two systems depends on limits defined by
9095 system administrators.

9096 4. Sending data of zero octets is supported.

9097 5. Expedited data

9098 In connection-oriented mode, expedited data transfer can be negotiated by the two
9099 transport providers during connection establishment. Expedited data transfer is
9100 supported if both transport providers support it. However negotiation between transport
9101 users is not supported. Therefore the expedited option is read-only.

9102 6. Orderly release

9103 The orderly release functions, t_sndrel() and t_rcvrel(), can be used for the orderly release
9104 facility of SNA, just as they are for TCP.

9105 7. SNA buffers data from multiple t_snd() functions until the SNA send buffer is full,
9106 allowing multiple records to be sent in one transmission. However, users sometimes have
9107 reasons for ensuring that a record is sent immediately. By setting the T_PUSH flag on the
9108 t_snd() function, the transport user causes data to be transferred without waiting for the
9109 buffer to be filled.

9110 In order to take advantage of the performance improvement that SNA buffering offers, the
9111 XTI user must set the SNA_ALWAYS_PUSH option to T_NO (default is T_YES). If this
9112 option is not set to T_NO, a push will be done for every t_snd() and the T_PUSH flag will
9113 have no effect.

9114 8. Programs migrated to SNA from other transport providers may want every t_snd() to
9115 cause a message to be sent immediately in order to match behaviour on the original
9116 provider. The default of this option is T_YES; thus the default is that a t_snd() will always
9117 be sent out immediately.

294 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider SNA Transport Protocol Information

9118 I.2.2 SNA Addresses

9119 In an SNA environment, the protocol address always includes a network-ID-qualified logical
9120 unit (LU) name. This is the address of the node where the program resides.

9121 For the t_connect() and t_sndudata() functions, the address also contains a transaction program
9122 name (TPN), identifying the program addressed in the partner node. A file descriptor used to
9123 accept incoming connection requests should have a complete SNA name, including TPN, bound
9124 to it with t_bind().

9125 A file descriptor used for outgoing connection requests may optionally have only a network-id-
9126 qualified LU name bound to it.

9127 Since the t_listen() returns only the LU name part of the address, this address is not adequate for
9128 opening up a connection back to the source. The transport user must know the TPN of its
9129 partner by some mechanism other than XTI services.

9130 However, t_rcvudata() returns the complete address of the partner that can be used to send a
9131 datagram back to it.

9132 An SNA address has the following structure. When the TPN is not included, the TPN length
9133 (sna_tpn_length) is set to zero, and the string that follows is null.

9134 /* The definitions for maximum LU name and netid lengths have specific */
9135 /* values because these maxima are a fixed SNA characteristic, */
9136 /* not an implementation option. Maximum TP length is a implementation */
9137 /* option, although the maximum maximum is 64. */

9138 #define SNA_MAX_NETID_LEN 8
9139 #define SNA_MAX_LU_LEN 8
9140 #define SNA_MAX_TPN_LEN

9141 struct sna_addr
9142 {
9143 u_char sna_netid (SNA_MAX_NETID_LEN),
9144 u_char sna_lu (SNA_MAX_LU_LEN),
9145 u_short sna_tpn_len, /* less than or equal to SNA_MAX_TPN_LEN */
9146 u_char sna_tpn (sna_tpn_len)
9147 }

9148 Notes:

9149 1. network-identifier (sna_netid): The address can contain either an SNA network
9150 identifier or the defined value, SYS_NET, which indicates that the predefined
9151 network identifier associated with the local system should be used.

9152 2. IBM Corporation provides a registration facility for SNA network identifiers to
9153 guarantee global uniqueness. (See IBM document G325-6025-0, SNA Network
9154 Registry).

9155 3. LU name (sna_lu): The address can contain either a specific LU name or the
9156 defined value, SYS_LU, which indicates that the system default LU name is to be
9157 used.

9158 4. LU name and network identifier fields are fixed length. For values shorter than 8
9159 characters, they are blank filled to the right.

9160 5. Transaction program name (sna_tpn): This field can take one of three values:

9161 — Null value: No transaction program name is to be associated with the file
9162 descriptor.

Networking Services, Issue 4 295

SNA Transport Protocol Information SNA Transport Provider

9163 This is adequate for file descriptors used for outgoing connection requests.

9164 If no transaction program is associated with a file descriptor when a t_listen(),
9165 t_rcvudata(), or t_sndudata() is issued, the function will return a TPROTO
9166 error.

9167 — Specified value: A value that will be known by a partner program; for
9168 example, a well-known transaction program name used by a server.

9169 — Defined value, DYNAMIC_TPN: An indication that the system should
9170 generate a TP name for the file descriptor.

9171 6. The values SYS_NET, SYS_LU and DYNAMIC_TPN may not be used as real
9172 values of the sna_netid, sna_lu or sna_tpn fields, respectively.

9173 I.2.3 Options

9174 Options are formatted according to the structure t_opthdr as described in Chapter 6. A
9175 transport provider compliant to this specification supports none, all, or any subset of the options
9176 defined in Section I.2.3.1.

9177 I.2.3.1 Connection-Mode Service Options

9178 The protocol level of all subsequent options is SNA.

9179 All options are association-related. Some may be negotiated in the XTI states T_IDLE and
9180 T_INCON, and all are read-only in all other states except T_UNINIT.

296 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider SNA Transport Protocol Information

9181 Options for Service Quality and Expedited Data

9182 Table I-1 shows the SNA options that affect the quality of a connection and the transport service
9183 level provided.

9184
9185 Option Name Type of Legal Option Value Meaning
9186 Option Value
9187 SNA_BATCH
9188 SNA_BATCHSC
9189 SNA_INTER
9190 SNA_INTERSC
9191 SNA_DEFAULT
9192 any user-defined SNA
9193 mode value

SNA mode, which controls the
underlying class of service selected for
the connection. The SNA mode is
specified only by the active side of the
connection.

If not specified, the default mode is
SNA_DEFAULT.

9194 The default mode characteristics may
9195 vary from system to system.

SNA_MODE char

9196 unsigned long If T_YES, every t_snd() operation will
9197 cause the message to be sent
9198 immediately.

9199 If T_NO, the data from a t_snd()
9200 operation may be buffered and sent
9201 later. The transport user can set the
9202 T_PUSH flag on a t_snd() function call
9203 to cause the data to be sent
9204 immediately.

9205 Default value is T_NO.

9206 This option is primarily for programs
9207 migrated to SNA from other protocol
9208 stacks that always send data
9209 immediately. It allows them to request
9210 behaviour similar to that on the
9211 original provider. However, setting
9212 SNA_ALWAYS_PUSH to T_YES may
9213 affect its performance.

SNA_ALWAYS_PUSH T_YES / T_NO

9214 Table I-1 SNA Options

Networking Services, Issue 4 297

SNA Transport Protocol Information SNA Transport Provider

9215 I.2.4 Functions

9216 t_accept() Since user data is not exchanged during connection establishment, the
9217 parameter call-->udata.len must be 0.

9218 t_bind() The addr field of the t_bind structure represents the local network-id-qualified
9219 LU name of the local logical unit and the transaction program name of the
9220 program issuing the t_bind() function.

9221 If the endpoint was bound in the passive mode (that is, qlen > 0) and the
9222 requested address has a null transaction program subfield, the function
9223 completes with the T_BADADDR error.

9224 t_connect() The sndcall-->addr specifies the network-ID-qualified LU name and transaction
9225 program name of the remote connection partner.

9226 An SNA transport provider allows more than one connection between the
9227 same address pair.

9228 Since user data cannot be exchanged during the connection establishment
9229 phase, sndcall-->udata.len must be set to 0. On return, rcvcall-->udata.maxlen
9230 should be set to 0.

9231 t_getinfo() In all states except T_DATAXFER, the function t_getinfo() returns in the
9232 parameter info the same information that was returned by t_open(). In
9233 T_DATAXFER state, however, the information returned may differ from that
9234 returned by t_open(), depending on whether the remote transport provider
9235 supports expedited data transfer. The fields of info are set as defined in the
9236 table below.

9237
9238 Parameters Before Call After Call
9239 fd x /
9240 info-->addr / 82
9241 info-->options / x 1

9242 info-->tsdu / -1
9243 info-->etsdu / -2 / 86 2

9244 info-->connect / -2
9245 info-->discon / -2
9246 info-->servtype / T_COTS_ORD
9247 info-->flags / T_SNDZERO

9248 Table I-2 Fields for info Parameter

9249 Notes:

9250 1. x means an integral number greater than zero.

9251 2. Depending on the negotiation of expedited data transfer.

9252 t_getprotaddr() The boundaddr value includes the transaction program name of the local
9253 program.

9254 The peeraddr value (if any) includes only the network-ID-qualified LU name of
9255 the partner.

9256 t_listen() The call-->addr structure contains the network-ID-qualified LU name of the
9257 remote partner.

298 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider SNA Transport Protocol Information

9258 t_open() The default characteristics returned by t_open() are shown in the table below.

9259
9260 Parameters Before Call After Call
9261 name x /
9262 oflag x /
9263 info-->addr / 82
9264 info-->options / x 1

9265 info-->tsdu / -1
9266 info-->etsdu / -2 / 86 2

9267 info-->connect / -2
9268 info-->discon / -2
9269 info-->servtype / T_COTS_ORD
9270 info-->flags / T_SNDZERO

9271 Table I-3 Default Characteristics returned by t_open()

9272 Notes:

9273 1. x means an integral number greater than 0.

9274 2. Expedited data may or may not be supported by the local
9275 transport provider.

9276 t_rcv() If expedited data arrives after part of a TSDU (logical record) has been
9277 retrieved, receipt of the remainder of the TSDU will be suspended until after
9278 the ETSDU has been processed. Only after the full ETSDU has been retrieved
9279 (T_MORE not set), will the remainder of the TSDU be available to the user.

9280 t_rcvconnect() Since no user data can be returned on t_rcvconnect(), the call-->udata.len
9281 should be set to 0 before the function is invoked.

9282 t_rcvdis() Since user data is not sent during disconnection, the value discon-->udata.len
9283 should be set to 0 before t_rcvdis() is called.

