Permalink
/********************************************************************** | |
numeric.c - | |
$Author$ | |
created at: Fri Aug 13 18:33:09 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
**********************************************************************/ | |
#include "internal.h" | |
#include "ruby/util.h" | |
#include "id.h" | |
#include <ctype.h> | |
#include <math.h> | |
#include <stdio.h> | |
#if defined(__FreeBSD__) && __FreeBSD__ < 4 | |
#include <floatingpoint.h> | |
#endif | |
#ifdef HAVE_FLOAT_H | |
#include <float.h> | |
#endif | |
#ifdef HAVE_IEEEFP_H | |
#include <ieeefp.h> | |
#endif | |
#if !defined HAVE_ISFINITE && !defined isfinite | |
#if defined HAVE_FINITE && !defined finite && !defined _WIN32 | |
extern int finite(double); | |
# define HAVE_ISFINITE 1 | |
# define isfinite(x) finite(x) | |
#endif | |
#endif | |
/* use IEEE 64bit values if not defined */ | |
#ifndef FLT_RADIX | |
#define FLT_RADIX 2 | |
#endif | |
#ifndef FLT_ROUNDS | |
#define FLT_ROUNDS 1 | |
#endif | |
#ifndef DBL_MIN | |
#define DBL_MIN 2.2250738585072014e-308 | |
#endif | |
#ifndef DBL_MAX | |
#define DBL_MAX 1.7976931348623157e+308 | |
#endif | |
#ifndef DBL_MIN_EXP | |
#define DBL_MIN_EXP (-1021) | |
#endif | |
#ifndef DBL_MAX_EXP | |
#define DBL_MAX_EXP 1024 | |
#endif | |
#ifndef DBL_MIN_10_EXP | |
#define DBL_MIN_10_EXP (-307) | |
#endif | |
#ifndef DBL_MAX_10_EXP | |
#define DBL_MAX_10_EXP 308 | |
#endif | |
#ifndef DBL_DIG | |
#define DBL_DIG 15 | |
#endif | |
#ifndef DBL_MANT_DIG | |
#define DBL_MANT_DIG 53 | |
#endif | |
#ifndef DBL_EPSILON | |
#define DBL_EPSILON 2.2204460492503131e-16 | |
#endif | |
#ifdef HAVE_INFINITY | |
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ | |
const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}}; | |
#else | |
const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}}; | |
#endif | |
#ifdef HAVE_NAN | |
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ | |
const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}}; | |
#else | |
const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}}; | |
#endif | |
#ifndef HAVE_ROUND | |
double | |
round(double x) | |
{ | |
double f; | |
if (x > 0.0) { | |
f = floor(x); | |
x = f + (x - f >= 0.5); | |
} | |
else if (x < 0.0) { | |
f = ceil(x); | |
x = f - (f - x >= 0.5); | |
} | |
return x; | |
} | |
#endif | |
static VALUE fix_uminus(VALUE num); | |
static VALUE fix_mul(VALUE x, VALUE y); | |
static VALUE int_pow(long x, unsigned long y); | |
static ID id_coerce, id_div, id_divmod; | |
#define id_to_i idTo_i | |
#define id_eq idEq | |
#define id_cmp idCmp | |
VALUE rb_cNumeric; | |
VALUE rb_cFloat; | |
VALUE rb_cInteger; | |
VALUE rb_cFixnum; | |
VALUE rb_eZeroDivError; | |
VALUE rb_eFloatDomainError; | |
static ID id_to, id_by; | |
void | |
rb_num_zerodiv(void) | |
{ | |
rb_raise(rb_eZeroDivError, "divided by 0"); | |
} | |
/* experimental API */ | |
int | |
rb_num_to_uint(VALUE val, unsigned int *ret) | |
{ | |
#define NUMERR_TYPE 1 | |
#define NUMERR_NEGATIVE 2 | |
#define NUMERR_TOOLARGE 3 | |
if (FIXNUM_P(val)) { | |
long v = FIX2LONG(val); | |
#if SIZEOF_INT < SIZEOF_LONG | |
if (v > (long)UINT_MAX) return NUMERR_TOOLARGE; | |
#endif | |
if (v < 0) return NUMERR_NEGATIVE; | |
*ret = (unsigned int)v; | |
return 0; | |
} | |
if (RB_TYPE_P(val, T_BIGNUM)) { | |
if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE; | |
#if SIZEOF_INT < SIZEOF_LONG | |
/* long is 64bit */ | |
return NUMERR_TOOLARGE; | |
#else | |
/* long is 32bit */ | |
if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE; | |
*ret = (unsigned int)rb_big2ulong((VALUE)val); | |
return 0; | |
#endif | |
} | |
return NUMERR_TYPE; | |
} | |
#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid) | |
static VALUE | |
compare_with_zero(VALUE num, ID mid) | |
{ | |
VALUE zero = INT2FIX(0); | |
VALUE r = rb_check_funcall(num, mid, 1, &zero); | |
if (r == Qundef) { | |
rb_cmperr(num, zero); | |
} | |
return r; | |
} | |
static inline int | |
positive_int_p(VALUE num) | |
{ | |
const ID mid = '>'; | |
if (FIXNUM_P(num)) { | |
if (method_basic_p(rb_cFixnum)) | |
return (SIGNED_VALUE)num > 0; | |
} | |
else if (RB_TYPE_P(num, T_BIGNUM)) { | |
if (method_basic_p(rb_cBignum)) | |
return BIGNUM_POSITIVE_P(num); | |
} | |
return RTEST(compare_with_zero(num, mid)); | |
} | |
static inline int | |
negative_int_p(VALUE num) | |
{ | |
const ID mid = '<'; | |
if (FIXNUM_P(num)) { | |
if (method_basic_p(rb_cFixnum)) | |
return (SIGNED_VALUE)num < 0; | |
} | |
else if (RB_TYPE_P(num, T_BIGNUM)) { | |
if (method_basic_p(rb_cBignum)) | |
return BIGNUM_NEGATIVE_P(num); | |
} | |
return RTEST(compare_with_zero(num, mid)); | |
} | |
int | |
rb_num_negative_p(VALUE num) | |
{ | |
return negative_int_p(num); | |
} | |
/* | |
* call-seq: | |
* num.coerce(numeric) -> array | |
* | |
* If a +numeric+ is the same type as +num+, returns an array containing | |
* +numeric+ and +num+. Otherwise, returns an array with both a +numeric+ and | |
* +num+ represented as Float objects. | |
* | |
* This coercion mechanism is used by Ruby to handle mixed-type numeric | |
* operations: it is intended to find a compatible common type between the two | |
* operands of the operator. | |
* | |
* 1.coerce(2.5) #=> [2.5, 1.0] | |
* 1.2.coerce(3) #=> [3.0, 1.2] | |
* 1.coerce(2) #=> [2, 1] | |
*/ | |
static VALUE | |
num_coerce(VALUE x, VALUE y) | |
{ | |
if (CLASS_OF(x) == CLASS_OF(y)) | |
return rb_assoc_new(y, x); | |
x = rb_Float(x); | |
y = rb_Float(y); | |
return rb_assoc_new(y, x); | |
} | |
static VALUE | |
coerce_body(VALUE arg) | |
{ | |
VALUE *x = (VALUE *)arg; | |
return rb_funcall(x[1], id_coerce, 1, x[0]); | |
} | |
NORETURN(static void coerce_failed(VALUE x, VALUE y)); | |
static void | |
coerce_failed(VALUE x, VALUE y) | |
{ | |
if (SPECIAL_CONST_P(y) || BUILTIN_TYPE(y) == T_FLOAT) { | |
y = rb_inspect(y); | |
} | |
else { | |
y = rb_obj_class(y); | |
} | |
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE, | |
y, rb_obj_class(x)); | |
} | |
static VALUE | |
coerce_rescue(VALUE arg, VALUE errinfo) | |
{ | |
VALUE *x = (VALUE *)arg; | |
coerce_failed(x[0], x[1]); | |
return Qnil; /* dummy */ | |
} | |
static VALUE | |
coerce_rescue_quiet(VALUE arg, VALUE errinfo) | |
{ | |
return Qundef; | |
} | |
static int | |
do_coerce(VALUE *x, VALUE *y, int err) | |
{ | |
VALUE ary; | |
VALUE a[2]; | |
a[0] = *x; a[1] = *y; | |
if (!rb_respond_to(*y, id_coerce)) { | |
if (err) { | |
coerce_failed(*x, *y); | |
} | |
return FALSE; | |
} | |
ary = rb_rescue(coerce_body, (VALUE)a, err ? coerce_rescue : coerce_rescue_quiet, (VALUE)a); | |
if (ary == Qundef) { | |
rb_warn("Numerical comparison operators will no more rescue exceptions of #coerce"); | |
rb_warn("in the next release. Return nil in #coerce if the coercion is impossible."); | |
return FALSE; | |
} | |
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) { | |
if (err) { | |
rb_raise(rb_eTypeError, "coerce must return [x, y]"); | |
} | |
else if (!NIL_P(ary)) { | |
rb_warn("Bad return value for #coerce, called by numerical comparison operators."); | |
rb_warn("#coerce must return [x, y]. The next release will raise an error for this."); | |
} | |
return FALSE; | |
} | |
*x = RARRAY_AREF(ary, 0); | |
*y = RARRAY_AREF(ary, 1); | |
return TRUE; | |
} | |
VALUE | |
rb_num_coerce_bin(VALUE x, VALUE y, ID func) | |
{ | |
do_coerce(&x, &y, TRUE); | |
return rb_funcall(x, func, 1, y); | |
} | |
VALUE | |
rb_num_coerce_cmp(VALUE x, VALUE y, ID func) | |
{ | |
if (do_coerce(&x, &y, FALSE)) | |
return rb_funcall(x, func, 1, y); | |
return Qnil; | |
} | |
VALUE | |
rb_num_coerce_relop(VALUE x, VALUE y, ID func) | |
{ | |
VALUE c, x0 = x, y0 = y; | |
if (!do_coerce(&x, &y, FALSE) || | |
NIL_P(c = rb_funcall(x, func, 1, y))) { | |
rb_cmperr(x0, y0); | |
return Qnil; /* not reached */ | |
} | |
return c; | |
} | |
/* | |
* Trap attempts to add methods to Numeric objects. Always raises a TypeError. | |
* | |
* Numerics should be values; singleton_methods should not be added to them. | |
*/ | |
static VALUE | |
num_sadded(VALUE x, VALUE name) | |
{ | |
ID mid = rb_to_id(name); | |
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */ | |
rb_remove_method_id(rb_singleton_class(x), mid); | |
rb_raise(rb_eTypeError, | |
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE, | |
rb_id2str(mid), | |
rb_obj_class(x)); | |
UNREACHABLE; | |
} | |
/* | |
* Numerics are immutable values, which should not be copied. | |
* | |
* Any attempt to use this method on a Numeric will raise a TypeError. | |
*/ | |
static VALUE | |
num_init_copy(VALUE x, VALUE y) | |
{ | |
rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x)); | |
UNREACHABLE; | |
} | |
/* | |
* call-seq: | |
* +num -> num | |
* | |
* Unary Plus---Returns the receiver's value. | |
*/ | |
static VALUE | |
num_uplus(VALUE num) | |
{ | |
return num; | |
} | |
/* | |
* call-seq: | |
* num.i -> Complex(0,num) | |
* | |
* Returns the corresponding imaginary number. | |
* Not available for complex numbers. | |
*/ | |
static VALUE | |
num_imaginary(VALUE num) | |
{ | |
return rb_complex_new(INT2FIX(0), num); | |
} | |
/* | |
* call-seq: | |
* -num -> numeric | |
* | |
* Unary Minus---Returns the receiver's value, negated. | |
*/ | |
static VALUE | |
num_uminus(VALUE num) | |
{ | |
VALUE zero; | |
zero = INT2FIX(0); | |
do_coerce(&zero, &num, TRUE); | |
return rb_funcall(zero, '-', 1, num); | |
} | |
/* | |
* call-seq: | |
* num.fdiv(numeric) -> float | |
* | |
* Returns float division. | |
*/ | |
static VALUE | |
num_fdiv(VALUE x, VALUE y) | |
{ | |
return rb_funcall(rb_Float(x), '/', 1, y); | |
} | |
/* | |
* call-seq: | |
* num.div(numeric) -> integer | |
* | |
* Uses +/+ to perform division, then converts the result to an integer. | |
* +numeric+ does not define the +/+ operator; this is left to subclasses. | |
* | |
* Equivalent to <code>num.divmod(numeric)[0]</code>. | |
* | |
* See Numeric#divmod. | |
*/ | |
static VALUE | |
num_div(VALUE x, VALUE y) | |
{ | |
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv(); | |
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0); | |
} | |
/* | |
* call-seq: | |
* num.modulo(numeric) -> real | |
* | |
* x.modulo(y) means x-y*(x/y).floor | |
* | |
* Equivalent to <code>num.divmod(numeric)[1]</code>. | |
* | |
* See Numeric#divmod. | |
*/ | |
static VALUE | |
num_modulo(VALUE x, VALUE y) | |
{ | |
return rb_funcall(x, '-', 1, | |
rb_funcall(y, '*', 1, | |
rb_funcall(x, id_div, 1, y))); | |
} | |
/* | |
* call-seq: | |
* num.remainder(numeric) -> real | |
* | |
* x.remainder(y) means x-y*(x/y).truncate | |
* | |
* See Numeric#divmod. | |
*/ | |
static VALUE | |
num_remainder(VALUE x, VALUE y) | |
{ | |
VALUE z = rb_funcall(x, '%', 1, y); | |
if ((!rb_equal(z, INT2FIX(0))) && | |
((negative_int_p(x) && | |
positive_int_p(y)) || | |
(positive_int_p(x) && | |
negative_int_p(y)))) { | |
return rb_funcall(z, '-', 1, y); | |
} | |
return z; | |
} | |
/* | |
* call-seq: | |
* num.divmod(numeric) -> array | |
* | |
* Returns an array containing the quotient and modulus obtained by dividing | |
* +num+ by +numeric+. | |
* | |
* If <code>q, r = * x.divmod(y)</code>, then | |
* | |
* q = floor(x/y) | |
* x = q*y+r | |
* | |
* The quotient is rounded toward -infinity, as shown in the following table: | |
* | |
* a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b) | |
* ------+-----+---------------+---------+-------------+--------------- | |
* 13 | 4 | 3, 1 | 3 | 1 | 1 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* 13 | -4 | -4, -3 | -4 | -3 | 1 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* -13 | 4 | -4, 3 | -4 | 3 | -1 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* -13 | -4 | 3, -1 | 3 | -1 | -1 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5 | |
* ------+-----+---------------+---------+-------------+--------------- | |
* -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5 | |
* | |
* | |
* Examples | |
* | |
* 11.divmod(3) #=> [3, 2] | |
* 11.divmod(-3) #=> [-4, -1] | |
* 11.divmod(3.5) #=> [3, 0.5] | |
* (-11).divmod(3.5) #=> [-4, 3.0] | |
* (11.5).divmod(3.5) #=> [3, 1.0] | |
*/ | |
static VALUE | |
num_divmod(VALUE x, VALUE y) | |
{ | |
return rb_assoc_new(num_div(x, y), num_modulo(x, y)); | |
} | |
/* | |
* call-seq: | |
* num.real? -> true or false | |
* | |
* Returns +true+ if +num+ is a Real number. (i.e. not Complex). | |
*/ | |
static VALUE | |
num_real_p(VALUE num) | |
{ | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* num.integer? -> true or false | |
* | |
* Returns +true+ if +num+ is an Integer (including Fixnum and Bignum). | |
* | |
* (1.0).integer? #=> false | |
* (1).integer? #=> true | |
*/ | |
static VALUE | |
num_int_p(VALUE num) | |
{ | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* num.abs -> numeric | |
* num.magnitude -> numeric | |
* | |
* Returns the absolute value of +num+. | |
* | |
* 12.abs #=> 12 | |
* (-34.56).abs #=> 34.56 | |
* -34.56.abs #=> 34.56 | |
* | |
* Numeric#magnitude is an alias of Numeric#abs. | |
*/ | |
static VALUE | |
num_abs(VALUE num) | |
{ | |
if (negative_int_p(num)) { | |
return rb_funcall(num, idUMinus, 0); | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* num.zero? -> true or false | |
* | |
* Returns +true+ if +num+ has a zero value. | |
*/ | |
static VALUE | |
num_zero_p(VALUE num) | |
{ | |
if (rb_equal(num, INT2FIX(0))) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* num.nonzero? -> self or nil | |
* | |
* Returns +self+ if +num+ is not zero, +nil+ otherwise. | |
* | |
* This behavior is useful when chaining comparisons: | |
* | |
* a = %w( z Bb bB bb BB a aA Aa AA A ) | |
* b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } | |
* b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"] | |
*/ | |
static VALUE | |
num_nonzero_p(VALUE num) | |
{ | |
if (RTEST(rb_funcallv(num, rb_intern("zero?"), 0, 0))) { | |
return Qnil; | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* num.to_int -> integer | |
* | |
* Invokes the child class's +to_i+ method to convert +num+ to an integer. | |
* | |
* 1.0.class => Float | |
* 1.0.to_int.class => Fixnum | |
* 1.0.to_i.class => Fixnum | |
*/ | |
static VALUE | |
num_to_int(VALUE num) | |
{ | |
return rb_funcallv(num, id_to_i, 0, 0); | |
} | |
/* | |
* call-seq: | |
* num.positive? -> true or false | |
* | |
* Returns +true+ if +num+ is greater than 0. | |
*/ | |
static VALUE | |
num_positive_p(VALUE num) | |
{ | |
const ID mid = '>'; | |
if (FIXNUM_P(num)) { | |
if (method_basic_p(rb_cFixnum)) | |
return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse; | |
} | |
else if (RB_TYPE_P(num, T_BIGNUM)) { | |
if (method_basic_p(rb_cBignum)) | |
return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse; | |
} | |
return compare_with_zero(num, mid); | |
} | |
/* | |
* call-seq: | |
* num.negative? -> true or false | |
* | |
* Returns +true+ if +num+ is less than 0. | |
*/ | |
static VALUE | |
num_negative_p(VALUE num) | |
{ | |
return negative_int_p(num) ? Qtrue : Qfalse; | |
} | |
/******************************************************************** | |
* | |
* Document-class: Float | |
* | |
* Float objects represent inexact real numbers using the native | |
* architecture's double-precision floating point representation. | |
* | |
* Floating point has a different arithmetic and is an inexact number. | |
* So you should know its esoteric system. see following: | |
* | |
* - http://docs.sun.com/source/806-3568/ncg_goldberg.html | |
* - http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise | |
* - http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems | |
*/ | |
VALUE | |
rb_float_new_in_heap(double d) | |
{ | |
NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0)); | |
flt->float_value = d; | |
OBJ_FREEZE(flt); | |
return (VALUE)flt; | |
} | |
/* | |
* call-seq: | |
* float.to_s -> string | |
* | |
* Returns a string containing a representation of self. As well as a fixed or | |
* exponential form of the +float+, the call may return +NaN+, +Infinity+, and | |
* +-Infinity+. | |
*/ | |
static VALUE | |
flo_to_s(VALUE flt) | |
{ | |
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; | |
enum {float_dig = DBL_DIG+1}; | |
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; | |
double value = RFLOAT_VALUE(flt); | |
VALUE s; | |
char *p, *e; | |
int sign, decpt, digs; | |
if (isinf(value)) | |
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity"); | |
else if (isnan(value)) | |
return rb_usascii_str_new2("NaN"); | |
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); | |
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); | |
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; | |
memcpy(buf, p, digs); | |
xfree(p); | |
if (decpt > 0) { | |
if (decpt < digs) { | |
memmove(buf + decpt + 1, buf + decpt, digs - decpt); | |
buf[decpt] = '.'; | |
rb_str_cat(s, buf, digs + 1); | |
} | |
else if (decpt <= DBL_DIG) { | |
long len; | |
char *ptr; | |
rb_str_cat(s, buf, digs); | |
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); | |
ptr = RSTRING_PTR(s) + len; | |
if (decpt > digs) { | |
memset(ptr, '0', decpt - digs); | |
ptr += decpt - digs; | |
} | |
memcpy(ptr, ".0", 2); | |
} | |
else { | |
goto exp; | |
} | |
} | |
else if (decpt > -4) { | |
long len; | |
char *ptr; | |
rb_str_cat(s, "0.", 2); | |
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); | |
ptr = RSTRING_PTR(s); | |
memset(ptr += len, '0', -decpt); | |
memcpy(ptr -= decpt, buf, digs); | |
} | |
else { | |
exp: | |
if (digs > 1) { | |
memmove(buf + 2, buf + 1, digs - 1); | |
} | |
else { | |
buf[2] = '0'; | |
digs++; | |
} | |
buf[1] = '.'; | |
rb_str_cat(s, buf, digs + 1); | |
rb_str_catf(s, "e%+03d", decpt - 1); | |
} | |
return s; | |
} | |
/* | |
* call-seq: | |
* float.coerce(numeric) -> array | |
* | |
* Returns an array with both a +numeric+ and a +float+ represented as Float | |
* objects. | |
* | |
* This is achieved by converting a +numeric+ to a Float. | |
* | |
* 1.2.coerce(3) #=> [3.0, 1.2] | |
* 2.5.coerce(1.1) #=> [1.1, 2.5] | |
*/ | |
static VALUE | |
flo_coerce(VALUE x, VALUE y) | |
{ | |
return rb_assoc_new(rb_Float(y), x); | |
} | |
/* | |
* call-seq: | |
* -float -> float | |
* | |
* Returns float, negated. | |
*/ | |
static VALUE | |
flo_uminus(VALUE flt) | |
{ | |
return DBL2NUM(-RFLOAT_VALUE(flt)); | |
} | |
/* | |
* call-seq: | |
* float + other -> float | |
* | |
* Returns a new float which is the sum of +float+ and +other+. | |
*/ | |
static VALUE | |
flo_plus(VALUE x, VALUE y) | |
{ | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '+'); | |
} | |
} | |
/* | |
* call-seq: | |
* float - other -> float | |
* | |
* Returns a new float which is the difference of +float+ and +other+. | |
*/ | |
static VALUE | |
flo_minus(VALUE x, VALUE y) | |
{ | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '-'); | |
} | |
} | |
/* | |
* call-seq: | |
* float * other -> float | |
* | |
* Returns a new float which is the product of +float+ and +other+. | |
*/ | |
static VALUE | |
flo_mul(VALUE x, VALUE y) | |
{ | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '*'); | |
} | |
} | |
/* | |
* call-seq: | |
* float / other -> float | |
* | |
* Returns a new float which is the result of dividing +float+ by +other+. | |
*/ | |
static VALUE | |
flo_div(VALUE x, VALUE y) | |
{ | |
long f_y; | |
double d; | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
f_y = FIX2LONG(y); | |
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
d = rb_big2dbl(y); | |
return DBL2NUM(RFLOAT_VALUE(x) / d); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '/'); | |
} | |
} | |
/* | |
* call-seq: | |
* float.fdiv(numeric) -> float | |
* float.quo(numeric) -> float | |
* | |
* Returns <code>float / numeric</code>, same as Float#/. | |
*/ | |
static VALUE | |
flo_quo(VALUE x, VALUE y) | |
{ | |
return rb_funcall(x, '/', 1, y); | |
} | |
static void | |
flodivmod(double x, double y, double *divp, double *modp) | |
{ | |
double div, mod; | |
if (isnan(y)) { | |
/* y is NaN so all results are NaN */ | |
if (modp) *modp = y; | |
if (divp) *divp = y; | |
return; | |
} | |
if (y == 0.0) rb_num_zerodiv(); | |
if ((x == 0.0) || (isinf(y) && !isinf(x))) | |
mod = x; | |
else { | |
#ifdef HAVE_FMOD | |
mod = fmod(x, y); | |
#else | |
double z; | |
modf(x/y, &z); | |
mod = x - z * y; | |
#endif | |
} | |
if (isinf(x) && !isinf(y)) | |
div = x; | |
else | |
div = (x - mod) / y; | |
if (y*mod < 0) { | |
mod += y; | |
div -= 1.0; | |
} | |
if (modp) *modp = mod; | |
if (divp) *divp = div; | |
} | |
/* | |
* Returns the modulo of division of x by y. | |
* An error will be raised if y == 0. | |
*/ | |
double | |
ruby_float_mod(double x, double y) | |
{ | |
double mod; | |
flodivmod(x, y, 0, &mod); | |
return mod; | |
} | |
/* | |
* call-seq: | |
* float % other -> float | |
* float.modulo(other) -> float | |
* | |
* Return the modulo after division of +float+ by +other+. | |
* | |
* 6543.21.modulo(137) #=> 104.21 | |
* 6543.21.modulo(137.24) #=> 92.9299999999996 | |
*/ | |
static VALUE | |
flo_mod(VALUE x, VALUE y) | |
{ | |
double fy; | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
fy = (double)FIX2LONG(y); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
fy = rb_big2dbl(y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
fy = RFLOAT_VALUE(y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '%'); | |
} | |
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); | |
} | |
static VALUE | |
dbl2ival(double d) | |
{ | |
d = round(d); | |
if (FIXABLE(d)) { | |
return LONG2FIX((long)d); | |
} | |
return rb_dbl2big(d); | |
} | |
/* | |
* call-seq: | |
* float.divmod(numeric) -> array | |
* | |
* See Numeric#divmod. | |
* | |
* 42.0.divmod 6 #=> [7, 0.0] | |
* 42.0.divmod 5 #=> [8, 2.0] | |
*/ | |
static VALUE | |
flo_divmod(VALUE x, VALUE y) | |
{ | |
double fy, div, mod; | |
volatile VALUE a, b; | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
fy = (double)FIX2LONG(y); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
fy = rb_big2dbl(y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
fy = RFLOAT_VALUE(y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, id_divmod); | |
} | |
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); | |
a = dbl2ival(div); | |
b = DBL2NUM(mod); | |
return rb_assoc_new(a, b); | |
} | |
/* | |
* call-seq: | |
* | |
* float ** other -> float | |
* | |
* Raises +float+ to the power of +other+. | |
* | |
* 2.0**3 #=> 8.0 | |
*/ | |
static VALUE | |
flo_pow(VALUE x, VALUE y) | |
{ | |
double dx, dy; | |
if (RB_TYPE_P(y, T_FIXNUM)) { | |
dx = RFLOAT_VALUE(x); | |
dy = (double)FIX2LONG(y); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
dx = RFLOAT_VALUE(x); | |
dy = rb_big2dbl(y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
dx = RFLOAT_VALUE(x); | |
dy = RFLOAT_VALUE(y); | |
if (dx < 0 && dy != round(dy)) | |
return rb_funcall(rb_complex_raw1(x), idPow, 1, y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, idPow); | |
} | |
return DBL2NUM(pow(dx, dy)); | |
} | |
/* | |
* call-seq: | |
* num.eql?(numeric) -> true or false | |
* | |
* Returns +true+ if +num+ and +numeric+ are the same type and have equal | |
* values. | |
* | |
* 1 == 1.0 #=> true | |
* 1.eql?(1.0) #=> false | |
* (1.0).eql?(1.0) #=> true | |
*/ | |
static VALUE | |
num_eql(VALUE x, VALUE y) | |
{ | |
if (TYPE(x) != TYPE(y)) return Qfalse; | |
return rb_equal(x, y); | |
} | |
/* | |
* call-seq: | |
* number <=> other -> 0 or nil | |
* | |
* Returns zero if +number+ equals +other+, otherwise +nil+ is returned if the | |
* two values are incomparable. | |
*/ | |
static VALUE | |
num_cmp(VALUE x, VALUE y) | |
{ | |
if (x == y) return INT2FIX(0); | |
return Qnil; | |
} | |
static VALUE | |
num_equal(VALUE x, VALUE y) | |
{ | |
if (x == y) return Qtrue; | |
return rb_funcall(y, id_eq, 1, x); | |
} | |
/* | |
* call-seq: | |
* float == obj -> true or false | |
* | |
* Returns +true+ only if +obj+ has the same value as +float+. Contrast this | |
* with Float#eql?, which requires obj to be a Float. | |
* | |
* The result of <code>NaN == NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
* | |
* 1.0 == 1 #=> true | |
* | |
*/ | |
static VALUE | |
flo_eq(VALUE x, VALUE y) | |
{ | |
volatile double a, b; | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_integer_float_eq(y, x); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return num_equal(x, y); | |
} | |
a = RFLOAT_VALUE(x); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a)) return Qfalse; | |
#endif | |
return (a == b)?Qtrue:Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.hash -> integer | |
* | |
* Returns a hash code for this float. | |
* | |
* See also Object#hash. | |
*/ | |
static VALUE | |
flo_hash(VALUE num) | |
{ | |
return rb_dbl_hash(RFLOAT_VALUE(num)); | |
} | |
VALUE | |
rb_dbl_hash(double d) | |
{ | |
st_index_t hash; | |
/* normalize -0.0 to 0.0 */ | |
