-
Updated
Oct 13, 2020 - Python
Finite Element Method (FEM)

The finite element method (FEM) is a numerical method for solving problems of engineering and mathematical physics. Typical problem areas of interest include structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.
Here are 55 public repositories matching this topic...
-
Updated
Nov 23, 2020 - C#
-
Updated
Sep 29, 2020 - Python
-
Updated
Nov 8, 2020 - Python
-
Updated
Nov 23, 2020 - C++
-
Updated
Oct 20, 2019 - Python
-
Updated
Feb 5, 2019 - MATLAB
-
Updated
Nov 23, 2020 - Python
-
Updated
Jan 16, 2018 - MATLAB
-
Updated
Jan 24, 2018 - C++
-
Updated
Jun 10, 2020 - C++
-
Updated
May 14, 2020 - Python
-
Updated
Sep 10, 2017 - MATLAB
-
Updated
Sep 15, 2020 - Python
-
Updated
Aug 10, 2020 - Python
-
Updated
Nov 8, 2020 - C++
-
Updated
Oct 6, 2020 - MATLAB
-
Updated
May 9, 2020 - C#
-
Updated
Jul 11, 2018 - C++
-
Updated
Jul 5, 2020 - C++
-
Updated
Nov 22, 2020 - Python
-
Updated
Aug 31, 2020 - C++
-
Updated
May 11, 2019 - C++
-
Updated
Oct 20, 2020 - Rust
-
Updated
Nov 20, 2020 - Julia
-
Updated
Sep 11, 2020 - JavaScript
-
Updated
May 23, 2020 - Java
-
Updated
Aug 28, 2017 - Java
- Wikipedia
- Wikipedia
Lagrange multipliers can be used to enforce constraints on the displacements of the system to machine precision. The introduction of these constraints change the structure and increase of the sparse matrix and restrict the type of solver to be used to only direct linear solvers.
It should be possible to implement this partitioned structure for displacement boundary conditions for non-linear pr