9284 The following disconnect reason codes are valid for any implementation of an
9285 SNA transport provider under XTI:

9286 #define SNA_CONNECTION_SETUP_FAILURE.
9287 #define SNA_USER_DISCONNECT
9288 #define SNA_SYSTEM_DISCONNECT
9289 #define SNA_TIMEOUT
9290 #define SNA_CONNECTION_OUTAGE

9291 These definitions should be included in <xti.h>.

9292 t_snd() Unless the SNA_ALWAYS_PUSH option is set to T_YES or the T_PUSH flag
9293 on the t_snd() function is set, the SNA transport provider may collect data in a
9294 send buffer until it accumulates a sufficient amount for transmission. The
9295 amount of data that is accumulated can vary from one connection to another.

9296 In order to take advantage of the performance improvement that SNA
9297 buffering offers, the XTI user must set the SNA_ALWAYS_PUSH option to
9298 T_NO (Default is T_YES). If this option is not set to T_NO, a push will be
9299 done for every t_snd() and the T_PUSH flag will have no effect.

9300 t_snddis() Since no user data is sent during a disconnect operation, call-->udata.len
9301 should be set to 0 before the call to t_snddis().

Networking Services, Issue 4 299

SNA Transport Protocol Information SNA Transport Provider

9302 t_sndudata() The unitdata-->addr field contains the full SNA address, including network-
9303 id-qualified LU name and transaction program identifier, of the remote
9304 partner.

9305 If address associated with the file descriptor has a null transaction program
9306 name subfield, the function completes with the TPROTO error.

9307 The unitdata-->opt structure may contain an SNA mode governing the
9308 transmission of the data. For example, the program may confine data
9309 transmission to secure lines by selecting the SNA_INTERSC or
9310 SNA_BATCHSC modes.

300 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9311 I.3 Mapping XTI to SNA Transport Provider
9312 This section presents the mapping of XTI functions to Full Duplex (FDX) LU 6.2.

9313 First, several flow diagrams are given to illustrate the function of the XTI Mapper. Following
9314 this, mapping tables are given that show the FDX LU 6.2 verbs that the XTI Mapper needs to
9315 generate for each XTI function. For each XTI function that maps to a FDX verb, an additional
9316 table is referenced that gives the mappings of each parameter. Finally, a table shows mapping of
9317 LU 6.2 FDX return codes to XTI events.

9318 The use of FDX LU 6.2 verbs in this section is for illustrative purposes only and is analogous to
9319 OSI’s use of service primitives, that is, as a way to explain the semantics provided by the
9320 protocol. The FDX LU6.2 verbs are used only to help in understanding the SNA protocol, and
9321 are not a required part of an implementation.

Networking Services, Issue 4 301

Mapping XTI to SNA Transport Provider SNA Transport Provider

9322 I.3.1 General Guidelines

9323 General guidelines for mapping XTI to an SNA transport provider are listed below:

9324 • In the following flow diagrams, notice that the XTI mapper always has a
9325 RECEIVE_AND_WAIT posted. This is done so that when data comes into the SNA transport
9326 provider, the XTI mapper is able to set an event indicator. Then, when a T_LOOK is issued,
9327 the XTI application can be informed that there is data to be received.

9328 • The XTI mapper keeps a table that maps an XTI fd to a RESOURCE(variable) on the FDX
9329 verbs.

9330 • In this section, we assume the XTI mapper will be using the FDX LU 6.2 basic conversation
9331 verb interface. The following table Table I-4 gives an explanation for each FDX verb that is
9332 used in these mappings.

9333 Table I-4 FDX LU 6.2 Verb Definitions

9334
9335 FDX Verb Description
9336 Allocates a conversation between the local transaction program
9337 and a remote (partner) transaction program.

ALLOCATE

9338 DEALLOCATE with TYPE(FLUSH) closes the local program’s
9339 send queue. Both the local and remote program must close
9340 their send queues independently.

9341 DEALLOCATE with TYPE(ABEND_PROG) is an abrupt
9342 termination that will close both sides of the conversation
9343 simultaneously.

DEALLOCATE

9344 FLUSH Flushes the local LU’s send buffer.
9345 Returns information pertaining to the specified conversation.GET_ATTRIBUTES

9346 Returns information pertaining to the transaction program
9347 issuing the verb.

GET_TP_PROPERTIES

9348 Receives a new conversation with a partner transaction
9349 program that issued ALLOCATE.

RECEIVE_ALLOCATE

9350 Waits for data to arrive on the specified conversation and then
9351 receives the data. If data is already available, the program
9352 receives it without waiting.

RECEIVE_AND_WAIT

9353 Receives data sent by the remote transaction program in an
9354 expedited manner, via the SEND_EXPEDITED_DATA verb.

RECEIVE_EXPEDITED_DATA

9355 SEND_DATA Sends data to the remote transaction program.
9356 Sends data to the remote transaction program in an expedited
9357 manner. This means that it may arrive at the remote
9358 transaction program before data sent earlier via a send queue
9359 verb; for example, SEND_DATA.

SEND_EXPEDITED_DATA

9360 Waits for posting to occur on one or more non-blocking
9361 operations represented in the specified wait objects. Posting of
9362 a non-blocking operation occurs when the LU has completed
9363 the associated non-blocking verb and filled all the return
9364 values.

WAIT_FOR_COMPLETION

302 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9365 I.3.2 Flows Illustrating Full Duplex Mapping

9366 The following diagrams show mappings from the XTI function calls for active connection
9367 establishment to SNA verb sequences. The first Figure I-1 is used for blocking XTI calls; the
9368 second Figure I-2 is used for non-blocking calls.
9369

XTI Appl.
XTI
Mapper LU 6.2

t_open ()

()

()t_bind

t_connect

.

.
.
.(Session established)

ALLOCATE

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

1)

9370 Figure I-1 Active Connection Establishment, Blocking Version (1 of 2)

9371 Annotations

9372 1. GET_ATTRIBUTES is issued after the session is established and before the return for the
9373 t_connect. This is only done if the mode name, or partner LU name are required on the
9374 return to t_connect. This would be indicated by a non-zero value in either the rcvcall--
9375 >addr.buf or eercvcall-->opt.buf fields on t_connect.

Networking Services, Issue 4 303

Mapping XTI to SNA Transport Provider SNA Transport Provider

9376

XTI Appl.
XTI
Mapper LU 6.2

t_open ()

()

()

()t_bind

t_connect

t_rcvconnect

.

.

.

.

.
(Session established)

ALLOCATE

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE-1 (T_NODATA)

WAIT_FOR_COMPLETION(t=0)1)

9377 Figure I-2 Active Connection Establishment, Non-blocking Version (2 of 2)

9378 Annotations

9379 1. The XTI application will issue a t_rcvconnect as a poll to see if the t_connect has completed.
9380 The t_rcvconnect will cause a WAIT_FOR_COMPLETION, with time=0, to be issued. The
9381 WAIT_FOR_COMPLETION will check on the wait object from the previous non-blocking
9382 ALLOCATE.

9383 When the t_connect has completed successfully a GET_ATTRIBUTES is issued if the mode
9384 name, or partner LU name are required on the return of the t_rcvconnect.

9385 After the GET_ATTRIBUTES, a non-blocking RECEIVE_AND_WAIT is issued to post a
9386 receive for any incoming data.

304 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9387 The next three diagrams show possible mappings of SNA Attach processing for an incoming
9388 connection to the series of XTI calls on the passive side of a connection.

9389 The first Figure I-3 uses the native SNA instantiation mechanism; that is, programs are
9390 instantiated when the connection request arrives. This requires that the TP name (that is, the
9391 XTI application name) is known as part of the LU definition. This is before the t_bind is issued.

9392 The second Figure I-4 is a blocking use of the interface, where the SNA transport provider allows
9393 a connection request to be received by an existing program. This model, although not described
9394 in the architecture, is supported by many SNA products.

9395 The third Figure I-5 is a non-blocking use of the interface, where the SNA transport provider
9396 allows a connection request to be received by an existing program. This model is described as
9397 part of the FDX architecture.
9398

XTI Appl.
XTI
MapperLU 6.2

t_open()

()

()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

(Attach arrives)
Instantiation

t_listen

t_bind(qlen=1)RECEIVE_ALLOCATE

t_accept

1)

2)

9399 Figure I-3 Passive Connection Establishment, Instantiation Version (1 of 3)

9400 Annotations

9401 1. If qlen in t_bind is > 0, a RECEIVE_ALLOCATE will be issued for each connection request
9402 that can be queued. When the RECEIVE_ALLOCATE completes successfully a
9403 GET_ATTRIBUTES is issued only if the mode name, or partner LU name are required on
9404 the return to t_listen.

9405 2. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
9406 is issued to post a receive for any incoming data.

Networking Services, Issue 4 305

Mapping XTI to SNA Transport Provider SNA Transport Provider

9407

XTI Appl.
XTI
MapperLU 6.2

()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

t_listen()

t_bind(qlen=1)RECEIVE_ALLOCATE

t_accept

3)

2)

1)

.

.

.

.
(Attach arrives)

t_open()

9408 Figure I-4 Passive Connection Establishment, Blocking Version (2 of 3)

9409 Annotations

9410 1. The t_bind will cause a blocking RECEIVE_ALLOCATE to be issued for each connection
9411 request that can be queued.

9412 2. When the RECEIVE_ALLOCATE completes successfully a GET_ATTRIBUTES is issued
9413 only if the mode name, or partner LU name are required on the return to t_listen.

9414 3. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
9415 is issued to post a receive for any incoming data.

306 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9416

XTI Appl.
XTI
MapperLU 6.2

t_open()

RC=OK

RC=OK

GET_ATTRIBUTES

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_listen()

t_listen()

t_bind()RECEIVE_ALLOCATE

()t_accept

3)

4)

2)

1)
.

.

.

.
.

.(Attach arrives)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (t=0)

-1 (TNODATA)

9417 Figure I-5 Passive Connection Establishment, Non-blocking Version (3 of 3)

9418 Annotations

9419 1. The t_bind will cause a non-blocking RECEIVE_ALLOCATE to be issued for each
9420 connection request that can be queued.

