Permalink
Cannot retrieve contributors at this time
/********************************************************************** | |
math.c - | |
$Author$ | |
created at: Tue Jan 25 14:12:56 JST 1994 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
**********************************************************************/ | |
#include "ruby/internal/config.h" | |
#ifdef _MSC_VER | |
# define _USE_MATH_DEFINES 1 | |
#endif | |
#include <errno.h> | |
#include <float.h> | |
#include <math.h> | |
#include "internal.h" | |
#include "internal/bignum.h" | |
#include "internal/complex.h" | |
#include "internal/math.h" | |
#include "internal/object.h" | |
#include "internal/vm.h" | |
#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \ | |
!defined(signbit) | |
extern int signbit(double); | |
#endif | |
#define RB_BIGNUM_TYPE_P(x) RB_TYPE_P((x), T_BIGNUM) | |
VALUE rb_mMath; | |
VALUE rb_eMathDomainError; | |
#define Get_Double(x) rb_num_to_dbl(x) | |
#define domain_error(msg) \ | |
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg) | |
/* | |
* call-seq: | |
* Math.atan2(y, x) -> Float | |
* | |
* Computes the arc tangent given +y+ and +x+. | |
* Returns a Float in the range -PI..PI. Return value is a angle | |
* in radians between the positive x-axis of cartesian plane | |
* and the point given by the coordinates (+x+, +y+) on it. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: [-PI, PI] | |
* | |
* Math.atan2(-0.0, -1.0) #=> -3.141592653589793 | |
* Math.atan2(-1.0, -1.0) #=> -2.356194490192345 | |
* Math.atan2(-1.0, 0.0) #=> -1.5707963267948966 | |
* Math.atan2(-1.0, 1.0) #=> -0.7853981633974483 | |
* Math.atan2(-0.0, 1.0) #=> -0.0 | |
* Math.atan2(0.0, 1.0) #=> 0.0 | |
* Math.atan2(1.0, 1.0) #=> 0.7853981633974483 | |
* Math.atan2(1.0, 0.0) #=> 1.5707963267948966 | |
* Math.atan2(1.0, -1.0) #=> 2.356194490192345 | |
* Math.atan2(0.0, -1.0) #=> 3.141592653589793 | |
* Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483 | |
* Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345 | |
* Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483 | |
* Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345 | |
* | |
*/ | |
static VALUE | |
math_atan2(VALUE unused_obj, VALUE y, VALUE x) | |
{ | |
double dx, dy; | |
dx = Get_Double(x); | |
dy = Get_Double(y); | |
if (dx == 0.0 && dy == 0.0) { | |
if (!signbit(dx)) | |
return DBL2NUM(dy); | |
if (!signbit(dy)) | |
return DBL2NUM(M_PI); | |
return DBL2NUM(-M_PI); | |
} | |
#ifndef ATAN2_INF_C99 | |
if (isinf(dx) && isinf(dy)) { | |
/* optimization for FLONUM */ | |
if (dx < 0.0) { | |
const double dz = (3.0 * M_PI / 4.0); | |
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); | |
} | |
else { | |
const double dz = (M_PI / 4.0); | |
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); | |
} | |
} | |
#endif | |
return DBL2NUM(atan2(dy, dx)); | |
} | |
/* | |
* call-seq: | |
* Math.cos(x) -> Float | |
* | |
* Computes the cosine of +x+ (expressed in radians). | |
* Returns a Float in the range -1.0..1.0. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: [-1, 1] | |
* | |
* Math.cos(Math::PI) #=> -1.0 | |
* | |
*/ | |
static VALUE | |
math_cos(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(cos(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.sin(x) -> Float | |
* | |
* Computes the sine of +x+ (expressed in radians). | |
* Returns a Float in the range -1.0..1.0. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: [-1, 1] | |
* | |
* Math.sin(Math::PI/2) #=> 1.0 | |
* | |
*/ | |
static VALUE | |
math_sin(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(sin(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.tan(x) -> Float | |
* | |
* Computes the tangent of +x+ (expressed in radians). | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.tan(0) #=> 0.0 | |
* | |
*/ | |
static VALUE | |
math_tan(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(tan(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.acos(x) -> Float | |
* | |
* Computes the arc cosine of +x+. Returns 0..PI. | |
* | |
* Domain: [-1, 1] | |
* | |
* Codomain: [0, PI] | |
* | |
* Math.acos(0) == Math::PI/2 #=> true | |
* | |
*/ | |
static VALUE | |