if (d == 0.0) d = 0.0; | |
hash = rb_memhash(&d, sizeof(d)); | |
return LONG2FIX(hash); | |
} | |
VALUE | |
rb_dbl_cmp(double a, double b) | |
{ | |
if (isnan(a) || isnan(b)) return Qnil; | |
if (a == b) return INT2FIX(0); | |
if (a > b) return INT2FIX(1); | |
if (a < b) return INT2FIX(-1); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* float <=> real -> -1, 0, +1 or nil | |
* | |
* Returns -1, 0, +1 or nil depending on whether +float+ is less than, equal | |
* to, or greater than +real+. This is the basis for the tests in Comparable. | |
* | |
* The result of <code>NaN <=> NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
* | |
* +nil+ is returned if the two values are incomparable. | |
*/ | |
static VALUE | |
flo_cmp(VALUE x, VALUE y) | |
{ | |
double a, b; | |
VALUE i; | |
a = RFLOAT_VALUE(x); | |
if (isnan(a)) return Qnil; | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return INT2FIX(-FIX2INT(rel)); | |
return rel; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
} | |
else { | |
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { | |
if (RTEST(i)) { | |
int j = rb_cmpint(i, x, y); | |
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); | |
return INT2FIX(j); | |
} | |
if (a > 0.0) return INT2FIX(1); | |
return INT2FIX(-1); | |
} | |
return rb_num_coerce_cmp(x, y, id_cmp); | |
} | |
return rb_dbl_cmp(a, b); | |
} | |
/* | |
* call-seq: | |
* float > real -> true or false | |
* | |
* Returns +true+ if +float+ is greater than +real+. | |
* | |
* The result of <code>NaN > NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_gt(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return -FIX2INT(rel) > 0 ? Qtrue : Qfalse; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '>'); | |
} | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a)) return Qfalse; | |
#endif | |
return (a > b)?Qtrue:Qfalse; | |
} | |
/* | |
* call-seq: | |
* float >= real -> true or false | |
* | |
* Returns +true+ if +float+ is greater than or equal to +real+. | |
* | |
* The result of <code>NaN >= NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_ge(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idGE); | |
} | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a)) return Qfalse; | |
#endif | |
return (a >= b)?Qtrue:Qfalse; | |
} | |
/* | |
* call-seq: | |
* float < real -> true or false | |
* | |
* Returns +true+ if +float+ is less than +real+. | |
* | |
* The result of <code>NaN < NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_lt(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return -FIX2INT(rel) < 0 ? Qtrue : Qfalse; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '<'); | |
} | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a)) return Qfalse; | |
#endif | |
return (a < b)?Qtrue:Qfalse; | |
} | |
/* | |
* call-seq: | |
* float <= real -> true or false | |
* | |
* Returns +true+ if +float+ is less than or equal to +real+. | |
* | |
* The result of <code>NaN <= NaN</code> is undefined, so the | |
* implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_le(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idLE); | |
} | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a)) return Qfalse; | |
#endif | |
return (a <= b)?Qtrue:Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.eql?(obj) -> true or false | |
* | |
* Returns +true+ only if +obj+ is a Float with the same value as +float+. | |
* Contrast this with Float#==, which performs type conversions. | |
* | |
* The result of <code>NaN.eql?(NaN)</code> is undefined, so the | |
* implementation-dependent value is returned. | |
* | |
* 1.0.eql?(1) #=> false | |
*/ | |
static VALUE | |
flo_eql(VALUE x, VALUE y) | |
{ | |
if (RB_TYPE_P(y, T_FLOAT)) { | |
double a = RFLOAT_VALUE(x); | |
double b = RFLOAT_VALUE(y); | |
#if defined(_MSC_VER) && _MSC_VER < 1300 | |
if (isnan(a) || isnan(b)) return Qfalse; | |
#endif | |
if (a == b) | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.to_f -> self | |
* | |
* Since +float+ is already a float, returns +self+. | |
*/ | |
static VALUE | |
flo_to_f(VALUE num) | |
{ | |
return num; | |
} | |
/* | |
* call-seq: | |
* float.abs -> float | |
* float.magnitude -> float | |
* | |
* Returns the absolute value of +float+. | |
* | |
* (-34.56).abs #=> 34.56 | |
* -34.56.abs #=> 34.56 | |
* | |
*/ | |
static VALUE | |
flo_abs(VALUE flt) | |
{ | |
double val = fabs(RFLOAT_VALUE(flt)); | |
return DBL2NUM(val); | |
} | |
/* | |
* call-seq: | |
* float.zero? -> true or false | |
* | |
* Returns +true+ if +float+ is 0.0. | |
* | |
*/ | |
static VALUE | |
flo_zero_p(VALUE num) | |
{ | |
if (RFLOAT_VALUE(num) == 0.0) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.nan? -> true or false | |
* | |
* Returns +true+ if +float+ is an invalid IEEE floating point number. | |
* | |
* a = -1.0 #=> -1.0 | |
* a.nan? #=> false | |
* a = 0.0/0.0 #=> NaN | |
* a.nan? #=> true | |
*/ | |
static VALUE | |
flo_is_nan_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
return isnan(value) ? Qtrue : Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.infinite? -> nil, -1, +1 | |
* | |
* Return values corresponding to the value of +float+: | |
* | |
* +finite+:: +nil+ | |
* +-Infinity+:: +-1+ | |
* ++Infinity+:: +1+ | |
* | |
* For example: | |
* | |
* (0.0).infinite? #=> nil | |
* (-1.0/0.0).infinite? #=> -1 | |
* (+1.0/0.0).infinite? #=> 1 | |
*/ | |
static VALUE | |
flo_is_infinite_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
if (isinf(value)) { | |
return INT2FIX( value < 0 ? -1 : 1 ); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* float.finite? -> true or false | |
* | |
* Returns +true+ if +float+ is a valid IEEE floating point number (it is not | |
* infinite, and Float#nan? is +false+). | |
* | |
*/ | |
static VALUE | |
flo_is_finite_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
#ifdef HAVE_ISFINITE | |
if (!isfinite(value)) | |
return Qfalse; | |
#else | |
if (isinf(value) || isnan(value)) | |
return Qfalse; | |
#endif | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* float.next_float -> float | |
* | |
* Returns the next representable floating-point number. | |
* | |
* Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY. | |
* | |
* Float::NAN.next_float is Float::NAN. | |
* | |
* For example: | |
* | |
* p 0.01.next_float #=> 0.010000000000000002 | |
* p 1.0.next_float #=> 1.0000000000000002 | |
* p 100.0.next_float #=> 100.00000000000001 | |
* | |
* p 0.01.next_float - 0.01 #=> 1.734723475976807e-18 | |
* p 1.0.next_float - 1.0 #=> 2.220446049250313e-16 | |
* p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14 | |
* | |
* f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float } | |
* #=> 0x1.47ae147ae147bp-7 0.01 | |
* # 0x1.47ae147ae147cp-7 0.010000000000000002 | |
* # 0x1.47ae147ae147dp-7 0.010000000000000004 | |
* # 0x1.47ae147ae147ep-7 0.010000000000000005 | |
* # 0x1.47ae147ae147fp-7 0.010000000000000007 | |
* # 0x1.47ae147ae148p-7 0.010000000000000009 | |
* # 0x1.47ae147ae1481p-7 0.01000000000000001 | |
* # 0x1.47ae147ae1482p-7 0.010000000000000012 | |
* # 0x1.47ae147ae1483p-7 0.010000000000000014 | |
* # 0x1.47ae147ae1484p-7 0.010000000000000016 | |
* # 0x1.47ae147ae1485p-7 0.010000000000000018 | |
* # 0x1.47ae147ae1486p-7 0.01000000000000002 | |
* # 0x1.47ae147ae1487p-7 0.010000000000000021 | |
* # 0x1.47ae147ae1488p-7 0.010000000000000023 | |
* # 0x1.47ae147ae1489p-7 0.010000000000000024 | |
* # 0x1.47ae147ae148ap-7 0.010000000000000026 | |
* # 0x1.47ae147ae148bp-7 0.010000000000000028 | |
* # 0x1.47ae147ae148cp-7 0.01000000000000003 | |
* # 0x1.47ae147ae148dp-7 0.010000000000000031 | |
* # 0x1.47ae147ae148ep-7 0.010000000000000033 | |
* | |
* f = 0.0 | |
* 100.times { f += 0.1 } | |
* p f #=> 9.99999999999998 # should be 10.0 in the ideal world. | |
* p 10-f #=> 1.9539925233402755e-14 # the floating-point error. | |
* p(10.0.next_float-10) #=> 1.7763568394002505e-15 # 1 ulp (units in the last place). | |
* p((10-f)/(10.0.next_float-10)) #=> 11.0 # the error is 11 ulp. | |
* p((10-f)/(10*Float::EPSILON)) #=> 8.8 # approximation of the above. | |
* p "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp. | |
* | |
*/ | |
static VALUE | |
flo_next_float(VALUE vx) | |
{ | |
double x, y; | |
x = NUM2DBL(vx); | |
y = nextafter(x, INFINITY); | |
return DBL2NUM(y); | |
} | |
/* | |
* call-seq: | |
* float.prev_float -> float | |
* | |
* Returns the previous representable floating-point number. | |
* | |
* (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY. | |
* | |
* Float::NAN.prev_float is Float::NAN. | |
* | |
* For example: | |
* | |
* p 0.01.prev_float #=> 0.009999999999999998 | |
* p 1.0.prev_float #=> 0.9999999999999999 | |
* p 100.0.prev_float #=> 99.99999999999999 | |
* | |
* p 0.01 - 0.01.prev_float #=> 1.734723475976807e-18 | |
* p 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16 | |
* p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14 | |
* | |
* f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float } | |
* #=> 0x1.47ae147ae147bp-7 0.01 | |
* # 0x1.47ae147ae147ap-7 0.009999999999999998 | |
* # 0x1.47ae147ae1479p-7 0.009999999999999997 | |
* # 0x1.47ae147ae1478p-7 0.009999999999999995 | |
* # 0x1.47ae147ae1477p-7 0.009999999999999993 | |
* # 0x1.47ae147ae1476p-7 0.009999999999999992 | |
* # 0x1.47ae147ae1475p-7 0.00999999999999999 | |
* # 0x1.47ae147ae1474p-7 0.009999999999999988 | |
* # 0x1.47ae147ae1473p-7 0.009999999999999986 | |
* # 0x1.47ae147ae1472p-7 0.009999999999999985 | |
* # 0x1.47ae147ae1471p-7 0.009999999999999983 | |
* # 0x1.47ae147ae147p-7 0.009999999999999981 | |
* # 0x1.47ae147ae146fp-7 0.00999999999999998 | |
* # 0x1.47ae147ae146ep-7 0.009999999999999978 | |
* # 0x1.47ae147ae146dp-7 0.009999999999999976 | |
* # 0x1.47ae147ae146cp-7 0.009999999999999974 | |
* # 0x1.47ae147ae146bp-7 0.009999999999999972 | |
* # 0x1.47ae147ae146ap-7 0.00999999999999997 | |
* # 0x1.47ae147ae1469p-7 0.009999999999999969 | |
* # 0x1.47ae147ae1468p-7 0.009999999999999967 | |
* | |
*/ | |
static VALUE | |
flo_prev_float(VALUE vx) | |
{ | |
double x, y; | |
x = NUM2DBL(vx); | |
y = nextafter(x, -INFINITY); | |
return DBL2NUM(y); | |
} | |
/* | |
* call-seq: | |
* float.floor -> integer | |
* | |
* Returns the largest integer less than or equal to +float+. | |
* | |
* 1.2.floor #=> 1 | |
* 2.0.floor #=> 2 | |
* (-1.2).floor #=> -2 | |
* (-2.0).floor #=> -2 | |
*/ | |
static VALUE | |
flo_floor(VALUE num) | |
{ | |
double f = floor(RFLOAT_VALUE(num)); | |
long val; | |
if (!FIXABLE(f)) { | |
return rb_dbl2big(f); | |
} | |
val = (long)f; | |
return LONG2FIX(val); | |
} | |
/* | |
* call-seq: | |
* float.ceil -> integer | |
* | |
* Returns the smallest Integer greater than or equal to +float+. | |
* | |
* 1.2.ceil #=> 2 | |
* 2.0.ceil #=> 2 | |
* (-1.2).ceil #=> -1 | |
* (-2.0).ceil #=> -2 | |
*/ | |
static VALUE | |
flo_ceil(VALUE num) | |
{ | |
double f = ceil(RFLOAT_VALUE(num)); | |
long val; | |
if (!FIXABLE(f)) { | |
return rb_dbl2big(f); | |
} | |
val = (long)f; | |
return LONG2FIX(val); | |
} | |
/* | |
* Assumes num is an Integer, ndigits <= 0 | |
*/ | |
static VALUE | |
int_round_0(VALUE num, int ndigits) | |
{ | |
VALUE n, f, h, r; | |
long bytes; | |
ID op; | |
/* If 10**N / 2 > num, then return 0 */ | |
/* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */ | |
bytes = FIXNUM_P(num) ? sizeof(long) : rb_funcall(num, idSize, 0); | |
if (-0.415241 * ndigits - 0.125 > bytes ) { | |
return INT2FIX(0); | |
} | |
f = int_pow(10, -ndigits); | |
if (FIXNUM_P(num) && FIXNUM_P(f)) { | |
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); | |
int neg = x < 0; | |
if (neg) x = -x; | |
x = (x + y / 2) / y * y; | |
if (neg) x = -x; | |
return LONG2NUM(x); | |
} | |
if (RB_TYPE_P(f, T_FLOAT)) { | |
/* then int_pow overflow */ | |
return INT2FIX(0); | |
} | |
h = rb_funcall(f, '/', 1, INT2FIX(2)); | |
r = rb_funcall(num, '%', 1, f); | |
n = rb_funcall(num, '-', 1, r); | |
op = negative_int_p(num) ? idLE : '<'; | |
if (!RTEST(rb_funcall(r, op, 1, h))) { | |
n = rb_funcall(n, '+', 1, f); | |
} | |
return n; | |
} | |
static VALUE | |
flo_truncate(VALUE num); | |
/* | |
* call-seq: | |
* float.round([ndigits]) -> integer or float | |
* | |
* Rounds +float+ to a given precision in decimal digits (default 0 digits). | |
* | |
* Precision may be negative. Returns a floating point number when +ndigits+ | |
* is more than zero. | |
* | |
* 1.4.round #=> 1 | |
* 1.5.round #=> 2 | |
* 1.6.round #=> 2 | |