9421 2. A t_listen is used as a poll to see if a connect request has been received. The t_listen will
9422 cause a WAIT_FOR_COMPLETION, with time=0, to be issued. The
9423 WAIT_FOR_COMPLETION will check on the wait object from the previous non-blocking
9424 RECEIVE_ALLOCATE. In this example, when the first t_listen is issued, the
9425 RECEIVE_ALLOCATE is still outstanding; but the RECEIVE_ALLOCATE has completed
9426 before the second t_listen is issued.

9427 3. When the WAIT_FOR_COMPLETION indicates that the RECEIVE_ALLOCATE has
9428 completed successfully, a GET_ATTRIBUTES is issued only if the mode name, or partner
9429 LU name are required on the return to t_listen.

9430 4. The t_accept will cause a RECEIVE_AND_WAIT to be issued. The RECEIVE_AND_WAIT
9431 is issued to post a receive for any incoming data.

Networking Services, Issue 4 307

Mapping XTI to SNA Transport Provider SNA Transport Provider

9432 The next diagram, Figure I-6, shows the mapping for the blocking XTI t_snd() call. The diagram
9433 after this, Figure I-7, shows the non-blocking mapping of the XTI t_snd() call.
9434

XTI Appl.
XTI
Mapper LU 6.2

RC=OK

t_snd() SEND_DATA Data queued to be sent

... Potential delay ...

... for flow control ...

WAIT_FOR_COMPLETION (t=0)

(TLOOK)

9435 Figure I-6 XTI Function to LU 6.2 Verb Mapping: Blocking t_snd

9436 1. The blocking t_snd will cause a blocking SEND_DATA to be issued. This will block until
9437 the LU accepts and queues all the data being sent.

9438 If EXPEDITED=YES, the mapper will issue a SEND_EXPEDITED_DATA verb rather than
9439 the SEND_DATA.

9440 2. When the SEND_DATA returns, a WAIT_FOR_COMPLETION, with time=0, is issued to
9441 see if the wait object for any outstanding non-blocking LU 6.2 verbs have been posted. At
9442 a minimum, there will be an outstanding RECEIVE_AND_WAIT, waiting for any incoming
9443 data, that needs to be checked. If any wait objects have been posted, the return code on the
9444 t_snd is set to TLOOK. This will inform the XTI application to issue a t_look to see what
9445 has been posted.

308 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9446

XTI Appl.
XTI
Mapper LU 6.2

t_snd () SEND_DATA

WAIT_FOR_COMPLETION (t=0)

RC=OK(TLOOK)

RC=OPERATION_INCOMPLETE

.

. Data queued to be sent

1)

RC=OK

WAIT_FOR_COMPLETION (t=0)

(TLOOK)

2) subsequent XTI verb

9447 Figure I-7 XTI Function to LU 6.2 Verb Mapping: Non-blocking t_snd

9448 1. The XTI mapper needs to either accept all the data being sent, or none of it. In this case, all
9449 the data is accepted, thus the non-blocking t_snd causes a non-blocking SEND_DATA to be
9450 issued.

9451 The XTI mapper then needs to issue a WAIT_FOR_COMPLETION to see if any other
9452 blocking LU 6.2 verbs have completed. This case is not shown in this diagram.

9453 If EXPEDITED=YES, the mapper will issue a SEND_EXPEDITED_DATA verb rather than
9454 the SEND_DATA.

9455 2. When a subsequent XTI verb is issued (for example, t_rcv or t_send), a
9456 WAIT_FOR_COMPLETION, with time=0, is issued to see if the wait object for any
9457 outstanding non-blocking LU 6.2 verbs have been posted. In this case, one of the wait
9458 objects will be the one associated with the non-blocking SEND_DATA. If any wait objects
9459 have been posted, the return code on the t_snd is set to TLOOK. This will inform the XTI
9460 application to issue a t_look to see what has been posted.

9461 There may be an additional LU 6.2 verb issued due to the subsequent XTI verb that was
9462 issued. This is not shown in the above diagram.

Networking Services, Issue 4 309

Mapping XTI to SNA Transport Provider SNA Transport Provider

9463 The next diagram, Figure I-8, shows the mapping for blocking XTI receive call, and the diagram
9464 after this, Figure I-9, shows the mapping for non-blocking XTI receive call.
9465

XTI Appl.
XTI
MapperLU 6.2

RC=OK

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_accept () or t_connect ()

4)

3)

2)

1)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (BLOCKING)

.

(Data arrives)

.

t_rcv ()

.

.

RECEIVE_AND_WAIT

(TLOOK)

9466 Figure I-8 XTI Function to LU 6.2 Verb Mapping: Blocking t_rcv

9467 1. There is always an outstanding non-blocking RECEIVE_AND_WAIT, this is true whether
9468 the XTI application is using blocking or non-blocking mode. This is to post a receive for
9469 any incoming data.

9470 In this diagram, the outstanding RECEIVE_AND_WAIT was issued when the connection
9471 was setup. This could be as a result of either a t_accept or t_connect.

9472 2. When the XTI issues a blocking t_rcv, the XTI mapper will issue a blocking
9473 WAIT_FOR_COMPLETION to wait on the wait object associated with the outstanding
9474 RECEIVE_AND_WAIT. This will block until data is received on this connection.

9475 3. When data is received, the mapper needs to issue a non-blocking RECEIVE_AND_WAIT
9476 to replace the one that just completed.

9477 4. Issue a WAIT_FOR_COMPLETION, with time=0, to see if any other outstanding wait
9478 objects have been posted.

310 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9479

XTI Appl.
XTI
MapperLU 6.2

RC=OK

RC=OK

RECEIVE_AND_WAIT

RC=OPERATION_INCOMPLETE

RC=OPERATION_INCOMPLETE

t_accept () or t_connect ()

4)

3)

2)

1)

WAIT_FOR_COMPLETION (t=0)

WAIT_FOR_COMPLETION (t=0)

(Data ’’n’’ arrives)

t_rcv ()

.

RECEIVE_AND_WAIT

(TLOOK)

9480 Figure I-9 Mapping from XTI Calls to LU 6.2 Verbs (Passive side)

9481 1. There is always an outstanding non-blocking RECEIVE_AND_WAIT, this is true whether
9482 the XTI application is using blocking or non-blocking mode. This is to post a receive for
9483 any incoming data.

9484 In this diagram, the outstanding RECEIVE_AND_WAIT was issued when the connection
9485 was setup. This could be as a result of either a t_accept or t_connect.

9486 2. When the XTI application issues a non-blocking t_rcv, the XTI mapper will issue a
9487 WAIT_FOR_COMPLETION, with T=0, to see if the wait object for the outstanding
9488 RECEIVE_AND_WAIT has been posted. When the wait object has been posted, the XTI
9489 mapper needs to pass the data to the XTI application buffer.

9490 It is possible that the amount of incoming data in the XTI mapper buffer is more than the
9491 XTI application stated on the t_rcv. In this case, the XTI Mapper will set the TMORE flag.
9492 Then, when the next t_rcv is issued, the remaining data will be passes to the XTI
9493 application BEFORE issuing the WAIT_FOR_COMPLETION to check the wait object on
9494 the outstanding RECEIVE_AND_WAIT.

9495 3. When data is received, the mapper needs to issue a non-blocking RECEIVE_AND_WAIT
9496 to replace the one that just completed.

9497 4. Issue a WAIT_FOR_COMPLETION, with time=0, to see if any other outstanding wait
9498 objects have been posted.

Networking Services, Issue 4 311

Mapping XTI to SNA Transport Provider SNA Transport Provider

9499 I.3.3 Full Duplex Mapping

9500 The following table shows the mapping from XTI function calls to full duplex LU 6.2 verbs.

9501 Table I-5 XTI Mapping to LU 6.2 Full Duplex Verbs

9502
9503 XTI Function SNA FDX LU6.2 verb Comments
9504 User data is not exchanged during
9505 connection establishment.

9506 Refer to Table I-7 on page 314.

t_accept() RECEIVE_AND_WAIT

9507 t_alloc() Local
9508 If qlen>0: RECEIVE_ALLOCATE
9509 for each connection request that
9510 can be queued.

9511 Optionally: DEFINE_TP

9512 With the instantiation model, the
9513 TP name (that is, XTI application
9514 name) must be known by the LU
9515 before the TP can be instantiated.
9516 This is prior to the t_bind being
9517 issued. (Refer to Figure I-3 on
9518 page 305.)

Refer to Table I-8 on page 315.t_bind()

9519 If connection still up issue
9520 DEALLOCATE TYPE(ABEND)

May be a delay if XTI_LINGER
option activated with non-zero

9521 linger value.

9522 Refer to Table I-9 on page 315.

t_close()

9523 ALLOCATE RETURN_CONTROL

9524 GET_ATTRIBUTES

9525 RECEIVE_AND_WAIT

Refer to Table I-10 on page 316.t_connect()

9526 t_error() Local
9527 t_free() Local
9528 t_getinfo() Local
9529 GET_TP_PROPERTIES to get
9530 OWN_FULLY_ QUALIFIED_LU_
9531 NAME and OWN_TP_NAME

9532 GET_ATTRIBUTES to get
9533 PARTNER_FULLY_
9534 QUALIFIED_LU_ NAME

The partner’s TP name must be
learned by some mechanism other
than XTI services. In
connectionless mode, there is no
partner name.

Refer to Table I-11 on page 318.

t_getprotaddr()

9535 t_getstate() Local
9536 Refer to Table I-12 on page 319.t_listen() WAIT_FOR_COMPLETION

9537 t_look() WAIT_FOR_COMPLETION
9538 t_open sets blocking mode (that is,
9539 blocking or non-blocking)

t_open() Local

9540 To get Mode name

9541 Refer to Table I-13 on page 319.

t_optmgmt() GET_ATTRIBUTES

312 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9542
9543 XTI Function SNA FDX LU6.2 verb Comments
9544 WAIT_FOR_COMPLETION

9545 RECEIVE_AND_WAIT

9546 [RECEIVE_EXPEDITED_DATA]

9547 WAIT_FOR_COMPLETION

Refer to Table I-14 on page 320.t_rcv()

9548 WAIT_FOR_COMPLETION

9549 GET_ATTRIBUTES

9550 RECEIVE_AND_WAIT

Refer to Figure I-2 on page 304.t_rcvconnect()

9551 Event caused by
9552 DEALLOCATE_ABEND_* or
9553 RESOURCE_FAILURE_* return
9554 code on any verb

t_rcvdis() Local

9555 Event caused by
9556 DEALLOCATE_NORMAL return
9557 code on RECEIVE_* verb

t_rcvrel() Local

9558 SEND_DATA (expedited data)

9559 [FLUSH]

9560 [SEND_EXPEDITED_DATA]

Every t_snd causes a SEND_DATA
to be issued - even if T_MORE set.
If T_MORE is set, the LL
continuation bit is set.

