Implications of an avian-style respiratory system for gigantism in sauropod dinosaurs
Abstract
In light of evidence for avian-like lungs in saurischian dinosaurs, the physiological implications of cross-current gas exchange and voluminous, highly heterogeneous lungs for sauropod gigantism are critically examined. At 12 ton the predicted body temperature and metabolic rate of a growing sauropod would be similar to that of a bird scaled to the same body weight, but would increase exponentially as body mass increases. Although avian-like lung structure would be consistent with either a tachymetabolic-endothermic or a bradymetabolic-gigantothermic model, increasing body temperature requires adjustments to avoid overheating. We suggest that a unique sauropod structure/function unit facilitated the evolution of gigantism. This unit consisted of (1) a reduction in metabolic rate below that predicted by the body temperature, akin to thermal adaptation as seen in extant squamates, (2) presence of air-filled diverticula in the long neck and in the visceral cavity, and (3) low activity of respiratory muscles coupled with the high efficiency of cross-current gas exchange. J. Exp. Zool. 311A:600-610, 2009.
- Publication:
-
Journal of Experimental Zoology - A (JEZ-A)
- Pub Date:
- October 2009
- DOI:
- Bibcode:
- 2009JEZA..311..600P