* (-1.5).round #=> -2 | |
* | |
* 1.234567.round(2) #=> 1.23 | |
* 1.234567.round(3) #=> 1.235 | |
* 1.234567.round(4) #=> 1.2346 | |
* 1.234567.round(5) #=> 1.23457 | |
* | |
* 34567.89.round(-5) #=> 0 | |
* 34567.89.round(-4) #=> 30000 | |
* 34567.89.round(-3) #=> 35000 | |
* 34567.89.round(-2) #=> 34600 | |
* 34567.89.round(-1) #=> 34570 | |
* 34567.89.round(0) #=> 34568 | |
* 34567.89.round(1) #=> 34567.9 | |
* 34567.89.round(2) #=> 34567.89 | |
* 34567.89.round(3) #=> 34567.89 | |
* | |
*/ | |
static VALUE | |
flo_round(int argc, VALUE *argv, VALUE num) | |
{ | |
VALUE nd; | |
double number, f; | |
int ndigits = 0; | |
int binexp; | |
enum {float_dig = DBL_DIG+2}; | |
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) { | |
ndigits = NUM2INT(nd); | |
} | |
if (ndigits < 0) { | |
return int_round_0(flo_truncate(num), ndigits); | |
} | |
number = RFLOAT_VALUE(num); | |
if (ndigits == 0) { | |
return dbl2ival(number); | |
} | |
frexp(number, &binexp); | |
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}", | |
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp | |
Recall that up to float_dig digits can be needed to represent a double, | |
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits) | |
will be an integer and thus the result is the original number. | |
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so | |
if ndigits + exp < 0, the result is 0. | |
We have: | |
2 ** (binexp-1) <= |number| < 2 ** binexp | |
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10)) | |
If binexp >= 0, and since log_2(10) = 3.322259: | |
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3) | |
floor(binexp/4) <= exp <= ceil(binexp/3) | |
If binexp <= 0, swap the /4 and the /3 | |
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number | |
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0 | |
*/ | |
if (isinf(number) || isnan(number) || | |
(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) { | |
return num; | |
} | |
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) { | |
return DBL2NUM(0); | |
} | |
f = pow(10, ndigits); | |
return DBL2NUM(round(number * f) / f); | |
} | |
/* | |
* call-seq: | |
* float.to_i -> integer | |
* float.to_int -> integer | |
* float.truncate -> integer | |
* | |
* Returns the +float+ truncated to an Integer. | |
* | |
* Synonyms are #to_i, #to_int, and #truncate. | |
*/ | |
static VALUE | |
flo_truncate(VALUE num) | |
{ | |
double f = RFLOAT_VALUE(num); | |
long val; | |
if (f > 0.0) f = floor(f); | |
if (f < 0.0) f = ceil(f); | |
if (!FIXABLE(f)) { | |
return rb_dbl2big(f); | |
} | |
val = (long)f; | |
return LONG2FIX(val); | |
} | |
/* | |
* call-seq: | |
* float.positive? -> true or false | |
* | |
* Returns +true+ if +float+ is greater than 0. | |
*/ | |
static VALUE | |
flo_positive_p(VALUE num) | |
{ | |
double f = RFLOAT_VALUE(num); | |
return f > 0.0 ? Qtrue : Qfalse; | |
} | |
/* | |
* call-seq: | |
* float.negative? -> true or false | |
* | |
* Returns +true+ if +float+ is less than 0. | |
*/ | |
static VALUE | |
flo_negative_p(VALUE num) | |
{ | |
double f = RFLOAT_VALUE(num); | |
return f < 0.0 ? Qtrue : Qfalse; | |
} | |
/* | |
* call-seq: | |
* num.floor -> integer | |
* | |
* Returns the largest integer less than or equal to +num+. | |
* | |
* Numeric implements this by converting an Integer to a Float and invoking | |
* Float#floor. | |
* | |
* 1.floor #=> 1 | |
* (-1).floor #=> -1 | |
*/ | |
static VALUE | |
num_floor(VALUE num) | |
{ | |
return flo_floor(rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.ceil -> integer | |
* | |
* Returns the smallest possible Integer that is greater than or equal to | |
* +num+. | |
* | |
* Numeric achieves this by converting itself to a Float then invoking | |
* Float#ceil. | |
* | |
* 1.ceil #=> 1 | |
* 1.2.ceil #=> 2 | |
* (-1.2).ceil #=> -1 | |
* (-1.0).ceil #=> -1 | |
*/ | |
static VALUE | |
num_ceil(VALUE num) | |
{ | |
return flo_ceil(rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.round([ndigits]) -> integer or float | |
* | |
* Rounds +num+ to a given precision in decimal digits (default 0 digits). | |
* | |
* Precision may be negative. Returns a floating point number when +ndigits+ | |
* is more than zero. | |
* | |
* Numeric implements this by converting itself to a Float and invoking | |
* Float#round. | |
*/ | |
static VALUE | |
num_round(int argc, VALUE* argv, VALUE num) | |
{ | |
return flo_round(argc, argv, rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.truncate -> integer | |
* | |
* Returns +num+ truncated to an Integer. | |
* | |
* Numeric implements this by converting its value to a Float and invoking | |
* Float#truncate. | |
*/ | |
static VALUE | |
num_truncate(VALUE num) | |
{ | |
return flo_truncate(rb_Float(num)); | |
} | |
static double | |
ruby_float_step_size(double beg, double end, double unit, int excl) | |
{ | |
const double epsilon = DBL_EPSILON; | |
double n = (end - beg)/unit; | |
double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon; | |
if (isinf(unit)) { | |
return unit > 0 ? beg <= end : beg >= end; | |
} | |
if (unit == 0) { | |
return INFINITY; | |
} | |
if (err>0.5) err=0.5; | |
if (excl) { | |
if (n<=0) return 0; | |
if (n<1) | |
n = 0; | |
else | |
n = floor(n - err); | |
} | |
else { | |
if (n<0) return 0; | |
n = floor(n + err); | |
} | |
return n+1; | |
} | |
int | |
ruby_float_step(VALUE from, VALUE to, VALUE step, int excl) | |
{ | |
if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) { | |
double beg = NUM2DBL(from); | |
double end = NUM2DBL(to); | |
double unit = NUM2DBL(step); | |
double n = ruby_float_step_size(beg, end, unit, excl); | |
long i; | |
if (isinf(unit)) { | |
/* if unit is infinity, i*unit+beg is NaN */ | |
if (n) rb_yield(DBL2NUM(beg)); | |
} | |
else if (unit == 0) { | |
VALUE val = DBL2NUM(beg); | |
for (;;) | |
rb_yield(val); | |
} | |
else { | |
for (i=0; i<n; i++) { | |
double d = i*unit+beg; | |
if (unit >= 0 ? end < d : d < end) d = end; | |
rb_yield(DBL2NUM(d)); | |
} | |
} | |
return TRUE; | |
} | |
return FALSE; | |
} | |
VALUE | |
ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl) | |
{ | |
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) { | |
long delta, diff; | |
diff = FIX2LONG(step); | |
if (diff == 0) { | |
return DBL2NUM(INFINITY); | |
} | |
delta = FIX2LONG(to) - FIX2LONG(from); | |
if (diff < 0) { | |
diff = -diff; | |
delta = -delta; | |
} | |
if (excl) { | |
delta--; | |
} | |
if (delta < 0) { | |
return INT2FIX(0); | |
} | |
return ULONG2NUM(delta / diff + 1UL); | |
} | |
else if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) { | |
double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl); | |
if (isinf(n)) return DBL2NUM(n); | |
if (POSFIXABLE(n)) return LONG2FIX(n); | |
return rb_dbl2big(n); | |
} | |
else { | |
VALUE result; | |
ID cmp = '>'; | |
switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) { | |
case 0: return DBL2NUM(INFINITY); | |
case -1: cmp = '<'; break; | |
} | |
if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0); | |
result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step); | |
if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) { | |
result = rb_funcall(result, '+', 1, INT2FIX(1)); | |
} | |
return result; | |
} | |
} | |
static int | |
num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step) | |
{ | |
VALUE hash; | |
int desc; | |
argc = rb_scan_args(argc, argv, "02:", to, step, &hash); | |
if (!NIL_P(hash)) { | |
ID keys[2]; | |
VALUE values[2]; | |
keys[0] = id_to; | |
keys[1] = id_by; | |
rb_get_kwargs(hash, keys, 0, 2, values); | |
if (values[0] != Qundef) { | |
if (argc > 0) rb_raise(rb_eArgError, "to is given twice"); | |
*to = values[0]; | |
} | |
if (values[1] != Qundef) { | |
if (argc > 1) rb_raise(rb_eArgError, "step is given twice"); | |
*step = values[1]; | |
} | |
} | |
else { | |
/* compatibility */ | |
if (argc > 1 && NIL_P(*step)) { | |
rb_raise(rb_eTypeError, "step must be numeric"); | |
} | |
if (rb_equal(*step, INT2FIX(0))) { | |
rb_raise(rb_eArgError, "step can't be 0"); | |
} | |
} | |
if (NIL_P(*step)) { | |
*step = INT2FIX(1); | |
} | |
desc = !positive_int_p(*step); | |
if (NIL_P(*to)) { | |
*to = desc ? DBL2NUM(-INFINITY) : DBL2NUM(INFINITY); | |
} | |
return desc; | |
} | |
static VALUE | |
num_step_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
VALUE to, step; | |
int argc = args ? RARRAY_LENINT(args) : 0; | |
const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0; | |
num_step_scan_args(argc, argv, &to, &step); | |
return ruby_num_interval_step_size(from, to, step, FALSE); | |
} | |
/* | |
* call-seq: | |
* num.step(by: step, to: limit) {|i| block } -> self | |
* num.step(by: step, to: limit) -> an_enumerator | |
* num.step(limit=nil, step=1) {|i| block } -> self | |
* num.step(limit=nil, step=1) -> an_enumerator | |
* | |
* Invokes the given block with the sequence of numbers starting at +num+, | |
* incremented by +step+ (defaulted to +1+) on each call. | |
* | |
* The loop finishes when the value to be passed to the block is greater than | |
* +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is | |
* negative), where <i>limit</i> is defaulted to infinity. | |
* | |
* In the recommended keyword argument style, either or both of | |
* +step+ and +limit+ (default infinity) can be omitted. In the | |
* fixed position argument style, zero as a step | |
* (i.e. num.step(limit, 0)) is not allowed for historical | |
* compatibility reasons. | |
* | |
* If all the arguments are integers, the loop operates using an integer | |
* counter. | |
* | |
* If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed the following expression: | |
* | |
* floor(n + n*epsilon)+ 1 | |
* | |
* Where the +n+ is the following: | |
* | |
* n = (limit - num)/step | |
* | |
* Otherwise, the loop starts at +num+, uses either the less-than (<) or | |
* greater-than (>) operator to compare the counter against +limit+, and | |
* increments itself using the <code>+</code> operator. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* For example: | |
* | |
* p 1.step.take(4) | |
* p 10.step(by: -1).take(4) | |
* 3.step(to: 5) { |i| print i, " " } | |
* 1.step(10, 2) { |i| print i, " " } | |
* Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " } | |
* | |
* Will produce: | |
* | |
* [1, 2, 3, 4] | |
* [10, 9, 8, 7] | |
* 3 4 5 | |
* 1 3 5 7 9 | |
* 2.71828182845905 2.91828182845905 3.11828182845905 | |
*/ | |
static VALUE | |
num_step(int argc, VALUE *argv, VALUE from) | |
{ | |
VALUE to, step; | |
int desc, inf; | |
RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size); | |
desc = num_step_scan_args(argc, argv, &to, &step); | |
if (RTEST(rb_num_coerce_cmp(step, INT2FIX(0), id_eq))) { | |
inf = 1; | |
} | |
else if (RB_TYPE_P(to, T_FLOAT)) { | |
double f = RFLOAT_VALUE(to); | |
inf = isinf(f) && (signbit(f) ? desc : !desc); | |
} | |
else inf = 0; | |
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) { | |
long i = FIX2LONG(from); | |
long diff = FIX2LONG(step); | |
if (inf) { | |
for (;; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
else { | |
long end = FIX2LONG(to); | |
if (desc) { | |
for (; i >= end; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
else { | |
for (; i <= end; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
} | |
else if (!ruby_float_step(from, to, step, FALSE)) { | |
VALUE i = from; | |
if (inf) { | |
for (;; i = rb_funcall(i, '+', 1, step)) | |
rb_yield(i); | |
} | |
else { | |
ID cmp = desc ? '<' : '>'; | |
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step)) | |
rb_yield(i); | |
} | |
} | |
return from; | |
} | |
static char * | |
out_of_range_float(char (*pbuf)[24], VALUE val) | |
{ | |
char *const buf = *pbuf; | |
char *s; | |
snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val)); | |
if ((s = strchr(buf, ' ')) != 0) *s = '\0'; | |
return buf; | |
} | |
#define FLOAT_OUT_OF_RANGE(val, type) do { \ | |
char buf[24]; \ | |
rb_raise(rb_eRangeError, "float %s out of range of "type, \ | |
out_of_range_float(&buf, (val))); \ | |
} while (0) | |
#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1) | |
#define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1)) | |
#define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1)) | |
#define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \ | |
(LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \ | |
LONG_MIN <= (n): \ | |
LONG_MIN_MINUS_ONE < (n)) | |