9561 A zero-length TSDU causes the
9562 following LL to be sent: hex 0002.
9563 This can be used to turn off the LL
9564 continuation set on the previous
9565 send.

9566 Refer to Table I-16 on page 322.

t_snd()

9567 DEALLOCATE
9568 TYPE(ABEND_PROG)

Takes down both directions of the
connection

9569 Refer to Table I-17 on page 323.

t_snddis()

9570 DEALLOCATE TYPE(FLUSH) Takes down send direction of
9571 conversation only.

9572 Refer to Table I-19 on page 323.

t_sndrel()

9573 SEND_DATA on datagram server
9574 conversation

Refer to Table I-19 on page 323.t_sndudata()

9575 t_strerror() local
9576 t_sync() Local
9577 t_unbind() Local

Networking Services, Issue 4 313

Mapping XTI to SNA Transport Provider SNA Transport Provider

9578 I.3.3.1 Parameter Mappings

9579 Table I-6 Relation Symbol Description

9580
9581 Relation Symbol Meaning
9582 Used Locally Value is used locally by XTI Mapper
9583 Created Locally XTI Mapper creates the value
9584 Only one value is acceptable in this field. It is an error condition if
9585 any other value is passed.

Constant

9586 <--- XTI Application parameter maps directly to FDX Verb parameter.
9587 ---> FDX Verb parameter maps directly to XTI Application parameter.

9588 Table I-7 t_accept <--> FDX Verbs and Parameters

9589
9590 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9591 t_accept RECEIVE_AND_WAIT
9592 Input
9593 fd Used Locally
9594 resfd ----> RESOURCE(variable)
9595 call-->addr.len Used Locally
9596 call-->addr.buf Used Locally
9597 call-->opt.len Used Locally
9598 call-->opt.buf Used Locally
9599 call-->udata.len Constant =0
9600 call-->udata.buf Constant =nullptr
9601 Created Locally LENGTH(variable)
9602 Created Locally FILL(addr of local bufr)
9603 Constant WAIT_OBJECT(BLOCKING)
9604 Output
9605 t_errno <---- RETURN_CODE(variable)

314 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9606 Table I-8 t_bind <--> FDX Verbs and Parameters

9607
9608 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9609 t_bind with qlen>0 RECEIVE_ALLOCATE
9610 Input
9611 fd Used Locally
9612 req-->addr.len Used Locally
9613 LOCAL_LU_NAME(variable)

9614 TP_NAME(variable)

req-->addr.buf <----

9615 >0, RECEIVE_ALLOCATE
9616 issued for each connect
9617 request that can be queued.

req-->qlen Used Locally

9618 ret-->addr.maxlen Used Locally
9619 RETURN_CONTROL
9620 (WHEN_ALLOCATE_RECEIVED)

Constant

9621 Constant SCOPE(ALL)
9622 Created Locally WAIT_OBJECT(BLOCKING)
9623 Output
9624 ret-->addr.len Created Locally
9625 LOCAL_LU_NAME(variable)

9626 TP_AL_LU_NAME(variable)

ret-->addr.buf ---->

9627 ret-->addr.qlen Created Locally
9628 Used Locally RESOURCE(variable)
9629 t_errno ----> RETURN_CODE(variable)

9630 Table I-9 t_close <--> FDX Verbs and Parameters

9631
9632 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9633 t_close

9634 If connection is still in
9635 T_DATAXFER state

DEALLOCATE

9636 Input
9637 fd ----> RESOURCE(variable)
9638 Constant TYPE(ABEND_PROG)
9639 Output
9640 t_errno <---- RETURN_CODE(variable)

Networking Services, Issue 4 315

Mapping XTI to SNA Transport Provider SNA Transport Provider

9641 Table I-10 t_connect <--> FDX Verbs and Parameters

9642
9643 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9644 t_connect ALLOCATE RETURN_CONTROL
9645 Input
9646 fd
9647 sndcall-->addr.len Used Locally
9648 sndcall-->addr.buf ----> LU_NAME(), TP_NAME()
9649 sndcall-->opt.len Used Locally
9650 sndcall-->opt.buf ----> MODE_NAME()
9651 sndcall-->udata.len Constant =0, user data not allowed
9652 sndcall-->udata.buf Constant =nullptr
9653 rcvcall-->addr.maxlen Used Locally
9654 rcvcall-->addr.buf Used Locally
9655 rcvcall-->opt.maxlen Constant =0, user data not allowed
9656 rcvcall-->opt.buf Used Locally
9657 rcvcall-->udata.maxlen Constant =0, user data not allowed
9658 rcvcall-->udata.buf Constant =nullptr
9659 Constant TYPE(FULL_DUPLEX_BASIC_CONV)
9660 RETURN_CODE
9661 (WHEN_SESSION_FREE)

9662 If platform does not support this
9663 tower (Tower 205), use
9664 (WHEN_SESSION_ALLOCATED).

Created Locally

9665 WAIT_OBJECT(BLOCKING) if
9666 blocking

9667 WAIT_OBJECT(VALUE(variable)) if
9668 non-blocking

Created Locally

9669 Output
9670 Used Locally RESOURCE(variable)
9671 t_errno <----
9672 t_connect GET_ATTRIBUTES
9673 Input
9674 fd Used Locally
9675 Created Locally RESOURCE(variable)
9676 Output
9677 PARTNER_FULLY_QUALIFIED_
9678 LU_NAME(variable)

rcvcall-->addr.len <----

9679 PARTNER_FULLY_QUALIFIED_
9680 LU_NAME(variable)

rcvcall-->addr.buf <-----

9681 rcvcall-->opt.len <---- MODE_NAME(variable)
9682 rcvcall-->opt.buf <---- MODE_NAME(variable)
9683 t_errno <---- RETURN_CODE(variable)
9684 t_connect RECEIVE_AND_WAIT
9685 Input

316 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9686
9687 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9688 fd Used Locally
9689 Created Locally RESOURCE(variable)
9690 Output
9691 Created Locally LENGTH(variable)
9692 Created Locally FILL(addr of local bufr)
9693 Constant WAIT_OBJECT(BLOCKING)

Networking Services, Issue 4 317

Mapping XTI to SNA Transport Provider SNA Transport Provider

9694 Table I-11 t_getprocaddr <--> FDX Verbs and Parameters

9695
9696 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9697 GET_ATTRIBUTES to get
9698 partner LU name

t_getprotaddr

9699 Input
9700 fd Used Locally
9701 Created Locally RESOURCE(variable)
9702 boundaddr-->maxlen Used Locally
9703 boundaddr-->addr.buf Used Locally
9704 peeraddr-->maxlen Used Locally
9705 peeraddr-->addr.buf Used Locally
9706 Output
9707 peeraddr-->addr.len Created Locally
9708 PARTNER_FULLY_QUALIFIED_
9709 LU_NAME(variable)

buf(peeraddr-->addr.buf) <----

9710 t_errno <---- RETURN_CODE(variable)
9711 GET_TP_PROPERTIES to
9712 get local TP name

t_getprotaddr

9713 Input
9714 fd Used Locally
9715 Created Locally RESOURCE(variable)
9716 Output
9717 boundaddr-->addr.len Created Locally
9718 OWN_FULLY_QUALIFIED_
9719 LU_NAME(variable)

9720 OWN_TP_NAME(variable)

buf(boundaddr-->addr.buf) <----

9721 t_errno <---- RETURN_CODE(variable)

318 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9722 Table I-12 t_listen <--> FDX Verbs and Parameters

9723
9724 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9725 t_listen WAIT_FOR_COMPLETION
9726 Input
9727 Created Locally WAIT_OBJECT_LIST(variable)
9728 Constant TIMEOUT(VALUE(variable=0))
9729 Output
9730 t_errno <---- RETURN_CODE(variable)
9731 Used Locally STATUS_LIST(variable)
9732 t_listen GET_ATTRIBUTES
9733 Input
9734 fd Used Locally
9735 Created Locally RESOURCE(variable)
9736 Output
9737 PARTNER_FULLY_QUALIFIED
9738 _LU_NAME(variable)

call-->addr.len <-----

9739 PARTNER_FULLY_QUALIFIED
9740 _LU_NAME(variable)

bufr&larrow.(call-->addr.buf) <----

9741 call-->opt.len <---- MODE_NAME(variable)
9742 bufr&larrow.(call-->opt.buf) <---- MODE_NAME(variable)

9743 Table I-13 t_optmgmt <--> FDX Verbs and Parameters

9744
9745 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9746 t_optmgmt GET_ATTRIBUTES
9747 Input
9748 fd Used Locally
9749 Created Locally RESOURCE(variable)
9750 req-->opt.maxlen Used Locally
9751 req-->opt.len Used Locally
9752 req-->opt.buf Used Locally
9753 req-->opt.flags Used Locally
9754 ret-->opt.maxlen Used Locally
9755 ret-->opt.buf Used Locally
9756 Output
9757 ret-->opt.len <---- MODE_NAME(variable)
9758 ret-->opt.buf <---- MODE_NAME(variable)
9759 ret-->flags Created Locally
9760 t_errno <---- RETURN_CODE(variable)

Networking Services, Issue 4 319

Mapping XTI to SNA Transport Provider SNA Transport Provider

9761 Table I-14 t_rcv <--> FDX Verbs and Parameters

9762
9763 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9764 t_rcv RECEIVE_AND_WAIT
9765 A RECEIVE_AND_WAIT has been issued prior to this t_rcv. The data received on this
9766 RECEIVE_AND_WAIT will be returned to the XTI application via the t_rcv.

