kiwi.modules.token_embeddings
¶
Module Contents¶
Classes¶
Base class for all neural network modules. |
-
class
kiwi.modules.token_embeddings.
TokenEmbeddings
(num_embeddings: int, pad_idx: int, config: Config, vectors=None)¶ Bases:
torch.nn.Module
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to()
, etc.-
class
Config
¶ Bases:
kiwi.utils.io.BaseConfig
Base class for all pydantic configs. Used to configure base behaviour of configs.
-
dim
:int = 50¶
-
freeze
:bool = False¶
-
dropout
:float = 0.0¶
-
use_position_embeddings
:bool = False¶
-
max_position_embeddings
:int = 4000¶
-
sparse_embeddings
:bool = False¶
-
scale_embeddings
:bool = False¶
-
input_layer_norm
:bool = False¶
-
-
property
num_embeddings
(self)¶
-
size
(self)¶
-
forward
(self, batch_input, *args)¶
-
class