long | |
rb_num2long(VALUE val) | |
{ | |
again: | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); | |
} | |
if (FIXNUM_P(val)) return FIX2LONG(val); | |
else if (RB_TYPE_P(val, T_FLOAT)) { | |
if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE | |
&& LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) { | |
return (long)RFLOAT_VALUE(val); | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "integer"); | |
} | |
} | |
else if (RB_TYPE_P(val, T_BIGNUM)) { | |
return rb_big2long(val); | |
} | |
else { | |
val = rb_to_int(val); | |
goto again; | |
} | |
} | |
static unsigned long | |
rb_num2ulong_internal(VALUE val, int *wrap_p) | |
{ | |
again: | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); | |
} | |
if (FIXNUM_P(val)) { | |
long l = FIX2LONG(val); /* this is FIX2LONG, inteneded */ | |
if (wrap_p) | |
*wrap_p = l < 0; | |
return (unsigned long)l; | |
} | |
else if (RB_TYPE_P(val, T_FLOAT)) { | |
if (RFLOAT_VALUE(val) < ULONG_MAX_PLUS_ONE | |
&& LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) { | |
double d = RFLOAT_VALUE(val); | |
if (wrap_p) | |
*wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */ | |
if (0 <= d) | |
return (unsigned long)d; | |
return (unsigned long)(long)d; | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "integer"); | |
} | |
} | |
else if (RB_TYPE_P(val, T_BIGNUM)) { | |
{ | |
unsigned long ul = rb_big2ulong(val); | |
if (wrap_p) | |
*wrap_p = BIGNUM_NEGATIVE_P(val); | |
return ul; | |
} | |
} | |
else { | |
val = rb_to_int(val); | |
goto again; | |
} | |
} | |
unsigned long | |
rb_num2ulong(VALUE val) | |
{ | |
return rb_num2ulong_internal(val, NULL); | |
} | |
#if SIZEOF_INT < SIZEOF_LONG | |
void | |
rb_out_of_int(SIGNED_VALUE num) | |
{ | |
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", | |
num, num < 0 ? "small" : "big"); | |
} | |
static void | |
check_int(long num) | |
{ | |
if ((long)(int)num != num) { | |
rb_out_of_int(num); | |
} | |
} | |
static void | |
check_uint(unsigned long num, int sign) | |
{ | |
if (sign) { | |
/* minus */ | |
if (num < (unsigned long)INT_MIN) | |
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num); | |
} | |
else { | |
/* plus */ | |
if (UINT_MAX < num) | |
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num); | |
} | |
} | |
long | |
rb_num2int(VALUE val) | |
{ | |
long num = rb_num2long(val); | |
check_int(num); | |
return num; | |
} | |
long | |
rb_fix2int(VALUE val) | |
{ | |
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); | |
check_int(num); | |
return num; | |
} | |
unsigned long | |
rb_num2uint(VALUE val) | |
{ | |
int wrap; | |
unsigned long num = rb_num2ulong_internal(val, &wrap); | |
check_uint(num, wrap); | |
return num; | |
} | |
unsigned long | |
rb_fix2uint(VALUE val) | |
{ | |
unsigned long num; | |
if (!FIXNUM_P(val)) { | |
return rb_num2uint(val); | |
} | |
num = FIX2ULONG(val); | |
check_uint(num, negative_int_p(val)); | |
return num; | |
} | |
#else | |
long | |
rb_num2int(VALUE val) | |
{ | |
return rb_num2long(val); | |
} | |
long | |
rb_fix2int(VALUE val) | |
{ | |
return FIX2INT(val); | |
} | |
#endif | |
void | |
rb_out_of_short(SIGNED_VALUE num) | |
{ | |
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'", | |
num, num < 0 ? "small" : "big"); | |
} | |
static void | |
check_short(long num) | |
{ | |
if ((long)(short)num != num) { | |
rb_out_of_short(num); | |
} | |
} | |
static void | |
check_ushort(unsigned long num, int sign) | |
{ | |
if (sign) { | |
/* minus */ | |
if (num < (unsigned long)SHRT_MIN) | |
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num); | |
} | |
else { | |
/* plus */ | |
if (USHRT_MAX < num) | |
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num); | |
} | |
} | |
short | |
rb_num2short(VALUE val) | |
{ | |
long num = rb_num2long(val); | |
check_short(num); | |
return num; | |
} | |
short | |
rb_fix2short(VALUE val) | |
{ | |
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); | |
check_short(num); | |
return num; | |
} | |
unsigned short | |
rb_num2ushort(VALUE val) | |
{ | |
int wrap; | |
unsigned long num = rb_num2ulong_internal(val, &wrap); | |
check_ushort(num, wrap); | |
return num; | |
} | |
unsigned short | |
rb_fix2ushort(VALUE val) | |
{ | |
unsigned long num; | |
if (!FIXNUM_P(val)) { | |
return rb_num2ushort(val); | |
} | |
num = FIX2ULONG(val); | |
check_ushort(num, negative_int_p(val)); | |
return num; | |
} | |
VALUE | |
rb_num2fix(VALUE val) | |
{ | |
long v; | |
if (FIXNUM_P(val)) return val; | |
v = rb_num2long(val); | |
if (!FIXABLE(v)) | |
rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v); | |
return LONG2FIX(v); | |
} | |
#if HAVE_LONG_LONG | |
#define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1) | |
#define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1)) | |
#define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1)) | |
#ifndef ULLONG_MAX | |
#define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1) | |
#endif | |
#define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \ | |
(LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \ | |
LLONG_MIN <= (n): \ | |
LLONG_MIN_MINUS_ONE < (n)) | |
LONG_LONG | |
rb_num2ll(VALUE val) | |
{ | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil"); | |
} | |
if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val); | |
else if (RB_TYPE_P(val, T_FLOAT)) { | |
if (RFLOAT_VALUE(val) < LLONG_MAX_PLUS_ONE | |
&& (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val)))) { | |
return (LONG_LONG)(RFLOAT_VALUE(val)); | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "long long"); | |
} | |
} | |
else if (RB_TYPE_P(val, T_BIGNUM)) { | |
return rb_big2ll(val); | |
} | |
else if (RB_TYPE_P(val, T_STRING)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from string"); | |
} | |
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from boolean"); | |
} | |
val = rb_to_int(val); | |
return NUM2LL(val); | |
} | |
unsigned LONG_LONG | |
rb_num2ull(VALUE val) | |
{ | |
if (RB_TYPE_P(val, T_NIL)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil"); | |
} | |
else if (RB_TYPE_P(val, T_FIXNUM)) { | |
return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, inteneded */ | |
} | |
else if (RB_TYPE_P(val, T_FLOAT)) { | |
if (RFLOAT_VALUE(val) < ULLONG_MAX_PLUS_ONE | |
&& LLONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) { | |
if (0 <= RFLOAT_VALUE(val)) | |
return (unsigned LONG_LONG)(RFLOAT_VALUE(val)); | |
return (unsigned LONG_LONG)(LONG_LONG)(RFLOAT_VALUE(val)); | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "unsigned long long"); | |
} | |
} | |
else if (RB_TYPE_P(val, T_BIGNUM)) { | |
return rb_big2ull(val); | |
} | |
else if (RB_TYPE_P(val, T_STRING)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from string"); | |
} | |
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from boolean"); | |
} | |
val = rb_to_int(val); | |
return NUM2ULL(val); | |
} | |
#endif /* HAVE_LONG_LONG */ | |
/* | |
* Document-class: Integer | |
* | |
* This class is the basis for the two concrete classes that hold whole | |
* numbers, Bignum and Fixnum. | |
* | |
*/ | |
/* | |
* call-seq: | |
* int.to_i -> integer | |
* | |
* As +int+ is already an Integer, all these methods simply return the receiver. | |
* | |
* Synonyms are #to_int, #floor, #ceil, #truncate. | |
*/ | |
static VALUE | |
int_to_i(VALUE num) | |
{ | |
return num; | |
} | |
/* | |
* call-seq: | |
* int.integer? -> true | |
* | |
* Since +int+ is already an Integer, this always returns +true+. | |
*/ | |
static VALUE | |
int_int_p(VALUE num) | |
{ | |
return Qtrue; | |
} | |
/* | |
* call-seq: | |
* int.odd? -> true or false | |
* | |
* Returns +true+ if +int+ is an odd number. | |
*/ | |
static VALUE | |
int_odd_p(VALUE num) | |
{ | |
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* int.even? -> true or false | |
* | |
* Returns +true+ if +int+ is an even number. | |
*/ | |
static VALUE | |
int_even_p(VALUE num) | |
{ | |
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* int.next -> integer | |
* int.succ -> integer | |
* | |
* Returns the Integer equal to +int+ + 1. | |
* | |
* 1.next #=> 2 | |
* (-1).next #=> 0 | |
*/ | |
static VALUE | |
fix_succ(VALUE num) | |
{ | |
long i = FIX2LONG(num) + 1; | |
return LONG2NUM(i); | |
} | |
/* | |
* call-seq: | |
* int.next -> integer | |
* int.succ -> integer | |
* | |
* Returns the Integer equal to +int+ + 1, same as Fixnum#next. | |
* | |
* 1.next #=> 2 | |
* (-1).next #=> 0 | |
*/ | |
VALUE | |
rb_int_succ(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
long i = FIX2LONG(num) + 1; | |
return LONG2NUM(i); | |
} | |
if (RB_TYPE_P(num, T_BIGNUM)) { | |
return rb_big_plus(num, INT2FIX(1)); | |
} | |
return rb_funcall(num, '+', 1, INT2FIX(1)); | |
} | |
#define int_succ rb_int_succ | |
/* | |
* call-seq: | |
* int.pred -> integer | |
* | |
* Returns the Integer equal to +int+ - 1. | |
* | |
* 1.pred #=> 0 | |
* (-1).pred #=> -2 | |
*/ | |
VALUE | |
rb_int_pred(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
long i = FIX2LONG(num) - 1; | |
return LONG2NUM(i); | |
} | |
if (RB_TYPE_P(num, T_BIGNUM)) { | |
return rb_big_minus(num, INT2FIX(1)); | |
} | |
return rb_funcall(num, '-', 1, INT2FIX(1)); | |
} | |
#define int_pred rb_int_pred | |
VALUE | |
rb_enc_uint_chr(unsigned int code, rb_encoding *enc) | |
{ | |
int n; | |
VALUE str; | |
switch (n = rb_enc_codelen(code, enc)) { | |
case ONIGERR_INVALID_CODE_POINT_VALUE: | |
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); | |
break; | |
case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE: | |
case 0: | |
rb_raise(rb_eRangeError, "%u out of char range", code); | |
break; | |
} | |
str = rb_enc_str_new(0, n, enc); | |
rb_enc_mbcput(code, RSTRING_PTR(str), enc); | |
if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) { | |
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); | |
} | |
return str; | |
} | |
/* | |
* call-seq: | |
* int.chr([encoding]) -> string | |
* | |
* Returns a string containing the character represented by the +int+'s value | |
* according to +encoding+. | |
* | |
* 65.chr #=> "A" | |
* 230.chr #=> "\346" | |
* 255.chr(Encoding::UTF_8) #=> "\303\277" | |
*/ | |
static VALUE | |
int_chr(int argc, VALUE *argv, VALUE num) | |
{ | |
char c; | |
unsigned int i; | |
rb_encoding *enc; | |
if (rb_num_to_uint(num, &i) == 0) { | |
} | |
else if (FIXNUM_P(num)) { | |
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); | |
} | |
else { | |
rb_raise(rb_eRangeError, "bignum out of char range"); | |
} | |
switch (argc) { | |
case 0: | |
if (0xff < i) { | |
enc = rb_default_internal_encoding(); | |
if (!enc) { | |
rb_raise(rb_eRangeError, "%d out of char range", i); | |
} | |
goto decode; | |
} | |
c = (char)i; | |
if (i < 0x80) { | |
return rb_usascii_str_new(&c, 1); | |
} | |
else { | |
return rb_str_new(&c, 1); | |
} | |
case 1: | |
break; | |
default: | |
rb_check_arity(argc, 0, 1); | |
break; | |
} | |
enc = rb_to_encoding(argv[0]); | |
if (!enc) enc = rb_ascii8bit_encoding(); | |
decode: | |
return rb_enc_uint_chr(i, enc); | |
} | |
/* | |
* call-seq: | |
* int.ord -> self | |
* | |
* Returns the +int+ itself. | |
* | |
* ?a.ord #=> 97 | |
* | |
* This method is intended for compatibility to character constant in Ruby | |
* 1.9. | |
* | |
* For example, ?a.ord returns 97 both in 1.8 and 1.9. | |
*/ | |
static VALUE | |
int_ord(VALUE num) | |
{ | |
return num; | |
} | |
/******************************************************************** | |
* | |
* Document-class: Fixnum | |
* | |
* Holds Integer values that can be represented in a native machine word | |
* (minus 1 bit). If any operation on a Fixnum exceeds this range, the value | |
* is automatically converted to a Bignum. | |
* | |
* Fixnum objects have immediate value. This means that when they are assigned | |
* or passed as parameters, the actual object is passed, rather than a | |
* reference to that object. | |
* | |
* Assignment does not alias Fixnum objects. There is effectively only one | |
* Fixnum object instance for any given integer value, so, for example, you | |
* cannot add a singleton method to a Fixnum. Any attempt to add a singleton | |
* method to a Fixnum object will raise a TypeError. | |
*/ | |
/* | |
* call-seq: | |
* -fix -> integer | |
* | |
* Negates +fix+, which may return a Bignum. | |
*/ | |
static VALUE | |
fix_uminus(VALUE num) | |
{ | |
return LONG2NUM(-FIX2LONG(num)); | |
} | |
VALUE | |