9767 Before the return to the t_rcv, the mapper will issue another RECEIVE_AND_WAIT to
9768 post a receive for any incoming data.

9769 This is the
9770 RECEIVE_AND_WAIT that will
9771 be issued before the return to
9772 t_rcv.

Input

9773 fd Used Locally
9774 Created Locally RESOURCE(variable)
9775 nbytes Used Locally
9776 Created Locally LENGTH(variable)
9777 Created Locally FILL(XTI mapper buffer)
9778 Created Locally WAIT_OBJECT(VALUE(variable))
9779 t_rcv RECEIVE_AND_WAIT
9780 These are fields from the
9781 previously issued
9782 RECEIVE_AND_WAIT

Output

9783 buf <---- Data from FILL buffer
9784 Return Value for function <---- LENGTH(variable)
9785 flags

9786 • T_MORE

9787 • T_EXPEDITED=NO/YES

WHAT_RECEIVED(variable)

If there is expedited data to be
received, a
RECEIVE_EXPEDITED_DATA

9788 verb will be issued to receive it.

Created Locally

9789 t_errno <---- RETURN_CODE
9790 t_rcv WAIT_FOR_COMPLETION
9791 Input
9792 Created Locally WAIT_OBJECT_LIST(variable)
9793 Constant TIMEOUT(VALUE(variable=0))
9794 Output
9795 errno <---- RETURN_CODE(variable)
9796 T_LOOK Used Locally STATUS_LIST(variable)

320 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9797 Table I-15 t_rcvconnect <--> FDX Verbs and Parameters

9798
9799 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9800 t_rcvconnect GET_ATTRIBUTES
9801 Input
9802 fd Used Locally
9803 Created Locally RESOURCE(variable)
9804 Output
9805 PARTNER_FULLY_QUALIFIED_
9806 LU_NAME(variable)

call-->addr.len <----

9807 PARTNER_FULLY_QUALIFIED_
9808 LU_NAME(variable)

call-->addr.buf <----

9809 call-->opt.len <---- MODE_NAME(variable)
9810 call-->opt.buf <---- MODE_NAME(variable)
9811 t_errno <---- RETURN_CODE(variable)
9812 t_rcvconnect RECEIVE_AND_WAIT
9813 Input
9814 fd Used Locally
9815 Created Locally RESOURCE(variable)
9816 Created Locally LENGTH(variable)
9817 Created Locally FILL(addr of local bufr)
9818 Constant WAIT_OBJECT(VALUE(variable))
9819 t_rcvconnect WAIT_FOR_COMPLETION
9820 Input
9821 Created Locally WAIT_OBJECT_LIST(variable)
9822 Constant TIMEOUT(VALUE(variable=0))
9823 Output
9824 t_errno <---- RETURN_CODE(variable)
9825 T_LOOK Used Locally STATUS_LIST(variable)

Networking Services, Issue 4 321

Mapping XTI to SNA Transport Provider SNA Transport Provider

9826 Table I-16 t_snd <--> FDX Verbs and Parameters

9827
9828 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9829 t_snd() SEND_DATA
9830 Input
9831 fd Used Locally
9832 Created Locally RESOURCE(variable)
9833 buf ----> DATA(variable)
9834 nbytes ----> LENGTH(variable)
9835 flags

9836 • T_EXPEDITED=NO
9837 • T_MORE
9838 • T_FLUSH

----> LL continuation bit

9839 WAIT_OBJECT(BLOCKING) if
9840 blocking

9841 WAIT_OBJECT(VALUE(variable))
9842 if non-blocking

Created Locally

9843 Output
9844 (TLOOK) <---- EXPEDITED_DATA_RECEIVED
9845 t_errno <---- RETURN_CODE
9846 t_snd() SEND_EXPEDITED_DATA
9847 Input
9848 fd Used Locally
9849 Created Locally RESOURCE(variable)
9850 buf ----> DATA(variable)
9851 nbytes ----> LENGTH(variable)
9852 flags

9853 • T_EXPEDITED=YES
9854 • T_MORE
9855 • T_FLUSH

LL continuation bit

FLUSH Verb

---->

9856 WAIT_OBJECT(BLOCKING) if
9857 blocking

Created Locally

9858 WAIT_OBJECT(VALUE(variable))
9859 if non-blocking

9860 Output
9861 (TLOOK) <---- EXPEDITED_DATA_RECEIVED
9862 t_errno <---- RETURN_CODE

322 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9863 Table I-17 t_snddis (Existing Connection) <--> FDX Verbs and Parameters

9864
9865 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9866 t_snddis()

9867 For existing connection

DEALLOCATE

9868 Input
9869 fd Used Locally
9870 Created Locally RESOURCE(variable)
9871 call Constant =nullptr
9872 Constant TYPE(ABEND_PROG)
9873 Output
9874 t_errno <---- RETURN_CODE(variable)

9875 Table I-18 t_snddis (Incoming Connect Req.) <--> FDX Verbs and Parameters

9876
9877 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9878 t_snddis()

9879 To reject incoming connect
9880 request

DEALLOCATE

9881 Input
9882 call-->sequence Used Locally
9883 Output
9884 t_errno <---- RETURN_CODE(variable)

9885 Table I-19 t_sndrel <--> FDX Verbs and Parameters

9886
9887 XTI Function and Parameters <--Relation--> FDX Verb & Parameter
9888 t_sndrel() DEALLOCATE
9889 Input
9890 fd Used Locally
9891 Created Locally RESOURCE(variable)
9892 Created Locally TYPE(FLUSH)
9893 Output
9894 t_errno <---- RETURN_CODE(variable)

Networking Services, Issue 4 323

Mapping XTI to SNA Transport Provider SNA Transport Provider

9895 I.3.4 Half Duplex Mapping

9896 The interface to the SNA transport provider is the FDX LU 6.2 interface. If the SNA transport
9897 provider does not support FDX LU 6.2, the FDX verbs can be mapped to two half-duplex LU 6.2
9898 connections, one used to send in each direction. This gives the appearance of a full duplex
9899 connection without requiring any conversation direction turn-arounds on the half-duplex
9900 conversations.

9901 The mapping of FDX LU 6.2 verbs to two half-duplex connections is described in FDX Kit.

324 X/Open CAE Specification (1994) (Draft March 15, 1995)

SNA Transport Provider Mapping XTI to SNA Transport Provider

9902 I.3.5 Return Code to Event Mapping

9903 The following table Table I-20 shows how the return codes on LU 6.2 verbs are mapped to XTI
9904 events.

9905 Any return code for which there no mapping given in this table will create a disconnect.

9906 Table I-20 Mapping of XTI Events to SNA Events

9907
9908 XTI Event Full Duplex SNA Event
9909 T_CONNECT ALLOCATE completes with RETURN_CODE=OK
9910 RECEIVE_AND_WAIT completes with OK return code and
9911 WHAT_RECEIVED =

9912 • DATA_COMPLETE
9913 • DATA_INCOMPLETE

T_DATA

9914 One of the following has occurred:

9915 SEND_DATA issued with RETURN_CODE =
9916 ERROR_INDICATION with subcode from list below:

9917 • ALLOCATION_ERROR
9918 • DEALLOCATE_ABEND_PROG
9919 • DEALLOCATE_ABEND_SVC
9920 • DEALLOCATE_ABEND_TIMER
9921 • RESOURCE_FAILURE_NO_RETRY
9922 • RESOURCE_FAILURE_RETRY

9923 Any other verb issued with RETURN_CODE of

9924 • ALLOCATION_ERROR
9925 • DEALLOCATE_ABEND_PROG
9926 • DEALLOCATE_ABEND_SVC
9927 • DEALLOCATE_ABEND_TIMER
9928 • RESOURCE_FAILURE_NO_RETRY
9929 • RESOURCE_FAILURE_RETRY

T_DISCONNECT

9930 T_EXDATA RECEIVE_EXPEDITED_DATA completes with OK return code
9931 Flow control restrictions on normal data flow that lead to a
9932 [TFLOW] error have been lifted. Normal data may be sent
9933 again.

T_GODATA

9934 Flow control restrictions on expedited data flow that lead to a
9935 [TFLOW] error have been lifted. Expedited data may be sent
9936 again.

T_GOEXDATA

9937 When the partner program is instantiated when the
9938 connection request arrives (the typical LU 6.2 model), this
9939 event is posted as soon as the program issues the t_listen()
9940 function call.

9941 When the partner program already exists, this event is posted
9942 when the connection request arrives and is matched with the
9943 program.

T_LISTEN

9944 Set when a RECEIVE_* verb completes with RETURN_CODE
9945 = DEALLOCATE_NORMAL.

T_ORDREL

Networking Services, Issue 4 325

XTI SNA CR SNA Transport Provider

9946 I.4 XTI SNA CR
9947 Reference is made in this Appendix (see item 7 in Section I.2.1 on page 294, and the description
9948 for snd() in Section I.2.4 on page 298) to a T_PUSH flag on the t_snd() function. The change
9949 request below proposes extending the functionality of the X/Open Transport Interface, to add
9950 this T_PUSH flag. It is intended that this change proposal will be decided along with other
9951 proposals to extend XTI functionality, in the near future.

9952 For convenience, a copy of this CR, numbered 20-02 for the purposes of this publication, is
9953 included in this Appendix. If accepted, this CR will be removed from this Appendix when the
9954 extended functionality it proposes is incorporated into the XTI snd() function description in
9955 t_snd() on page 93.

9956 Document: X/Open Transport Interface (XTI), CAE Specification, Version 2

9957 Change Number: 20-02

9958 Title: T_PUSH flag needed on t_snd().

9959 Qualifier: Major Technical

9960 Rationale: In the XTI Appendix I, SNA Transport Provider, reference
9961 is made to a T_PUSH flag on the XTI t_snd() function.
9962 This CR proposes change to add the T_PUSH flag to the
9963 t_snd() function.

9964 Change: Add the following text to the description of the flags
9965 on the t_snd() definition.
9966 This will be the third flag on the t_snd() function
9967 description in the XTI specification.

