torch.nn.functional.poisson_nll_loss#
- torch.nn.functional.poisson_nll_loss(input, target, log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction='mean')[source]#
Compute the Poisson negative log likelihood loss.
See
PoissonNLLLoss
for details.- Parameters
input (Tensor) – Expectation of underlying Poisson distribution.
target (Tensor) – Random sample .
log_input (bool) – If
True
the loss is computed as , ifFalse
then loss is . Default:True
full (bool) – Whether to compute full loss, i. e. to add the Stirling approximation term. Default:
False
.size_average (bool, optional) – Deprecated (see
reduction
).eps (float, optional) – Small value to avoid evaluation of when
log_input
=False
. Default: 1e-8reduce (bool, optional) – Deprecated (see
reduction
).reduction (str, optional) – Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed. Note:size_average
andreduce
are in the process of being deprecated, and in the meantime, specifying either of those two args will overridereduction
. Default:'mean'
- Return type