rb_fix2str(VALUE x, int base) | |
{ | |
char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf; | |
long val = FIX2LONG(x); | |
int neg = 0; | |
if (base < 2 || 36 < base) { | |
rb_raise(rb_eArgError, "invalid radix %d", base); | |
} | |
if (val == 0) { | |
return rb_usascii_str_new2("0"); | |
} | |
if (val < 0) { | |
val = -val; | |
neg = 1; | |
} | |
*--b = '\0'; | |
do { | |
*--b = ruby_digitmap[(int)(val % base)]; | |
} while (val /= base); | |
if (neg) { | |
*--b = '-'; | |
} | |
return rb_usascii_str_new2(b); | |
} | |
/* | |
* call-seq: | |
* fix.to_s(base=10) -> string | |
* | |
* Returns a string containing the representation of +fix+ radix +base+ | |
* (between 2 and 36). | |
* | |
* 12345.to_s #=> "12345" | |
* 12345.to_s(2) #=> "11000000111001" | |
* 12345.to_s(8) #=> "30071" | |
* 12345.to_s(10) #=> "12345" | |
* 12345.to_s(16) #=> "3039" | |
* 12345.to_s(36) #=> "9ix" | |
* | |
*/ | |
static VALUE | |
fix_to_s(int argc, VALUE *argv, VALUE x) | |
{ | |
int base; | |
if (argc == 0) base = 10; | |
else { | |
VALUE b; | |
rb_scan_args(argc, argv, "01", &b); | |
base = NUM2INT(b); | |
} | |
return rb_fix2str(x, base); | |
} | |
/* | |
* call-seq: | |
* fix + numeric -> numeric_result | |
* | |
* Performs addition: the class of the resulting object depends on the class of | |
* +numeric+ and on the magnitude of the result. It may return a Bignum. | |
*/ | |
static VALUE | |
fix_plus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long a, b, c; | |
VALUE r; | |
a = FIX2LONG(x); | |
b = FIX2LONG(y); | |
c = a + b; | |
r = LONG2NUM(c); | |
return r; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_plus(y, x); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y)); | |
} | |
else if (RB_TYPE_P(y, T_COMPLEX)) { | |
VALUE rb_nucomp_add(VALUE, VALUE); | |
return rb_nucomp_add(y, x); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '+'); | |
} | |
} | |
/* | |
* call-seq: | |
* fix - numeric -> numeric_result | |
* | |
* Performs subtraction: the class of the resulting object depends on the class | |
* of +numeric+ and on the magnitude of the result. It may return a Bignum. | |
*/ | |
static VALUE | |
fix_minus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long a, b, c; | |
VALUE r; | |
a = FIX2LONG(x); | |
b = FIX2LONG(y); | |
c = a - b; | |
r = LONG2NUM(c); | |
return r; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_minus(x, y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '-'); | |
} | |
} | |
#define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2)) | |
/*tests if N*N would overflow*/ | |
#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX)) | |
/* | |
* call-seq: | |
* fix * numeric -> numeric_result | |
* | |
* Performs multiplication: the class of the resulting object depends on the | |
* class of +numeric+ and on the magnitude of the result. It may return a | |
* Bignum. | |
*/ | |
static VALUE | |
fix_mul(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
#ifdef __HP_cc | |
/* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */ | |
volatile | |
#endif | |
long a, b; | |
#if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG | |
LONG_LONG d; | |
#else | |
VALUE r; | |
#endif | |
a = FIX2LONG(x); | |
b = FIX2LONG(y); | |
#if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG | |
d = (LONG_LONG)a * b; | |
if (FIXABLE(d)) return LONG2FIX(d); | |
return rb_ll2inum(d); | |
#else | |
if (a == 0) return x; | |
if (MUL_OVERFLOW_FIXNUM_P(a, b)) | |
r = rb_big_mul(rb_int2big(a), rb_int2big(b)); | |
else | |
r = LONG2FIX(a * b); | |
return r; | |
#endif | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_mul(y, x); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y)); | |
} | |
else if (RB_TYPE_P(y, T_COMPLEX)) { | |
VALUE rb_nucomp_mul(VALUE, VALUE); | |
return rb_nucomp_mul(y, x); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '*'); | |
} | |
} | |
static void | |
fixdivmod(long x, long y, long *divp, long *modp) | |
{ | |
long div, mod; | |
if (y == 0) rb_num_zerodiv(); | |
if (y < 0) { | |
if (x < 0) | |
div = -x / -y; | |
else | |
div = - (x / -y); | |
} | |
else { | |
if (x < 0) | |
div = - (-x / y); | |
else | |
div = x / y; | |
} | |
mod = x - div*y; | |
if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) { | |
mod += y; | |
div -= 1; | |
} | |
if (divp) *divp = div; | |
if (modp) *modp = mod; | |
} | |
/* | |
* call-seq: | |
* fix.fdiv(numeric) -> float | |
* | |
* Returns the floating point result of dividing +fix+ by +numeric+. | |
* | |
* 654321.fdiv(13731) #=> 47.6528293642124 | |
* 654321.fdiv(13731.24) #=> 47.6519964693647 | |
* | |
*/ | |
static VALUE | |
fix_fdiv(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return DBL2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y)); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_fdiv(rb_int2big(FIX2LONG(x)), y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, rb_intern("fdiv")); | |
} | |
} | |
static VALUE | |
fix_divide(VALUE x, VALUE y, ID op) | |
{ | |
if (FIXNUM_P(y)) { | |
long div; | |
fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0); | |
return LONG2NUM(div); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_div(x, y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
{ | |
double div; | |
if (op == '/') { | |
div = (double)FIX2LONG(x) / RFLOAT_VALUE(y); | |
return DBL2NUM(div); | |
} | |
else { | |
if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv(); | |
div = (double)FIX2LONG(x) / RFLOAT_VALUE(y); | |
return rb_dbl2big(floor(div)); | |
} | |
} | |
} | |
else { | |
if (RB_TYPE_P(y, T_RATIONAL) && | |
op == '/' && FIX2LONG(x) == 1) | |
return rb_rational_reciprocal(y); | |
return rb_num_coerce_bin(x, y, op); | |
} | |
} | |
/* | |
* call-seq: | |
* fix / numeric -> numeric_result | |
* | |
* Performs division: the class of the resulting object depends on the class of | |
* +numeric+ and on the magnitude of the result. It may return a Bignum. | |
*/ | |
static VALUE | |
fix_div(VALUE x, VALUE y) | |
{ | |
return fix_divide(x, y, '/'); | |
} | |
/* | |
* call-seq: | |
* fix.div(numeric) -> integer | |
* | |
* Performs integer division: returns integer result of dividing +fix+ by | |
* +numeric+. | |
*/ | |
static VALUE | |
fix_idiv(VALUE x, VALUE y) | |
{ | |
return fix_divide(x, y, id_div); | |
} | |
/* | |
* call-seq: | |
* fix % other -> real | |
* fix.modulo(other) -> real | |
* | |
* Returns +fix+ modulo +other+. | |
* | |
* See Numeric#divmod for more information. | |
*/ | |
static VALUE | |
fix_mod(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long mod; | |
fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod); | |
return LONG2NUM(mod); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_modulo(x, y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y))); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '%'); | |
} | |
} | |
/* | |
* call-seq: | |
* fix.divmod(numeric) -> array | |
* | |
* See Numeric#divmod. | |
*/ | |
static VALUE | |
fix_divmod(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long div, mod; | |
fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod); | |
return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod)); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_divmod(x, y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
{ | |
double div, mod; | |
volatile VALUE a, b; | |
flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod); | |
a = dbl2ival(div); | |
b = DBL2NUM(mod); | |
return rb_assoc_new(a, b); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(x, y, id_divmod); | |
} | |
} | |
static VALUE | |
int_pow(long x, unsigned long y) | |
{ | |
int neg = x < 0; | |
long z = 1; | |
if (neg) x = -x; | |
if (y & 1) | |
z = x; | |
else | |
neg = 0; | |
y &= ~1; | |
do { | |
while (y % 2 == 0) { | |
if (!FIT_SQRT_LONG(x)) { | |
VALUE v; | |
bignum: | |
v = rb_big_pow(rb_int2big(x), LONG2NUM(y)); | |
if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v); | |
return v; | |
} | |
x = x * x; | |
y >>= 1; | |
} | |
{ | |
if (MUL_OVERFLOW_FIXNUM_P(x, z)) { | |
goto bignum; | |
} | |
z = x * z; | |
} | |
} while (--y); | |
if (neg) z = -z; | |
return LONG2NUM(z); | |
} | |
VALUE | |
rb_int_positive_pow(long x, unsigned long y) | |
{ | |
return int_pow(x, y); | |
} | |
/* | |
* call-seq: | |
* fix ** numeric -> numeric_result | |
* | |
* Raises +fix+ to the power of +numeric+, which may be negative or | |
* fractional. | |
* | |
* 2 ** 3 #=> 8 | |
* 2 ** -1 #=> (1/2) | |
* 2 ** 0.5 #=> 1.4142135623731 | |
*/ | |
static VALUE | |
fix_pow(VALUE x, VALUE y) | |
{ | |
long a = FIX2LONG(x); | |
if (FIXNUM_P(y)) { | |
long b = FIX2LONG(y); | |
if (a == 1) return INT2FIX(1); | |
if (a == -1) { | |
if (b % 2 == 0) | |
return INT2FIX(1); | |
else | |
return INT2FIX(-1); | |
} | |
if (b < 0) | |
return rb_funcall(rb_rational_raw1(x), idPow, 1, y); | |
if (b == 0) return INT2FIX(1); | |
if (b == 1) return x; | |
if (a == 0) { | |
if (b > 0) return INT2FIX(0); | |
return DBL2NUM(INFINITY); | |
} | |
return int_pow(a, b); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
if (a == 1) return INT2FIX(1); | |
if (a == -1) { | |
if (int_even_p(y)) return INT2FIX(1); | |
else return INT2FIX(-1); | |
} | |
if (negative_int_p(y)) | |
return rb_funcall(rb_rational_raw1(x), idPow, 1, y); | |
if (a == 0) return INT2FIX(0); | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_pow(x, y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
if (RFLOAT_VALUE(y) == 0.0) return DBL2NUM(1.0); | |
if (a == 0) { | |
return DBL2NUM(RFLOAT_VALUE(y) < 0 ? INFINITY : 0.0); | |
} | |
if (a == 1) return DBL2NUM(1.0); | |
{ | |
double dy = RFLOAT_VALUE(y); | |
if (a < 0 && dy != round(dy)) | |
return rb_funcall(rb_complex_raw1(x), idPow, 1, y); | |
return DBL2NUM(pow((double)a, dy)); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(x, y, idPow); | |
} | |
} | |
/* | |
* call-seq: | |
* fix == other -> true or false | |
* | |
* Return +true+ if +fix+ equals +other+ numerically. | |
* | |
* 1 == 2 #=> false | |
* 1 == 1.0 #=> true | |
*/ | |
static VALUE | |
fix_equal(VALUE x, VALUE y) | |
{ | |
if (x == y) return Qtrue; | |
if (FIXNUM_P(y)) return Qfalse; | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_eq(y, x); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return rb_integer_float_eq(x, y); | |
} | |
else { | |
return num_equal(x, y); | |
} | |
} | |
/* | |
* call-seq: | |
* fix <=> numeric -> -1, 0, +1 or nil | |
* | |
* Comparison---Returns +-1+, +0+, ++1+ or +nil+ depending on whether +fix+ is | |
* less than, equal to, or greater than +numeric+. | |
* | |
* This is the basis for the tests in the Comparable module. | |
* | |
* +nil+ is returned if the two values are incomparable. | |
*/ | |
static VALUE | |
fix_cmp(VALUE x, VALUE y) | |
{ | |
if (x == y) return INT2FIX(0); | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1); | |
return INT2FIX(-1); | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_cmp(rb_int2big(FIX2LONG(x)), y); | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return rb_integer_float_cmp(x, y); | |
} | |
else { | |
return rb_num_coerce_cmp(x, y, id_cmp); | |
} | |
} | |
/* | |
* call-seq: | |
* fix > real -> true or false | |
* | |
* Returns +true+ if the value of +fix+ is greater than that of +real+. | |
*/ | |
static VALUE | |
fix_gt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse; | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '>'); | |
} | |
} | |
/* | |
* call-seq: | |
* fix >= real -> true or false | |
* | |
* Returns +true+ if the value of +fix+ is greater than or equal to that of | |
* +real+. | |
*/ | |
static VALUE | |
fix_ge(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
VALUE rel = rb_integer_float_cmp(x, y); | |
return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse; | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idGE); | |
} | |
} | |
/* | |
* call-seq: | |
* fix < real -> true or false | |
* | |
* Returns +true+ if the value of +fix+ is less than that of +real+. | |
*/ | |
static VALUE | |
fix_lt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse; | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '<'); | |
} | |
} | |
/* | |
* call-seq: | |
* fix <= real -> true or false | |
* | |
* Returns +true+ if the value of +fix+ is less than or equal to that of | |
* +real+. | |
*/ | |
static VALUE | |
fix_le(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue; | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_BIGNUM)) { | |