9968 T_PUSH If set in flags, the transport provider
9969 will flush all data that is currently
9970 in its send buffers. If not set in flags,
9971 the transport provider is free to collect
9972 data in a send buffer until it accumulates
9973 a sufficient amount for transmission.

326 X/Open CAE Specification (1994) (Draft March 15, 1995)

9974

Appendix J

The Internet Protocols

9975 The Internet Protocol (IP) family is a collection of protocols designed for use in the Internet and
9976 using the Internet address format. The Internet family provides protocol support for the
9977 SOCK_STREAM and SOCK_DGRAM socket types.

9978 Internet addresses are 4-byte quantities, stored in network byte order (on ‘‘little-endian’’
9979 machines, these are word and byte reversed). The <netinet/in.h> header defines this address as
9980 a discriminated union.

9981 The address INADDR_ANY can be given in a bind() call on a socket that uses the TCP or UDP
9982 protocol. For TCP, this lets the socket accept connections targeted at any of the host’s IP
9983 addresses. For UDP, it lets the socket accept packets addressed to any of the host’s IP addresses.
9984 The address INADDR_BROADCAST is the IP broadcast address. If INADDR_BROADCAST is
9985 used in a sendto() call on a UDP socket, and the host has one or more network interfaces that
9986 support the broadcast feature, a broadcast packet will be sent via one or more of those interfaces.

9987 The Internet protocol family includes the following protocols:

9988 • the IP transport protocol

9989 • the Internet Control Message Protocol (ICMP)

9990 • the Transmission Control Protocol (TCP)

9991 • the User Datagram Protocol (UDP).

9992 TCP is used to support the SOCK_STREAM abstraction while UDP is used to support the
9993 SOCK_DGRAM abstraction.

9994 The 32-bit Internet address contains both network and host parts. It is frequency-encoded; the
9995 most-significant bit is clear in Class A addresses, in which the high-order 8 bits are the network
9996 number. Class B addresses use the high-order 16 bits as the network field, and Class C
9997 addresses have a 24-bit network part. Sites with a cluster of local networks and a connection to
9998 the Internet may choose to use a single network number for cluster; this is done by using subnet
9999 addressing. The local (host) portion of the address is further subdivided into subnet and host
10000 parts. Within a subnet, each subnet appears to be an individual network; externally, the entire
10001 cluster appears to be a single, uniform network requiring only a single routing entry.

Networking Services, Issue 4 327

The Internet Protocols

328 X/Open CAE Specification (1994) (Draft March 15, 1995)

10002
Glossary

10003 abortive release
10004 An abrupt termination of a transport connection, which may result in the loss of data.

10005 asynchronous mode
10006 The mode of execution in which transport service functions do not wait for specific
10007 asynchronous events to occur before returning control to the user, but instead return
10008 immediately if the event is not pending.

10009 connection establishment
10010 The phase in connection mode that enables two transport users to create a transport connection
10011 between them.

10012 connection mode
10013 A mode of transfer where a logical link is established between two endpoints. Data is passed
10014 over this link by a sequenced and reliable way.

10015 connectionless mode
10016 A mode of transfer where different units of data are passed through the network without any
10017 relationship between them.

10018 connection release
10019 The phase in connection mode that terminates a previously established transport connection
10020 between two users.

10021 datagram
10022 A unit of data transferred between two users of the connectionless-mode service.

10023 data transfer
10024 The phase in connection mode or connectionless mode that supports the transfer of data
10025 between two transport users.

10026 expedited data
10027 Data that are considered urgent. The specific semantics of expedited data are defined by the
10028 transport provider that provides the transport service.

10029 expedited transport service data unit
10030 The amount of expedited user data, the identity of which is preserved from one end of a
10031 transport connection to the other (that is, an expedited message).

10032 host byte order
10033 UX The implementation-dependent byte order supported by the local host machine (see network
10034 byte order). Functions are provided to convert 16 and 32-bit values between network and host
10035 byte order (see htonl()).

10036 initiator
10037 An entity that initiates a connect request.

10038 network byte order
10039 UX The byte order in which the most significant byte of a multibyte integer value is transmitted first.
10040 This byte order is the standard byte order for Internet protocols.

10041 network host database
10042 UX A database whose entries define the names and network addresses of host machines. See
10043 gethostent().

Networking Services, Issue 4 329

Glossary

10044 network net database
10045 UX A database whose entries define the names and network numbers of networks. See getnetent().

10046 network protocol database
10047 UX A database whose entries define the names and protocol numbers of protocols. See
10048 getprotoent().

10049 network service database
10050 UX A database whose entries define the names and local port numbers of services. See getservent().

10051 orderly release
10052 A procedure for gracefully terminating a transport connection with no loss of data.

10053 responder
10054 An entity with whom an initiator wishes to establish a transport connection.

10055 socket
10056 UX A communications endpoint associated with a file descriptor that provides communications
10057 services using a specified communications protocol.

10058 synchronous mode
10059 The mode of execution in which transport service functions wait for specific asynchronous
10060 events to occur before returning control to the user.

10061 transport address
10062 The identifier used to differentiate and locate specific transport endpoints in a network.

10063 transport connection
10064 The communication circuit that is established between two transport users in connection mode.

10065 transport endpoint
10066 The communication path, which is identified by a file descriptor, between a transport user and a
10067 specific transport provider. A transport endpoint is called passive before, and active after, a
10068 relationship is established, with a specific instance of this transport provider, identified by the
10069 TSAP.

10070 transport provider identifier
10071 A character string used by the function to identify the transport service provider.

10072 transport service access point
10073 A TSAP is a uniquely identified instance of the transport provider. A TSAP is used to identify a
10074 transport user on a certain endsystem. In connection mode, a single TSAP may have more than
10075 one connection established to one or more remote TSAPs; each individual connection then is
10076 identified by a transport endpoint at each end.

10077 transport service data unit
10078 A unit of data transferred across the transport service with boundaries and content preserved
10079 unchanged. A TSDU may be divided into sub-units passed between the user and XTI. The
10080 T_MORE flag is set in all but the last fragment of a TSDU sequence constituting a TSDU. The
10081 T_MORE flag implies nothing about how the data is handled and passed to the lower level by
10082 the transport provider, and how they are delivered to the remote user.

10083 transport service provider
10084 A transport protocol providing the service of the transport layer.

10085 transport service user
10086 An abstract representation of the totality of those entities within a single system that make use
10087 of the transport service.

330 X/Open CAE Specification (1994) (Draft March 15, 1995)

Glossary

10088 user application
10089 The set of user programs, implemented as one or more process(es) in terms of UNIX semantics,
10090 written to realise a task, consisting of a set of user required functions.

Networking Services, Issue 4 331

Glossary

332 X/Open CAE Specification (1994) (Draft March 15, 1995)

Index

<arpa/inet.h>..184
<fcntl.h> ...154
<netdb.h>...185
<netinet/in.h>...187
<sys/socket.h>..155
<sys/stat.h>...158
<sys/un.h>...159
<unistd.h>..188
<xti.h>...47, 69, 253
_XOPEN_SOURCE...5
abortive release...22, 96, 329
accept ..196
accept()...107
accept1 ..29, 33
accept2 ..29, 33
accept3 ..29, 33
address2, 17-19, 23, 25, 49, 53-55, 57-60, 63, 66, 69, 73-74, 89-90, 99-100, 189
address Class ...327
application ...11-14, 211, 252
applications..47

portability ..211, 251
applications portability...................................11, 252
association-related ...194
association-related options.....................................35
asynchronous ..34, 71
asynchronous events ...14
asynchronous mode14, 84, 329
bind.......................................11, 25, 29, 32, 53, 55, 104
bind() ..109
broadcast ..327
buffer...51, 61, 82
byte order of Internet address..............................327
C language

Issue 4 environment...3
Call structure ...257
caller..25, 58, 69
can..1
character string..11
checksum check ..202
child process ..12
CL...265
Class of address ..327
close ...25, 32-33, 56
close() ...111
closed...29, 32-33
cluster of local networks327

cmsghdr..155
CO..265
Common Usage C...3
compatibility

future...52
compilation environment ...4
connect indication31, 53-54, 69, 86
connect request.......................................48, 69, 84, 96
connect() ..112
connect1..29, 33
connect2..29, 33
connection11, 57, 82, 84, 96, 98
connection establishment17, 19, 57-58, 84, 199, 207, 329
connection mode13, 17, 19, 25, 33, 190, 205, 207-208, 329
connection mode service...33
connection release..............................17, 22, 207, 329
connection-oriented25, 207-208
connection-oriented mode17, 205
connectionless...25, 198, 210
connectionless mode13, 23, 25, 32, 89, 91, 99, 194, 210, 329
constants...47
control message protocol......................................327
create

transport endpoint ...18
current event ...27, 32, 71
current state12, 27, 32, 68, 102
data ...82, 86, 89, 93, 96, 99
data transfer17, 20, 23, 32-33, 207, 329
data unit ...21, 23, 89, 99

discarded..24
datagram..13, 23, 329
datagram structure...258
de-initialisation17-18, 23, 32
default...73, 211
device ..211
device driver..252
discarded data unit...24
disconnect..15, 17, 34, 86

indication ...29
request ..96

disconnect structure...257
dup ...11-12, 102-103
duplex ...20
EBADF

in recvmsg() ..133
EINVAL ..51

Networking Services, Issue 4 333

Index

EM ...212, 265
endhostent() ..162
endnetent() ..164
endprotoent()..165
endservent() ..166
enqueue ..19, 25
errmsg ...60
errno ..60
errnum ..101
error...254
error code ...91, 101
error codes..253

