-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
175 lines (141 loc) · 6.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from torch.utils.data import Dataset, DataLoader
import seaborn as sns
import matplotlib.pyplot as plt
import argparse
import time
from typing import Optional
import os
from models import load_model, MAELoss
from dataloader import load_dataset
from utils import *
def get_args_parser():
parser = argparse.ArgumentParser(add_help=False)
# GPU
parser.add_argument("--use-cuda", action='store_true')
# Model
parser.add_argument("--model", default='LSTM-AE')
# Dataset
parser.add_argument("--dataset", default="ECG5000")
parser.add_argument("--data-root-dir", default="data/ECG5000")
parser.add_argument("--freq", type=int, default=500)
parser.add_argument("--seconds", type=int, default=2)
# Hyperparameters
parser.add_argument("--batch-size", type=int, default=8)
# Paths
parser.add_argument("--weights-filename", default="LSTM-AE_001.pth")
parser.add_argument("--savefig", action='store_true')
return parser
def print_setup(device, args):
print("=======================[Settings]========================")
print(f"\n [GPU]")
print(f" |-[device]: {device}")
print(f"\n [MODEL]")
print(f" |-[model]: {args.model}")
print(f"\n [DATA]")
print(f" |-[dataset(ALL)]: {args.dataset}")
print(f" |-[data-root-dir(ALL)]: {args.data_root_dir}")
print(f" |-[freq(PTB-XL)]: {args.freq}")
print(f" |-[seconds(PTB-XL)]: {args.seconds}")
print(f"\n [HYPERPARAMETERS]")
print(f" |-[batch size]: {args.batch_size}")
print(f"\n [PATHS]")
print(f" |-[SAVE FIG]: {args.savefig}")
print(f" |-[WEIGHTS FILENAME]: {args.weights_filename}")
print("\n=========================================================")
def print_metrics(metrics_dict:dict):
print()
for key, value in metrics_dict.items():
print(f" [{key}]: {value:.8f}")
print()
def main(args):
device = 'cpu'
if args.use_cuda and torch.cuda.is_available():
device = 'cuda'
print_setup(device, args)
# Load Model
model = load_model(model_name=args.model).to(device)
ckpt = torch.load(os.path.join('saved/weights', args.weights_filename),
map_location=device, weights_only=False)
model.load_state_dict(ckpt['model'])
print(f"It was trained {ckpt['epochs']} EPOCHS")
# Load Dataset
# train for threshold
train_ds = load_dataset(dataset=args.dataset,
data_dir=args.data_root_dir,
metadata_path=os.path.join(args.data_root_dir, "ptbxl_database.csv"),
mode='train',
freq=args.freq,
seconds=args.seconds)
print(f"train samples: {len(train_ds)}")
train_dl = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size)
test_ds = load_dataset(dataset=args.dataset,
data_dir=args.data_root_dir,
metadata_path=os.path.join(args.data_root_dir, "ptbxl_database.csv"),
mode='test',
freq=args.freq,
seconds=args.seconds)
print(f"test samples: {len(test_ds)}")
test_dl = DataLoader(test_ds, shuffle=False, batch_size=args.batch_size)
# Loss Function (Reconstruction Loss: MAE Loss)
loss_fn = MAELoss().to(device)
# Get Threshold
print("=========================================================")
start_time = int(time.time())
loss_mean, loss_std, init_threshold = validate(model, train_dl, loss_fn, None, device)
threshold_time = int(time.time() - start_time)
print(f"Getting Threshold Time: {threshold_time//60:02d}m {threshold_time%60:02d}s")
print(f"loss mean: {loss_mean:.6f}, loss std: {loss_std:.6f}")
print(f"<<Init Threshold: {init_threshold:.6f}>>")
# Test
print("=========================================================")
start_time = int(time.time())
metrics_dict, losses, opt_threshold, norm_loss, abnorm_loss = evaluate(model, test_dl, loss_fn, init_threshold, device)
test_time = int(time.time()) - start_time
print(f"Test Time: {test_time//60:02d}m {test_time%60:02d}s")
print(f"<<Optimized Threshold: {opt_threshold:.6f}>>")
print_metrics(metrics_dict)
# Settings
plt.figure(figsize=(12, 4))
plt.rc('legend', fontsize=15)
plt.xticks([i * 10 for i in range(0, 5)], fontsize=15)
plt.yticks([i * 40 for i in range(0, 4)], fontsize=15)
# plt.rc('figure', titlesize=30)
plt.xlim(0, 40)
plt.ylim(0, 120)
plt.grid(True, linestyle='--', color='gray', alpha=0.5)
bins=300
plt.hist(norm_loss, bins=bins, label=f"Normal Loss Mean {np.mean(norm_loss):.3f}")
plt.hist(abnorm_loss, bins=bins, label=f"Abormal Loss Mean: {np.mean(abnorm_loss):.3f}")
plt.legend()
if args.model == 'LSTM-AE':
model_title = 'LSTM Autoencoder'
elif args.model == 'DeResLSTM-AE':
model_title = 'Residual LSTM Autoencoder (Decoder Only)'
elif args.model == 'SparLSTM-AE':
model_title = 'Sparse LSTM Autoencoder (Encoder Only)'
elif args.model == 'SparDeResLSTM-AE':
model_title = 'Sparse Residual LSTM Autoencoder (SRL-AE)'
plt.title(f"{model_title} Reconstruction Loss Distribution", fontsize=21, pad=15)
# Threshold
plt.axvline(x=opt_threshold, color='r', linewidth=2.5)
plt.text(opt_threshold + 0.5, 90, f"Threshold\n:{opt_threshold:.3f}", fontsize=18, color='r')
# Mean Distance
distance_line_pos = 30
plt.plot([np.mean(norm_loss), np.mean(abnorm_loss)], [distance_line_pos, distance_line_pos], marker='o', color='g', linewidth=2.5)
plt.text(np.mean(norm_loss)+0.5, distance_line_pos+10, f"Distance\n:{abs(np.mean(abnorm_loss)-np.mean(norm_loss)):.3f}", fontsize=18, color='g')
plt.tight_layout()
# Metrics
text_pos = 25
fontsize = 12
# plt.text(text_pos, 95, f"Optimized Loss Threshold: {opt_threshold:.6f}", fontsize=fontsize)
# plt.text(text_pos, 85, f"Normal Loss Mean: {np.mean(norm_loss):.4f}", fontsize=fontsize)
# plt.text(text_pos, 75, f"Abormal Loss Mean: {np.mean(abnorm_loss):.4f}", fontsize=fontsize)
# plt.text(text_pos, 65, f"Mean Distance: {abs(np.mean(abnorm_loss)-np.mean(norm_loss)):.4f}", fontsize=fontsize)
if args.savefig == True:
plt.savefig(f"figures/{args.model}_reconstruction.jpg", dpi=300)
else:
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser('ECG Anomaly Detection Test', parents=[get_args_parser()])
args = parser.parse_args()
main(args)