return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse; | |
} | |
else if (RB_TYPE_P(y, T_FLOAT)) { | |
VALUE rel = rb_integer_float_cmp(x, y); | |
return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse; | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idLE); | |
} | |
} | |
/* | |
* call-seq: | |
* ~fix -> integer | |
* | |
* One's complement: returns a number where each bit is flipped. | |
*/ | |
static VALUE | |
fix_rev(VALUE num) | |
{ | |
return ~num | FIXNUM_FLAG; | |
} | |
static int | |
bit_coerce(VALUE *x, VALUE *y) | |
{ | |
if (!FIXNUM_P(*y) && !RB_TYPE_P(*y, T_BIGNUM)) { | |
VALUE orig = *x; | |
do_coerce(x, y, TRUE); | |
if (!FIXNUM_P(*x) && !RB_TYPE_P(*x, T_BIGNUM) | |
&& !FIXNUM_P(*y) && !RB_TYPE_P(*y, T_BIGNUM)) { | |
coerce_failed(orig, *y); | |
} | |
} | |
return TRUE; | |
} | |
VALUE | |
rb_num_coerce_bit(VALUE x, VALUE y, ID func) | |
{ | |
bit_coerce(&x, &y); | |
return rb_funcall(x, func, 1, y); | |
} | |
/* | |
* call-seq: | |
* fix & integer -> integer_result | |
* | |
* Bitwise AND. | |
*/ | |
static VALUE | |
fix_and(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) & FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_and(y, x); | |
} | |
bit_coerce(&x, &y); | |
return rb_funcall(x, '&', 1, y); | |
} | |
/* | |
* call-seq: | |
* fix | integer -> integer_result | |
* | |
* Bitwise OR. | |
*/ | |
static VALUE | |
fix_or(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) | FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_or(y, x); | |
} | |
bit_coerce(&x, &y); | |
return rb_funcall(x, '|', 1, y); | |
} | |
/* | |
* call-seq: | |
* fix ^ integer -> integer_result | |
* | |
* Bitwise EXCLUSIVE OR. | |
*/ | |
static VALUE | |
fix_xor(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) ^ FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_TYPE_P(y, T_BIGNUM)) { | |
return rb_big_xor(y, x); | |
} | |
bit_coerce(&x, &y); | |
return rb_funcall(x, '^', 1, y); | |
} | |
static VALUE fix_lshift(long, unsigned long); | |
static VALUE fix_rshift(long, unsigned long); | |
/* | |
* call-seq: | |
* fix << count -> integer | |
* | |
* Shifts +fix+ left +count+ positions, or right if +count+ is negative. | |
*/ | |
static VALUE | |
rb_fix_lshift(VALUE x, VALUE y) | |
{ | |
long val, width; | |
val = NUM2LONG(x); | |
if (!FIXNUM_P(y)) | |
return rb_big_lshift(rb_int2big(val), y); | |
width = FIX2LONG(y); | |
if (width < 0) | |
return fix_rshift(val, (unsigned long)-width); | |
return fix_lshift(val, width); | |
} | |
static VALUE | |
fix_lshift(long val, unsigned long width) | |
{ | |
if (width > (SIZEOF_LONG*CHAR_BIT-1) | |
|| ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) { | |
return rb_big_lshift(rb_int2big(val), ULONG2NUM(width)); | |
} | |
val = val << width; | |
return LONG2NUM(val); | |
} | |
/* | |
* call-seq: | |
* fix >> count -> integer | |
* | |
* Shifts +fix+ right +count+ positions, or left if +count+ is negative. | |
*/ | |
static VALUE | |
rb_fix_rshift(VALUE x, VALUE y) | |
{ | |
long i, val; | |
val = FIX2LONG(x); | |
if (!FIXNUM_P(y)) | |
return rb_big_rshift(rb_int2big(val), y); | |
i = FIX2LONG(y); | |
if (i == 0) return x; | |
if (i < 0) | |
return fix_lshift(val, (unsigned long)-i); | |
return fix_rshift(val, i); | |
} | |
static VALUE | |
fix_rshift(long val, unsigned long i) | |
{ | |
if (i >= sizeof(long)*CHAR_BIT-1) { | |
if (val < 0) return INT2FIX(-1); | |
return INT2FIX(0); | |
} | |
val = RSHIFT(val, i); | |
return LONG2FIX(val); | |
} | |
/* | |
* call-seq: | |
* fix[n] -> 0, 1 | |
* | |
* Bit Reference---Returns the +n+th bit in the binary representation of | |
* +fix+, where <code>fix[0]</code> is the least significant bit. | |
* | |
* For example: | |
* | |
* a = 0b11001100101010 | |
* 30.downto(0) do |n| print a[n] end | |
* #=> 0000000000000000011001100101010 | |
*/ | |
static VALUE | |
fix_aref(VALUE fix, VALUE idx) | |
{ | |
long val = FIX2LONG(fix); | |
long i; | |
idx = rb_to_int(idx); | |
if (!FIXNUM_P(idx)) { | |
idx = rb_big_norm(idx); | |
if (!FIXNUM_P(idx)) { | |
if (!BIGNUM_SIGN(idx) || val >= 0) | |
return INT2FIX(0); | |
return INT2FIX(1); | |
} | |
} | |
i = FIX2LONG(idx); | |
if (i < 0) return INT2FIX(0); | |
if (SIZEOF_LONG*CHAR_BIT-1 <= i) { | |
if (val < 0) return INT2FIX(1); | |
return INT2FIX(0); | |
} | |
if (val & (1L<<i)) | |
return INT2FIX(1); | |
return INT2FIX(0); | |
} | |
/* | |
* call-seq: | |
* fix.to_f -> float | |
* | |
* Converts +fix+ to a Float. | |
* | |
*/ | |
static VALUE | |
fix_to_f(VALUE num) | |
{ | |
double val; | |
val = (double)FIX2LONG(num); | |
return DBL2NUM(val); | |
} | |
/* | |
* call-seq: | |
* fix.abs -> integer | |
* fix.magnitude -> integer | |
* | |
* Returns the absolute value of +fix+. | |
* | |
* -12345.abs #=> 12345 | |
* 12345.abs #=> 12345 | |
* | |
*/ | |
static VALUE | |
fix_abs(VALUE fix) | |
{ | |
long i = FIX2LONG(fix); | |
if (i < 0) i = -i; | |
return LONG2NUM(i); | |
} | |
/* | |
* call-seq: | |
* fix.size -> fixnum | |
* | |
* Returns the number of bytes in the machine representation of +fix+. | |
* | |
* 1.size #=> 4 | |
* -1.size #=> 4 | |
* 2147483647.size #=> 4 | |
*/ | |
static VALUE | |
fix_size(VALUE fix) | |
{ | |
return INT2FIX(sizeof(long)); | |
} | |
/* | |
* call-seq: | |
* int.bit_length -> integer | |
* | |
* Returns the number of bits of the value of <i>int</i>. | |
* | |
* "the number of bits" means that | |
* the bit position of the highest bit which is different to the sign bit. | |
* (The bit position of the bit 2**n is n+1.) | |
* If there is no such bit (zero or minus one), zero is returned. | |
* | |
* I.e. This method returns ceil(log2(int < 0 ? -int : int+1)). | |
* | |
* (-2**12-1).bit_length #=> 13 | |
* (-2**12).bit_length #=> 12 | |
* (-2**12+1).bit_length #=> 12 | |
* -0x101.bit_length #=> 9 | |
* -0x100.bit_length #=> 8 | |
* -0xff.bit_length #=> 8 | |
* -2.bit_length #=> 1 | |
* -1.bit_length #=> 0 | |
* 0.bit_length #=> 0 | |
* 1.bit_length #=> 1 | |
* 0xff.bit_length #=> 8 | |
* 0x100.bit_length #=> 9 | |
* (2**12-1).bit_length #=> 12 | |
* (2**12).bit_length #=> 13 | |
* (2**12+1).bit_length #=> 13 | |
* | |
* This method can be used to detect overflow in Array#pack as follows. | |
* | |
* if n.bit_length < 32 | |
* [n].pack("l") # no overflow | |
* else | |
* raise "overflow" | |
* end | |
*/ | |
static VALUE | |
rb_fix_bit_length(VALUE fix) | |
{ | |
long v = FIX2LONG(fix); | |
if (v < 0) | |
v = ~v; | |
return LONG2FIX(bit_length(v)); | |
} | |
static VALUE | |
int_upto_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE); | |
} | |
/* | |
* call-seq: | |
* int.upto(limit) {|i| block } -> self | |
* int.upto(limit) -> an_enumerator | |
* | |
* Iterates the given block, passing in integer values from +int+ up to and | |
* including +limit+. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* For example: | |
* | |
* 5.upto(10) { |i| print i, " " } | |
* #=> 5 6 7 8 9 10 | |
*/ | |
static VALUE | |
int_upto(VALUE from, VALUE to) | |
{ | |
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); | |
if (FIXNUM_P(from) && FIXNUM_P(to)) { | |
long i, end; | |
end = FIX2LONG(to); | |
for (i = FIX2LONG(from); i <= end; i++) { | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = from, c; | |
while (!(c = rb_funcall(i, '>', 1, to))) { | |
rb_yield(i); | |
i = rb_funcall(i, '+', 1, INT2FIX(1)); | |
} | |
if (NIL_P(c)) rb_cmperr(i, to); | |
} | |
return from; | |
} | |
static VALUE | |
int_downto_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE); | |
} | |
/* | |
* call-seq: | |
* int.downto(limit) {|i| block } -> self | |
* int.downto(limit) -> an_enumerator | |
* | |
* Iterates the given block, passing decreasing values from +int+ down to and | |
* including +limit+. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* 5.downto(1) { |n| print n, ".. " } | |
* print " Liftoff!\n" | |
* #=> "5.. 4.. 3.. 2.. 1.. Liftoff!" | |
*/ | |
static VALUE | |
int_downto(VALUE from, VALUE to) | |
{ | |
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); | |
if (FIXNUM_P(from) && FIXNUM_P(to)) { | |
long i, end; | |
end = FIX2LONG(to); | |
for (i=FIX2LONG(from); i >= end; i--) { | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = from, c; | |
while (!(c = rb_funcall(i, '<', 1, to))) { | |
rb_yield(i); | |
i = rb_funcall(i, '-', 1, INT2FIX(1)); | |
} | |
if (NIL_P(c)) rb_cmperr(i, to); | |
} | |
return from; | |
} | |
static VALUE | |
int_dotimes_size(VALUE num, VALUE args, VALUE eobj) | |
{ | |
if (FIXNUM_P(num)) { | |
if (NUM2LONG(num) <= 0) return INT2FIX(0); | |
} | |
else { | |
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0); | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* int.times {|i| block } -> self | |
* int.times -> an_enumerator | |
* | |
* Iterates the given block +int+ times, passing in values from zero to | |
* <code>int - 1</code>. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* 5.times do |i| | |
* print i, " " | |
* end | |
* #=> 0 1 2 3 4 | |
*/ | |
static VALUE | |
int_dotimes(VALUE num) | |
{ | |
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); | |
if (FIXNUM_P(num)) { | |
long i, end; | |
end = FIX2LONG(num); | |
for (i=0; i<end; i++) { | |
rb_yield_1(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = INT2FIX(0); | |
for (;;) { | |
if (!RTEST(rb_funcall(i, '<', 1, num))) break; | |
rb_yield(i); | |
i = rb_funcall(i, '+', 1, INT2FIX(1)); | |
} | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* int.round([ndigits]) -> integer or float | |
* | |
* Rounds +int+ to a given precision in decimal digits (default 0 digits). | |
* | |
* Precision may be negative. Returns a floating point number when +ndigits+ | |
* is positive, +self+ for zero, and round down for negative. | |
* | |
* 1.round #=> 1 | |
* 1.round(2) #=> 1.0 | |
* 15.round(-1) #=> 20 | |
*/ | |
static VALUE | |
int_round(int argc, VALUE* argv, VALUE num) | |
{ | |
VALUE n; | |
int ndigits; | |
if (argc == 0) return num; | |
rb_scan_args(argc, argv, "1", &n); | |
ndigits = NUM2INT(n); | |
if (ndigits > 0) { | |
return rb_Float(num); | |
} | |
if (ndigits == 0) { | |
return num; | |
} | |
return int_round_0(num, ndigits); | |
} | |
/* | |
* call-seq: | |
* fix.zero? -> true or false | |
* | |
* Returns +true+ if +fix+ is zero. | |
* | |
*/ | |
static VALUE | |
fix_zero_p(VALUE num) | |
{ | |
if (FIX2LONG(num) == 0) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* fix.odd? -> true or false | |
* | |
* Returns +true+ if +fix+ is an odd number. | |
*/ | |
static VALUE | |
fix_odd_p(VALUE num) | |
{ | |
if (num & 2) { | |
return Qtrue; | |
} | |
return Qfalse; | |
} | |
/* | |
* call-seq: | |
* fix.even? -> true or false | |
* | |
* Returns +true+ if +fix+ is an even number. | |
*/ | |
static VALUE | |
fix_even_p(VALUE num) | |
{ | |
if (num & 2) { | |
return Qfalse; | |
} | |
return Qtrue; | |
} | |
/* | |
* Document-class: ZeroDivisionError | |
* | |
* Raised when attempting to divide an integer by 0. | |
* | |
* 42 / 0 | |
* #=> ZeroDivisionError: divided by 0 | |
* | |
* Note that only division by an exact 0 will raise the exception: | |
* | |
* 42 / 0.0 #=> Float::INFINITY | |
* 42 / -0.0 #=> -Float::INFINITY | |
* 0 / 0.0 #=> NaN | |
*/ | |
/* | |
* Document-class: FloatDomainError | |
* | |
* Raised when attempting to convert special float values (in particular | |
* +infinite+ or +NaN+) to numerical classes which don't support them. | |
* | |
* Float::INFINITY.to_r | |
* #=> FloatDomainError: Infinity | |
*/ | |
/* | |
* Document-class: Numeric | |
* | |
* Numeric is the class from which all higher-level numeric classes should inherit. | |
* | |
* Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as | |
* Integer are implemented as immediates, which means that each Integer is a single immutable | |
* object which is always passed by value. | |
* | |
* a = 1 | |
* puts 1.object_id == a.object_id #=> true | |
* | |
* There can only ever be one instance of the integer +1+, for example. Ruby ensures this | |
* by preventing instantiation and duplication. | |
* | |
* Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class | |
* 1.dup #=> TypeError: can't dup Fixnum | |
* | |
* For this reason, Numeric should be used when defining other numeric classes. | |
* | |
* Classes which inherit from Numeric must implement +coerce+, which returns a two-member | |
* Array containing an object that has been coerced into an instance of the new class | |