TACCES..253
TADDRBUSY...253
TBADADDR..253
TBADDATA...253
TBADF..253
TBADFLAG ...253
TBADNAME ...253
TBADOPT..253
TBADQLEN...253
TBADSEQ ..253
TBUFOVFLW ..253
TFLOW ...253
TINDOUT ..253
TLOOK ...253
TNOADDR ..253
TNODATA...253
TNODIS..253
TNOREL...253
TNOSTRUCTYPE ..253
TNOTSUPPORT...253
TNOUDERR ..253
TOUTSTATE..253
TPROTO...253
TPROVMISMATCH ..253
TQFULL ...253
TRESADDR ...253
TRESQLEN..253
TSTATECHNG..253
TSYSERR ..253

error handling..13
error indication..91
error message ..60, 101
error number ...13, 101
error numbers..7
established

connection..208
ETSDU21, 73-74, 82, 93-95, 265
event..27, 32, 210

current ..27, 32, 71

event management ...16
Event Management ..212
events..213, 254

accept1 ..29, 33
accept2 ..29, 33
accept3 ..29, 33
bind ...29, 32
closed...29, 32-33
connect1 ...29, 33
connect2 ...29, 33
incoming...30
listen..30, 33, 69
opened ..29, 32
optmgmt...29, 32
outgoing ...29
pass_conn...30, 33
rcv..30, 33, 82
rcvconnect..30, 33
rcvdis1 ..30, 33
rcvdis2 ..30, 33
rcvdis3 ..30, 33
rcvrel ...30, 33
rcvudata ...30, 32
rcvuderr..30, 32
snd ...29, 33
snddis1..29, 33
snddis2..29, 33
sndrel ..29, 33
sndudata...29, 32
T_CONNECT ..254
T_DATA..254
T_DISCONNECT ...254
T_EXDATA ..254
T_GODATA ...254
T_GOEXDATA..254
T_LISTEN...254
T_ORDREL ..254
T_UDERR...254
unbind...29, 32

events and t_look..15
example ..218, 230
exceptfds ..229
exec ..102-103
execution mode...14, 21
expedited data17, 20-21, 74, 82, 93, 190, 198-199, 217, 229, 261, 329
expedited transport service data unit329

ETSDU ..74, 82
family of protocols ...327
fcntl11, 14, 58, 69-70, 82-84, 89-90, 93, 99-100
fcntl() ..115
fcntl.h...73

334 X/Open CAE Specification (1994)

Index

fd ..11, 29
features ...25
fgetpos() ...116
file descriptor11, 56, 63, 73, 102, 217, 229
file.c..47
flag...73, 76, 82
flags ..73, 76, 82, 198, 254, 256

T_CHECK ..254
T_CURRENT...254
T_DEFAULT ..254
T_EXPEDITED..254
T_FAILURE ...254
T_MORE...254
T_NEGOTIATE...254
T_NOTSUPPORT...254
T_PARTSUCCESS..254
T_READONLY..254
T_SUCCESS...254

flow control..24
fork ...11-12, 102-103
fsetpos() ...117
ftell() ...118
full duplex ..20
F_GETOWN ..115, 154
F_SETOWN ...115, 154
General purpose defines259
gethostbyaddr() ...162, 168
gethostbyname() ..162
gethostent() ...162
gethostname()...169
getnetbyaddr()..164, 170
getnetbyname() ..164
getnetent() ...164
getpeername()...119
getprotobyname() ..165
getprotobynumber()165, 171
getprotoent() ...165
getservbyname() ..166
getservbyport() ..166, 172
getservent() ...166
getsockname() ..120
getsockopt() ..121
headers

<xti.h>...253
host byte order ..329
host part of address..327
hostent ..185
htonl() ...174
htons() ..174
h_errno..173
h_errno() ..162

ICMP ...327
implementation-dependent......................................1
INADDR_ANY...187, 327
INADDR_BROADCAST.......................................187
incoming events..30
inet_addr()...175
INET_IP ..263
inet_lnaof() ..175
inet_makeaddr()...175
inet_netof() ..175
inet_network() ..175
inet_ntoa() ...175
initialisation.......................................17-18, 23, 32, 73
initiator ...17, 329
interfaces

implementation...2
use..2

Internet address
byte order...327

Internet Protocol family ..327
Internet protocol family ..327
Internet protocol-specific information...............199
in_addr ...184, 187
in_addr_t...184-185
in_port_t ...184-185, 187
IP transport protocol..327
IP-level options ...202
IP-level Options ..263
IPPORT_RESERVED ...185
IPPROTO_ macros

defined in <netinet/in.h>.................................187
IP_BROADCAST..202, 263
IP_DONTROUTE...202, 263
IP_OPTIONS ...202, 263
IP_REUSEADDR..203, 263
IP_TOS..203, 263
IP_TOS type of service ..263
IP_TTL ..204, 263
ISO...189, 260, 265

priorities ...260
protection levels ...260
transport classes ...260

ISO C ...3
ISO_TP ..261
language-dependent ..60
library functions..254
library structure ..51
linger ...156
listen..54, 69, 196
listen()...123
listener application...12

Networking Services, Issue 4 335

Index

little-endian..327
lseek() ...124
management options.............................192, 195, 262
mandatory features ..211
maximum size

address..63, 74
address buffer..53, 66
buffer ..58, 69, 84, 89, 91
ETSDU..64, 74, 95
TSDU..21, 63, 74, 95, 206

may ..1
memory

allocate..51, 61
mode

asynchronous ..14
connection-oriented17, 19, 25, 33, 190, 205, 207-208
connectionless23, 25, 32, 89, 91, 99, 194, 210
record-oriented ...21
stream-oriented...21
synchronous ..14, 71

modes of service ...13
msghdr..155
MSG_ macros

defined in <sys/socket.h>156
multiple options..41
must ...1
name space

X/Open...5
netbuf structure ..36, 51, 76
netent...185
network byte order...329
network host database ..329
network net database...330
network protocol database...................................330
network service database330
next state...32
NEXTHDR ...259
ntohl()...174, 177
ntohs() ..174
NULL...53
null

call..96
null pointer51-53, 58, 60-61, 75, 84, 86, 91
obsolescent ...1
ocnt ..29
open...73
opened ..29, 32
option

buffer ...36
value..42

option management ...259

option negotiation
initiate ...38
response..39

option values ...190
options

association-related ...35
connection mode ..190
connectionless mode ...194
expedited data...190
format..45
generalities...35
illegal...37
IP-level..202
ISO-specific ..260-261
management..192
multiple ..41
privileged ...41
quality of service ..190
read-only ..41
retrieving information...40
TCP-level..200
transport endpoint ...76
transport level ...9
transport provider..58
UDP-level...201
unsupported..38

Options management structure257
optmgmt...25, 29, 32
orderly release22, 88, 98, 199, 330
OSI ...265

transport classes ...197
outgoing events...29
outstanding connect indications...............31, 54, 86
O_NONBLOCK flag ..14
pass_conn...30, 33
permissions..207
poll ...71
poll() ...125, 215
POLLIN ..217
polling ...15
POLLOUT ..217
POLLPRI...217
POLLRDBAND...217
POLLRDNORM..217
POLLWRBAND..217
portability...46
portable11, 25, 211, 217, 229, 251
precedence levels

IP ..263
primitives..14-15
process ..12

336 X/Open CAE Specification (1994)

Index

program ..47
programs

multiple protocol..211
protocol11, 26, 35, 53-54, 57, 63, 66, 73, 76, 91, 189, 211
protocol independence64, 74, 211
protocol-specific servicelimits256
protocols in Internet family..................................327
protoent ..185
PUSH flag...199
quality of service190, 194, 261
queue...19, 25, 70
rate ...190
rate structure ...260
rcv ..30, 33
rcvconnect ..30, 33
rcvdis1...30, 33
rcvdis2...30, 33
rcvdis3...30, 33
rcvrel ...30, 33
rcvudata..30
rcvuderr ..30
read() ..126
readfds ..229
readv() ..126
reason

disconnect ..86
receipt..88
receive...82, 89
Receiving Data ..20, 23
record-oriented..21
recv()...127
recvfrom()..129
recvmsg() ...132
release...17, 22, 33, 88, 96, 98
reliable...13
remote user.................16, 19, 22, 56, 58, 96, 208, 210
reqvalue..190, 261
reqvalue structure ..261
resfd...29
responder ...17, 330
sa_family_t...155
select() ..135, 227
send() ..136
Sending Data ...21, 24
sendmsg() ..138
sendto() ..141
servent...185
server program ...217, 229
service definition

ISO...22, 189, 196
TCP..22

service type defines..256
sethostent() ...162, 178
setnetent()..164, 179
setprotoent() ...165, 180
setservent()..166, 181
setsockopt() ...144
should..1
shutdown()..146
snd ...29, 33-34, 189
snddis1..29, 33
snddis2..29, 33
sndrel...29, 33-34
sndudata ..29, 32, 34, 189
sockaddr ...155
sockaddr_in ...187
sockaddr_un ..159
socket ..205-206, 330
socket() ...147
socketpair()..149
SOCK_DGRAM ..327
SOCK_RAW...327
SOCK_STREAM ...327
SO_ macros

defined in <sys/socket.h>156
standard error..60
state ...27-28, 32, 259

current..27, 32, 68, 102
next ..32
T_DATAXFER ...28, 259
T_IDLE ...28, 259
T_INCON ..28, 259
T_INREL ..28, 259
T_OUTCON ..28, 259
T_OUTREL ..28, 259
T_UNBIND..28
T_UNBND ...259
T_UNIT...28

state table..32-33, 210
status

connect request...20, 84
connection..58

stream-oriented...21
strerror(3C) ..60
struct netbuf...256
struct rate ...260
struct reqvalue ..261
struct thrpt ...261
struct transdel..261
struct t_bind...257
struct t_call...257
struct t_discon...257

Networking Services, Issue 4 337

Index

struct t_info..256
struct t_kpalive ...262
struct t_linger ..260
struct t_opthdr ..257
struct t_optmgmt..257
struct t_uderr...258
struct t_unitdata ...258
structure types ..258

T_BIND...258
T_CALL..258
T_DIS ..258
T_INFO...258
T_OPTMGMT ...258
T_UDERROR...258
T_UNITDATA...258

subnet part of address ...327
SVID ..265
synchronise ..102
synchronous mode.....................................14, 71, 330
t-opthdr...190
TACCES..253
TADDRBUSY...253
TBADADDR ..253
TBADDATA ...253
TBADF ..253
TBADFLAG ...253
TBADNAME..253
TBADOPT ..253
TBADQLEN...253
TBADSEQ...253
TBUFOVFLW ..253
TC...265
TCL_CHECKSUM..262
TCL_PRIORITY ..261
TCL_PROTECTION ..261
TCL_RESERRORRATE..261
TCL_TRANSDEL ...261
TCO_ACKTIME..262
TCO_ALTCLASS1..262
TCO_ALTCLASS2..262
TCO_ALTCLASS3..262
TCO_ALTCLASS4..262
TCO_CHECKSUM...262
TCO_CLASS ..262
TCO_CONNRESIL ..261
TCO_ESTDELAY..261
TCO_ESTFAILPROB ...261
TCO_EXPD ..261
TCO_EXTFORM ...262
TCO_FLOWCTRL ..262
TCO_LTPDU ...262