math_acos(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (d < -1.0 || 1.0 < d) domain_error("acos"); | |
return DBL2NUM(acos(d)); | |
} | |
/* | |
* call-seq: | |
* Math.asin(x) -> Float | |
* | |
* Computes the arc sine of +x+. Returns -PI/2..PI/2. | |
* | |
* Domain: [-1, -1] | |
* | |
* Codomain: [-PI/2, PI/2] | |
* | |
* Math.asin(1) == Math::PI/2 #=> true | |
*/ | |
static VALUE | |
math_asin(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (d < -1.0 || 1.0 < d) domain_error("asin"); | |
return DBL2NUM(asin(d)); | |
} | |
/* | |
* call-seq: | |
* Math.atan(x) -> Float | |
* | |
* Computes the arc tangent of +x+. Returns -PI/2..PI/2. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-PI/2, PI/2) | |
* | |
* Math.atan(0) #=> 0.0 | |
*/ | |
static VALUE | |
math_atan(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(atan(Get_Double(x))); | |
} | |
#ifndef HAVE_COSH | |
double | |
cosh(double x) | |
{ | |
return (exp(x) + exp(-x)) / 2; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Math.cosh(x) -> Float | |
* | |
* Computes the hyperbolic cosine of +x+ (expressed in radians). | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: [1, INFINITY) | |
* | |
* Math.cosh(0) #=> 1.0 | |
* | |
*/ | |
static VALUE | |
math_cosh(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(cosh(Get_Double(x))); | |
} | |
#ifndef HAVE_SINH | |
double | |
sinh(double x) | |
{ | |
return (exp(x) - exp(-x)) / 2; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Math.sinh(x) -> Float | |
* | |
* Computes the hyperbolic sine of +x+ (expressed in radians). | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.sinh(0) #=> 0.0 | |
* | |
*/ | |
static VALUE | |
math_sinh(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(sinh(Get_Double(x))); | |
} | |
#ifndef HAVE_TANH | |
double | |
tanh(double x) | |
{ | |
# if defined(HAVE_SINH) && defined(HAVE_COSH) | |
const double c = cosh(x); | |
if (!isinf(c)) return sinh(x) / c; | |
# else | |
const double e = exp(x+x); | |
if (!isinf(e)) return (e - 1) / (e + 1); | |
# endif | |
return x > 0 ? 1.0 : -1.0; | |
} | |
#endif | |
/* | |
* call-seq: | |
* Math.tanh(x) -> Float | |
* | |
* Computes the hyperbolic tangent of +x+ (expressed in radians). | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-1, 1) | |
* | |
* Math.tanh(0) #=> 0.0 | |
* | |
*/ | |
static VALUE | |
math_tanh(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(tanh(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.acosh(x) -> Float | |
* | |
* Computes the inverse hyperbolic cosine of +x+. | |
* | |
* Domain: [1, INFINITY) | |
* | |
* Codomain: [0, INFINITY) | |
* | |
* Math.acosh(1) #=> 0.0 | |
* | |
*/ | |
static VALUE | |
math_acosh(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (d < 1.0) domain_error("acosh"); | |
return DBL2NUM(acosh(d)); | |
} | |
/* | |
* call-seq: | |
* Math.asinh(x) -> Float | |
* | |
* Computes the inverse hyperbolic sine of +x+. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.asinh(1) #=> 0.881373587019543 | |
* | |
*/ | |
static VALUE | |
math_asinh(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(asinh(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.atanh(x) -> Float | |
* | |
* Computes the inverse hyperbolic tangent of +x+. | |
* | |
* Domain: (-1, 1) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.atanh(1) #=> Infinity | |
* | |
*/ | |
static VALUE | |
math_atanh(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (d < -1.0 || +1.0 < d) domain_error("atanh"); | |
/* check for pole error */ | |
if (d == -1.0) return DBL2NUM(-HUGE_VAL); | |
if (d == +1.0) return DBL2NUM(+HUGE_VAL); | |
return DBL2NUM(atanh(d)); | |
} | |
/* | |
* call-seq: | |
* Math.exp(x) -> Float | |
* | |
* Returns e**x. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (0, INFINITY) | |
* | |
* Math.exp(0) #=> 1.0 | |
* Math.exp(1) #=> 2.718281828459045 | |
* Math.exp(1.5) #=> 4.4816890703380645 | |
* | |
*/ | |
static VALUE | |
math_exp(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(exp(Get_Double(x))); | |
} | |
#if defined __CYGWIN__ | |
