In case double factorial is not allowed (the provide solution uses it for 27 numbers), here is my suggestion how to replace them
based on the given rules:
$ 21 = 4!! - 1 + 6 + 8 = 4! + 6 - 8 - 1 $
$ 29 = (1 + 4)!! + 6 + 8 = 61 - 4 \times 8 $
$ 32 = (6 - 1) \times 8 - 4!! = 4 \times 6 + 8 \times 1 $
$ 35 = 6!! - (4 + 8) - 1 = 6 \times (8- \sqrt{4}) - 1 $
$ 41 = 6 \times 8 - 4!! + 1 = 48 -6 - 1 $
$ 47 = (6 - 1)!! + 4 \times 8 = - (1^4 - 6 \times 8) $
$ 59 = 4 - 1 + 8 + 6!! = 61 - \frac{8}{4} $
$ 61 = 1 + 4 + 8 + 6!! = \frac{6!}{8+4} + 1 $
$ 62 = (1 + 8) \times 6 + 4!! = 14 + 6 \times 8 $
$ 63 = (1 + 4)!! + 6 \times 8 = 8 \times (6 + \sqrt{4}) - 1 $
$ 67 = \sqrt{(8!! - 4! + 1)} + 6!! = - (1^4 - 68) $
$ 68 = (6 - 1)!! \times 4 + 8 = 1^4 \times 68 $
$ 69 = 4!! \times 8 + 6 - 1 = 1^4 + 68 $
$ 75 = (8 - 1)!! - (4! + 6) = (.1)^(-\sqrt{4}) \times \frac{6}{8} $
$ 76 = (8 - 1) \times 4 + 6!! = 14 \times 6 - 8 $
$ 77 = \sqrt{841} + 6!! = 84 -6 - 1 $
$ 82 = (1 + 4)!! \times 6 - 8 = 41 \times (8 - 6) $
$ 83 = \frac{6!}{8} - (4!! - 1) = 81 + 6 - 4 $
$ 86 = (6!! - 1) \times \sqrt{4} - 8 = \frac{6!}{8} - 1 \times 4 $
$ 87 = \sqrt{4} \times 6!! - (1 + 8) = \frac{6!}{8} - 4 + 1 $
$ 89 = \sqrt{4} \times 6!! - (8 - 1) = 41 + 6 \times 8 $
$ 91 = (8 - 1)!! - (4!! + 6) = 81 + 4 + 6 $
$ 92 = ((6 - 1)!! + 8) \times 4 = 14 \times 6 + 8 $
$ 93 = (1 + 6)!! - (4 + 8) = 61 + 4 \times 8 $
$ 98 = (1 + 4)!! \times 6 + 8 = \sqrt{4} \times (6 \times 8 + 1) $
$ 99 = (1 + 6)!! - 8 + \sqrt{4} = 81 + 4! - 6 $
$ 100 = ((\sqrt{(1 + 8)})!)!! + 6!! + 4 = 86 + 14 $