TCO_NETEXP...262
TCO_NETRECPTCF ..262
TCO_PRIORITY..261
TCO_PROTECTION..261
TCO_REASTIME ..262
TCO_RELDELAY..261
TCO_RELFAILPROB...261
TCO_RESERRORRATE...261
TCO_THROUGHPUT...261
TCO_TRANSDEL...261
TCO_TRANSFFAILPROB....................................261
TCP...22, 199, 205, 265, 327
TCP-level options...200, 262
TCP_KEEPALIVE...200, 262
TCP_MAXSEG..201, 262
TCP_NODELAY...201, 262
terminated

connection..208
terminology..1
TFLOW...24, 213, 253
thrpt...190, 261
thrpt structure ...261
TINDOUT ..253
TLI..251-252, 265
TLOOK...15, 21, 34, 253
TNOADDR ..253
TNODATA ...253
TNODIS..253
TNOREL...253
TNOSTRUCTYPE...253
TNOTSUPPORT ...253
TNOUDERR ..253
TOS precedence levels...263
TOUTSTATE..253
TPDU lengths ..260
TPROTO ...253
TPROVMISMATCH...253
TQFULL..253
transdel ...190
transdel structure ...261
Transmission Control Protocol327
transport address11, 189, 330
transport classes ...197, 260
transport connection...............11, 19, 56, 63, 98, 330
transport endpoint11, 28-29, 42, 53, 55-57, 71, 73, 75-76, 102, 104, 330
Transport Level Interface (TLI)....................251-252
transport level options...9
transport provider11, 17, 27-28, 32, 36, 58, 63, 73, 102, 189, 207, 256
transport provider identifier..............11, 17, 73, 330
transport service...9, 189, 207
transport service access point..............................330

338 X/Open CAE Specification (1994)

Index

TSAP..12
transport service data unit....................................330

TSDU ..16, 74, 82, 211
transport service provider....................................330
transport service user11, 17, 19, 22, 27-28, 57, 207, 330
transport user actions ..31
TRESADDR..253
TRESQLEN ..253
TSAP ...12, 265
TSDU 16, 20, 73-74, 82, 93-95, 99, 189, 198-199, 265
TSTATECHNG ..253
TSYSERR..13, 21, 60, 253
T_ABSREQ...259
t_accept................................25, 48, 196, 199, 205, 254
t_accept() ...48
T_ACTIVEPROTECT ..260
T_ADDR...258
T_ALIGN..259
T_ALL ...258
t_alloc ...25, 51, 61, 254, 258
t_alloc()...51
T_ALLOPT...259
t_bind.............................11, 25, 53, 104, 196, 205, 254
T_BIND...258
t_bind()...53
t_call ..48
T_CALL ..258
T_CHECK ..254
T_CLASS0 ..260
T_CLASS1 ..260
T_CLASS2 ..260
T_CLASS3 ..260
T_CLASS4 ..260
t_close...25, 56, 207, 254
t_close() ..56
T_CLTS ...256
T_CONNECT ..15
t_connect ..15
T_CONNECT ..16
t_connect25, 57, 84, 196, 205
T_CONNECT..213, 254
t_connect ..254
t_connect()...40, 57
T_COTS ..256
T_COTS_ORD ...256
T_CRITIC_ECP ...263
T_CURRENT ...254
T_DATA..............................15-16, 23, 33-34, 213, 254
T_DATAXFER ...28, 33, 259
T_DEFAULT ..254
T_DIS ..15, 34, 258

T_DISCONNECT...................15-16, 21, 34, 213, 254
t_errno ..13, 101, 254
t_error...13, 25, 60, 101, 254
t_error() ..60
T_EXDATA15-16, 205, 213, 254
T_EXPEDITED..21, 82, 254
T_FAILURE..254
T_FLASH..263
t_free ...25, 61, 254
t_free() ..61
t_getinfo ...25, 63, 196, 255
t_getinfo() ..63
t_getprotaddr ..25, 66, 254
t_getprotaddr() ...66
t_getstate ..25, 68, 255
t_getstate()...68
T_GODATA15-16, 23, 213, 254
T_GOEXDATA....................................15-16, 213, 254
T_HIREL...263
T_HITHRPT...263
T_IDLE..28, 32-33, 57, 259
T_IMMEDIATE ...263
T_INCON ..28, 33, 259
T_INETCONTROL ..263
T_INFINITE...259
T_INFO...258
T_INREL ..28, 33, 259
T_INVALID..259
t_kpalive ...262
T_LDELAY ...263
T_LISTEN...15
t_listen...15
T_LISTEN...16
t_listen...25
T_LISTEN...34
t_listen..34, 69, 197, 199, 205
T_LISTEN ..213, 254
t_listen...255
t_listen() ...40, 69
t_look..15, 25, 71, 205, 255
t_look() ...71
T_LTPDUDFLT ...260
T_MORE ..21, 82, 93, 254
T_MORE flag...199
T_NEGOTIATE...254
T_NETCONTROL ..263
T_NO...259
T_NOPROTECT ...260
T_NOTOS...263
T_NOTSUPPORT ...254
T_NULL..259

Networking Services, Issue 4 339

Index

t_open11, 25, 73, 197, 205, 255
t_open() ..73
T_OPT ...258
t_optmgmt ...25, 76, 255
T_OPTMGMT ...258
t_optmgmt()..41, 76
T_ORDREL....................................15-16, 34, 213, 254
T_OUTCON ..28, 33, 259
T_OUTREL ..28, 33, 259
T_OVERRIDEFLASH ..263
T_PARTSUCCESS ..254
T_PASSIVEPROTECT ...260
T_PRIDFLT ..260
T_PRIHIGH ...260
T_PRILOW...260
T_PRIMID ..260
T_PRIORITY..263
T_PRITOP ..260
t_rcv15, 25, 34, 82, 198, 206, 255
t_rcv() ...82
t_rcvconnect..................................25, 34, 84, 198, 206
t_rcvconnect()...40, 84
t_rcvdis15, 25, 86, 198, 206, 255
t_rcvdis()..86
t_rcvrel ...15, 34, 88, 199, 255
t_rcvrel()...88
t_rcvudata25, 34, 89, 198, 255
t_rcvudata()...40, 89
t_rcvuderr......................................15, 25, 91, 198, 255
t_rcvuderr() ...40, 91
T_READONLY..254
T_ROUTINE ..263
T_SENDZERO...256
t_snd.......................................15, 25, 93, 198, 206, 255
t_snd()...93
t_snddis25, 96, 198, 206, 255
t_snddis() ...96
t_sndrel...98, 199, 255
t_sndrel()..98
t_sndudata25, 99, 198, 206, 255
t_sndudata() ..99
t_strerror ..25, 101, 255
t_strerror() ...101
T_SUCCESS ...254
t_sync..12, 25, 102, 255
t_sync()...102
T_UDATA...258
T_UDERR15-16, 23, 34, 213, 254
T_UDERROR...258
t_unbind ...25
T_UNBIND ..28

t_unbind...104, 255
t_unbind()..104
T_UNBND..32-33, 259
T_UNIT...28
T_UNITDATA ...258
T_UNSPEC ..44, 259
T_UNUSED..259
T_YES..259
UDP...199, 265, 327
UDP-level options..201, 262
UDP_CHECKSUM...202, 263
unbind ..25, 29, 32, 34
undefined..1
unitdata ..89, 99
Unitdata error structure ..258
UNIX

process ..12
versions ..251

unspecified...1
user application ..17, 23, 331
user data ...86
User Datagram Protocol..327
UX..................................2, 214, 226, 254-255, 329-330

in <arpa/inet.h>...184
in <fcntl.h>...154
in <netdb.h> ..185
in <netinet/in.h>..187
in <sys/socket.h> ...155
in <sys/stat.h> ..158
in <sys/un.h>..159
in accept() ..107
in bind() ...109
in close()...111
in connect()..112
in endhostent() ...162
in endnetent() ...164
in endprotoent() ...165
in endservent() ...166
in fcntl()..115
in fgetpos() ..116
in fsetpos()...117
in ftell()...118
in gethostbyaddr() ...168
in gethostname() ..169
in getnetbyaddr() ...170
in getpeername()..119
in getprotobynumber()171
in getservbyport() ..172
in getsockname()..120
in getsockopt()..121
in htonl() ..174

340 X/Open CAE Specification (1994)

Index

in h_errno...173
in inet_addr() ..175
in listen()..123
in lseek()...124
in ntohl() ..177
in poll()...125
in read()..126
in recv() ..127
in recvfrom()...129
in recvmsg() ..132
in select()..135
in send() ...136
in sendmsg() ...138
in sendto() ...141
in sethostent() ...178
in setnetent() ...179
in setprotoent()...180
in setservent() ...181
in setsockopt() ..144
in shutdown() ...146
in socket() ..147
in socketpair()...149
in write() ..151

warning
UX ..2

will ...2
write() ...151
writefds...229
writev()...151
X/Open name space ..5
XEM...265
XTI ...9, 265

applications ...47
features ...25
library..47

XTI error return...254
XTI-level options ..79, 259
XTI_DEBUG...259
XTI_GENERIC ..259
XTI_LINGER ...259
XTI_RCVBUF ..259
XTI_RCVLOWAT ...259
XTI_SNDBUF ..259
XTI_SNTLOWAT..260
Zero-length TSDUs and TSDU fragments64, 74, 93-94, 189, 198

Networking Services, Issue 4 341

Index

342 X/Open CAE Specification (1994)

	c438cov.pdf
	Page 1

	blank.pdf
	Page 1