* and +self+ (see #coerce). | |
* | |
* Inheriting classes should also implement arithmetic operator methods (<code>+</code>, | |
* <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see | |
* Comparable). These methods may rely on +coerce+ to ensure interoperability with | |
* instances of other numeric classes. | |
* | |
* class Tally < Numeric | |
* def initialize(string) | |
* @string = string | |
* end | |
* | |
* def to_s | |
* @string | |
* end | |
* | |
* def to_i | |
* @string.size | |
* end | |
* | |
* def coerce(other) | |
* [self.class.new('|' * other.to_i), self] | |
* end | |
* | |
* def <=>(other) | |
* to_i <=> other.to_i | |
* end | |
* | |
* def +(other) | |
* self.class.new('|' * (to_i + other.to_i)) | |
* end | |
* | |
* def -(other) | |
* self.class.new('|' * (to_i - other.to_i)) | |
* end | |
* | |
* def *(other) | |
* self.class.new('|' * (to_i * other.to_i)) | |
* end | |
* | |
* def /(other) | |
* self.class.new('|' * (to_i / other.to_i)) | |
* end | |
* end | |
* | |
* tally = Tally.new('||') | |
* puts tally * 2 #=> "||||" | |
* puts tally > 1 #=> true | |
*/ | |
void | |
Init_Numeric(void) | |
{ | |
#undef rb_intern | |
#define rb_intern(str) rb_intern_const(str) | |
#if defined(__FreeBSD__) && __FreeBSD__ < 4 | |
/* allow divide by zero -- Inf */ | |
fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL)); | |
#elif defined(_UNICOSMP) | |
/* Turn off floating point exceptions for divide by zero, etc. */ | |
_set_Creg(0, 0); | |
#endif | |
id_coerce = rb_intern("coerce"); | |
id_div = rb_intern("div"); | |
id_divmod = rb_intern("divmod"); | |
rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError); | |
rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError); | |
rb_cNumeric = rb_define_class("Numeric", rb_cObject); | |
rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1); | |
rb_include_module(rb_cNumeric, rb_mComparable); | |
rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1); | |
rb_define_method(rb_cNumeric, "coerce", num_coerce, 1); | |
rb_define_method(rb_cNumeric, "i", num_imaginary, 0); | |
rb_define_method(rb_cNumeric, "+@", num_uplus, 0); | |
rb_define_method(rb_cNumeric, "-@", num_uminus, 0); | |
rb_define_method(rb_cNumeric, "<=>", num_cmp, 1); | |
rb_define_method(rb_cNumeric, "eql?", num_eql, 1); | |
rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1); | |
rb_define_method(rb_cNumeric, "div", num_div, 1); | |
rb_define_method(rb_cNumeric, "divmod", num_divmod, 1); | |
rb_define_method(rb_cNumeric, "%", num_modulo, 1); | |
rb_define_method(rb_cNumeric, "modulo", num_modulo, 1); | |
rb_define_method(rb_cNumeric, "remainder", num_remainder, 1); | |
rb_define_method(rb_cNumeric, "abs", num_abs, 0); | |
rb_define_method(rb_cNumeric, "magnitude", num_abs, 0); | |
rb_define_method(rb_cNumeric, "to_int", num_to_int, 0); | |
rb_define_method(rb_cNumeric, "real?", num_real_p, 0); | |
rb_define_method(rb_cNumeric, "integer?", num_int_p, 0); | |
rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0); | |
rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0); | |
rb_define_method(rb_cNumeric, "floor", num_floor, 0); | |
rb_define_method(rb_cNumeric, "ceil", num_ceil, 0); | |
rb_define_method(rb_cNumeric, "round", num_round, -1); | |
rb_define_method(rb_cNumeric, "truncate", num_truncate, 0); | |
rb_define_method(rb_cNumeric, "step", num_step, -1); | |
rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0); | |
rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0); | |
rb_cInteger = rb_define_class("Integer", rb_cNumeric); | |
rb_undef_alloc_func(rb_cInteger); | |
rb_undef_method(CLASS_OF(rb_cInteger), "new"); | |
rb_define_method(rb_cInteger, "integer?", int_int_p, 0); | |
rb_define_method(rb_cInteger, "odd?", int_odd_p, 0); | |
rb_define_method(rb_cInteger, "even?", int_even_p, 0); | |
rb_define_method(rb_cInteger, "upto", int_upto, 1); | |
rb_define_method(rb_cInteger, "downto", int_downto, 1); | |
rb_define_method(rb_cInteger, "times", int_dotimes, 0); | |
rb_define_method(rb_cInteger, "succ", int_succ, 0); | |
rb_define_method(rb_cInteger, "next", int_succ, 0); | |
rb_define_method(rb_cInteger, "pred", int_pred, 0); | |
rb_define_method(rb_cInteger, "chr", int_chr, -1); | |
rb_define_method(rb_cInteger, "ord", int_ord, 0); | |
rb_define_method(rb_cInteger, "to_i", int_to_i, 0); | |
rb_define_method(rb_cInteger, "to_int", int_to_i, 0); | |
rb_define_method(rb_cInteger, "floor", int_to_i, 0); | |
rb_define_method(rb_cInteger, "ceil", int_to_i, 0); | |
rb_define_method(rb_cInteger, "truncate", int_to_i, 0); | |
rb_define_method(rb_cInteger, "round", int_round, -1); | |
rb_cFixnum = rb_define_class("Fixnum", rb_cInteger); | |
rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1); | |
rb_define_alias(rb_cFixnum, "inspect", "to_s"); | |
rb_define_method(rb_cFixnum, "-@", fix_uminus, 0); | |
rb_define_method(rb_cFixnum, "+", fix_plus, 1); | |
rb_define_method(rb_cFixnum, "-", fix_minus, 1); | |
rb_define_method(rb_cFixnum, "*", fix_mul, 1); | |
rb_define_method(rb_cFixnum, "/", fix_div, 1); | |
rb_define_method(rb_cFixnum, "div", fix_idiv, 1); | |
rb_define_method(rb_cFixnum, "%", fix_mod, 1); | |
rb_define_method(rb_cFixnum, "modulo", fix_mod, 1); | |
rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1); | |
rb_define_method(rb_cFixnum, "fdiv", fix_fdiv, 1); | |
rb_define_method(rb_cFixnum, "**", fix_pow, 1); | |
rb_define_method(rb_cFixnum, "abs", fix_abs, 0); | |
rb_define_method(rb_cFixnum, "magnitude", fix_abs, 0); | |
rb_define_method(rb_cFixnum, "==", fix_equal, 1); | |
rb_define_method(rb_cFixnum, "===", fix_equal, 1); | |
rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1); | |
rb_define_method(rb_cFixnum, ">", fix_gt, 1); | |
rb_define_method(rb_cFixnum, ">=", fix_ge, 1); | |
rb_define_method(rb_cFixnum, "<", fix_lt, 1); | |
rb_define_method(rb_cFixnum, "<=", fix_le, 1); | |
rb_define_method(rb_cFixnum, "~", fix_rev, 0); | |
rb_define_method(rb_cFixnum, "&", fix_and, 1); | |
rb_define_method(rb_cFixnum, "|", fix_or, 1); | |
rb_define_method(rb_cFixnum, "^", fix_xor, 1); | |
rb_define_method(rb_cFixnum, "[]", fix_aref, 1); | |
rb_define_method(rb_cFixnum, "<<", rb_fix_lshift, 1); | |
rb_define_method(rb_cFixnum, ">>", rb_fix_rshift, 1); | |
rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0); | |
rb_define_method(rb_cFixnum, "size", fix_size, 0); | |
rb_define_method(rb_cFixnum, "bit_length", rb_fix_bit_length, 0); | |
rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0); | |
rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0); | |
rb_define_method(rb_cFixnum, "even?", fix_even_p, 0); | |
rb_define_method(rb_cFixnum, "succ", fix_succ, 0); | |
rb_cFloat = rb_define_class("Float", rb_cNumeric); | |
rb_undef_alloc_func(rb_cFloat); | |
rb_undef_method(CLASS_OF(rb_cFloat), "new"); | |
/* | |
* Represents the rounding mode for floating point addition. | |
* | |
* Usually defaults to 1, rounding to the nearest number. | |
* | |
* Other modes include: | |
* | |
* -1:: Indeterminable | |
* 0:: Rounding towards zero | |
* 1:: Rounding to the nearest number | |
* 2:: Rounding towards positive infinity | |
* 3:: Rounding towards negative infinity | |
*/ | |
rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS)); | |
/* | |
* The base of the floating point, or number of unique digits used to | |
* represent the number. | |
* | |
* Usually defaults to 2 on most systems, which would represent a base-10 decimal. | |
*/ | |
rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX)); | |
/* | |
* The number of base digits for the +double+ data type. | |
* | |
* Usually defaults to 53. | |
*/ | |
rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG)); | |
/* | |
* The minimum number of significant decimal digits in a double-precision | |
* floating point. | |
* | |
* Usually defaults to 15. | |
*/ | |
rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG)); | |
/* | |
* The smallest posable exponent value in a double-precision floating | |
* point. | |
* | |
* Usually defaults to -1021. | |
*/ | |
rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP)); | |
/* | |
* The largest possible exponent value in a double-precision floating | |
* point. | |
* | |
* Usually defaults to 1024. | |
*/ | |
rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP)); | |
/* | |
* The smallest negative exponent in a double-precision floating point | |
* where 10 raised to this power minus 1. | |
* | |
* Usually defaults to -307. | |
*/ | |
rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP)); | |
/* | |
* The largest positive exponent in a double-precision floating point where | |
* 10 raised to this power minus 1. | |
* | |
* Usually defaults to 308. | |
*/ | |
rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP)); | |
/* | |
* The smallest positive normalized number in a double-precision floating point. | |
* | |
* Usually defaults to 2.2250738585072014e-308. | |
* | |
* If the platform supports denormalized numbers, | |
* there are numbers between zero and Float::MIN. | |
* 0.0.next_float returns the smallest positive floating point number | |
* including denormalized numbers. | |
*/ | |
rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN)); | |
/* | |
* The largest possible integer in a double-precision floating point number. | |
* | |
* Usually defaults to 1.7976931348623157e+308. | |
*/ | |
rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX)); | |
/* | |
* The difference between 1 and the smallest double-precision floating | |
* point number greater than 1. | |
* | |
* Usually defaults to 2.2204460492503131e-16. | |
*/ | |
rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON)); | |
/* | |
* An expression representing positive infinity. | |
*/ | |
rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(INFINITY)); | |
/* | |
* An expression representing a value which is "not a number". | |
*/ | |
rb_define_const(rb_cFloat, "NAN", DBL2NUM(NAN)); | |
rb_define_method(rb_cFloat, "to_s", flo_to_s, 0); | |
rb_define_alias(rb_cFloat, "inspect", "to_s"); | |
rb_define_method(rb_cFloat, "coerce", flo_coerce, 1); | |
rb_define_method(rb_cFloat, "-@", flo_uminus, 0); | |
rb_define_method(rb_cFloat, "+", flo_plus, 1); | |
rb_define_method(rb_cFloat, "-", flo_minus, 1); | |
rb_define_method(rb_cFloat, "*", flo_mul, 1); | |
rb_define_method(rb_cFloat, "/", flo_div, 1); | |
rb_define_method(rb_cFloat, "quo", flo_quo, 1); | |
rb_define_method(rb_cFloat, "fdiv", flo_quo, 1); | |
rb_define_method(rb_cFloat, "%", flo_mod, 1); | |
rb_define_method(rb_cFloat, "modulo", flo_mod, 1); | |
rb_define_method(rb_cFloat, "divmod", flo_divmod, 1); | |
rb_define_method(rb_cFloat, "**", flo_pow, 1); | |
rb_define_method(rb_cFloat, "==", flo_eq, 1); | |
rb_define_method(rb_cFloat, "===", flo_eq, 1); | |
rb_define_method(rb_cFloat, "<=>", flo_cmp, 1); | |
rb_define_method(rb_cFloat, ">", flo_gt, 1); | |
rb_define_method(rb_cFloat, ">=", flo_ge, 1); | |
rb_define_method(rb_cFloat, "<", flo_lt, 1); | |
rb_define_method(rb_cFloat, "<=", flo_le, 1); | |
rb_define_method(rb_cFloat, "eql?", flo_eql, 1); | |
rb_define_method(rb_cFloat, "hash", flo_hash, 0); | |
rb_define_method(rb_cFloat, "to_f", flo_to_f, 0); | |
rb_define_method(rb_cFloat, "abs", flo_abs, 0); | |
rb_define_method(rb_cFloat, "magnitude", flo_abs, 0); | |
rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0); | |
rb_define_method(rb_cFloat, "to_i", flo_truncate, 0); | |
rb_define_method(rb_cFloat, "to_int", flo_truncate, 0); | |
rb_define_method(rb_cFloat, "floor", flo_floor, 0); | |
rb_define_method(rb_cFloat, "ceil", flo_ceil, 0); | |
rb_define_method(rb_cFloat, "round", flo_round, -1); | |
rb_define_method(rb_cFloat, "truncate", flo_truncate, 0); | |
rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0); | |
rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0); | |
rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0); | |
rb_define_method(rb_cFloat, "next_float", flo_next_float, 0); | |
rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0); | |
rb_define_method(rb_cFloat, "positive?", flo_positive_p, 0); | |
rb_define_method(rb_cFloat, "negative?", flo_negative_p, 0); | |
id_to = rb_intern("to"); | |
id_by = rb_intern("by"); | |
} | |
#undef rb_float_value | |
double | |
rb_float_value(VALUE v) | |
{ | |
return rb_float_value_inline(v); | |
} | |
#undef rb_float_new | |
VALUE | |
rb_float_new(double d) | |
{ | |
return rb_float_new_inline(d); | |
} |