Skip to content
#

lasso-regression

Here are 238 public repositories matching this topic...

Predicting Amsterdam house / real estate prices using Ordinary Least Squares-, XGBoost-, KNN-, Lasso-, Ridge-, Polynomial-, Random Forest-, and Neural Network MLP Regression (via scikit-learn)

  • Updated Apr 9, 2019
  • Python

Python notebooks for my graduate class on Detection, Estimation, and Learning. Intended for in-class demonstration. Notebooks illustrate a variety of concepts, from hypothesis testing to estimation to image denoising to Kalman filtering. Feel free to use or modify for your instruction or self-study.

  • Updated Apr 23, 2018
  • Jupyter Notebook

Understand the relationships between various features in relation with the sale price of a house using exploratory data analysis and statistical analysis. Applied ML algorithms such as Multiple Linear Regression, Ridge Regression and Lasso Regression in combination with cross validation. Performed parameter tuning, compared the test scores and suggested a best model to predict the final sale price of a house. Seaborn is used to plot graphs and scikit learn package is used for statistical analysis.

  • Updated Jan 19, 2018
  • Jupyter Notebook

Introduction The context is the 2016 public use NH medical claims files obtained from NH CHIS (Comprehensive Health Care Information System). The dataset contains Commercial Insurance claims, and a small fraction of Medicaid and Medicare payments for dually eligible people. The primary purpose of this assignment is to test machine learning (ML) skills in a real case analysis setting. You are expected to clean and process data and then apply various ML techniques like Linear and no linear models like regularized regression, MARS, and Partitioning methods. You are expected to use at least two of R, Python and JMP software. Data details: Medical claims file for 2016 contains ~17 millions rows and ~60 columns of data, containing ~6.5 million individual medical claims. These claims are all commercial claims that were filed by healthcare providers in 2016 in the state of NH. These claims were ~88% for residents of NH and the remaining for out of state visitors who sought care in NH. Each claim consists of one or more line items, each indicating a procedure done during the doctor’s visit. Two columns indicating Billed amount and the Paid amount for the care provided, are of primary interest. The main objective is to predict “Paid amount per procedure” by mapping a plethora of features available in the dataset. It is also an expectation that you would create new features using the existing ones or external data sources. Objectives: Step 1: Take a random sample of 1 million unique claims, such that all line items related to each claim are included in the sample. This will result in a little less than 3 million rows of data. Step 2: Clean up the data, understand the distributions, and create new features if necessary. Step 3: Run predictive models using validation method of your choice. Step 4: Write a descriptive report (less than 10 pages) describing the process and your findings.

  • Updated Jan 17, 2019
  • Jupyter Notebook

Jupyter notebook that outlines the process of creating a machine learning predictive model. Predicts the peak "Wins Shared" by the current draft prospects based on numerous features such as college stats, projected draft pick, physical profile and age. I try out multiple models and pick the best performing one for the data from my judgement.

  • Updated Apr 17, 2018
  • Jupyter Notebook

Sequential adaptive elastic net (SAEN) approach, complex-valued LARS solver for weighted Lasso/elastic-net problems, and sparsity (or model) order detection with an application to single-snapshot source localization.

  • Updated Mar 5, 2020
  • MATLAB

Improve this page

Add a description, image, and links to the lasso-regression topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the lasso-regression topic, visit your repo's landing page and select "manage topics."

Learn more

You can’t perform that action at this time.