# include <cygwin/version.h> | |
# if CYGWIN_VERSION_DLL_MAJOR < 1005 | |
# define nan(x) nan() | |
# endif | |
# define log(x) ((x) < 0.0 ? nan("") : log(x)) | |
# define log10(x) ((x) < 0.0 ? nan("") : log10(x)) | |
#endif | |
#ifndef M_LN2 | |
# define M_LN2 0.693147180559945309417232121458176568 | |
#endif | |
#ifndef M_LN10 | |
# define M_LN10 2.30258509299404568401799145468436421 | |
#endif | |
static double math_log1(VALUE x); | |
FUNC_MINIMIZED(static VALUE math_log(int, const VALUE *, VALUE)); | |
/* | |
* call-seq: | |
* Math.log(x) -> Float | |
* Math.log(x, base) -> Float | |
* | |
* Returns the logarithm of +x+. | |
* If additional second argument is given, it will be the base | |
* of logarithm. Otherwise it is +e+ (for the natural logarithm). | |
* | |
* Domain: (0, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.log(0) #=> -Infinity | |
* Math.log(1) #=> 0.0 | |
* Math.log(Math::E) #=> 1.0 | |
* Math.log(Math::E**3) #=> 3.0 | |
* Math.log(12, 3) #=> 2.2618595071429146 | |
* | |
*/ | |
static VALUE | |
math_log(int argc, const VALUE *argv, VALUE unused_obj) | |
{ | |
return rb_math_log(argc, argv); | |
} | |
VALUE | |
rb_math_log(int argc, const VALUE *argv) | |
{ | |
VALUE x, base; | |
double d; | |
rb_scan_args(argc, argv, "11", &x, &base); | |
d = math_log1(x); | |
if (argc == 2) { | |
d /= math_log1(base); | |
} | |
return DBL2NUM(d); | |
} | |
static double | |
get_double_rshift(VALUE x, size_t *pnumbits) | |
{ | |
size_t numbits; | |
if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) && | |
DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) { | |
numbits -= DBL_MANT_DIG; | |
x = rb_big_rshift(x, SIZET2NUM(numbits)); | |
} | |
else { | |
numbits = 0; | |
} | |
*pnumbits = numbits; | |
return Get_Double(x); | |
} | |
static double | |
math_log1(VALUE x) | |
{ | |
size_t numbits; | |
double d = get_double_rshift(x, &numbits); | |
/* check for domain error */ | |
if (d < 0.0) domain_error("log"); | |
/* check for pole error */ | |
if (d == 0.0) return -HUGE_VAL; | |
return log(d) + numbits * M_LN2; /* log(d * 2 ** numbits) */ | |
} | |
#ifndef log2 | |
#ifndef HAVE_LOG2 | |
double | |
log2(double x) | |
{ | |
return log10(x)/log10(2.0); | |
} | |
#else | |
extern double log2(double); | |
#endif | |
#endif | |
/* | |
* call-seq: | |
* Math.log2(x) -> Float | |
* | |
* Returns the base 2 logarithm of +x+. | |
* | |
* Domain: (0, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.log2(1) #=> 0.0 | |
* Math.log2(2) #=> 1.0 | |
* Math.log2(32768) #=> 15.0 | |
* Math.log2(65536) #=> 16.0 | |
* | |
*/ | |
static VALUE | |
math_log2(VALUE unused_obj, VALUE x) | |
{ | |
size_t numbits; | |
double d = get_double_rshift(x, &numbits); | |
/* check for domain error */ | |
if (d < 0.0) domain_error("log2"); | |
/* check for pole error */ | |
if (d == 0.0) return DBL2NUM(-HUGE_VAL); | |
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */ | |
} | |
/* | |
* call-seq: | |
* Math.log10(x) -> Float | |
* | |
* Returns the base 10 logarithm of +x+. | |
* | |
* Domain: (0, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* Math.log10(1) #=> 0.0 | |
* Math.log10(10) #=> 1.0 | |
* Math.log10(10**100) #=> 100.0 | |
* | |
*/ | |
static VALUE | |
math_log10(VALUE unused_obj, VALUE x) | |
{ | |
size_t numbits; | |
double d = get_double_rshift(x, &numbits); | |
/* check for domain error */ | |
if (d < 0.0) domain_error("log10"); | |
/* check for pole error */ | |
if (d == 0.0) return DBL2NUM(-HUGE_VAL); | |
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */ | |
} | |
static VALUE rb_math_sqrt(VALUE x); | |
/* | |
* call-seq: | |
* Math.sqrt(x) -> Float | |
* | |
* Returns the non-negative square root of +x+. | |
* | |
* Domain: [0, INFINITY) | |
* | |
* Codomain:[0, INFINITY) | |
* | |
* 0.upto(10) {|x| | |
* p [x, Math.sqrt(x), Math.sqrt(x)**2] | |
* } | |
* #=> [0, 0.0, 0.0] | |
* # [1, 1.0, 1.0] | |
* # [2, 1.4142135623731, 2.0] | |
* # [3, 1.73205080756888, 3.0] | |
* # [4, 2.0, 4.0] | |
* # [5, 2.23606797749979, 5.0] | |
* # [6, 2.44948974278318, 6.0] | |
* # [7, 2.64575131106459, 7.0] | |
* # [8, 2.82842712474619, 8.0] | |
* # [9, 3.0, 9.0] | |
* # [10, 3.16227766016838, 10.0] | |
* | |
* Note that the limited precision of floating point arithmetic | |
* might lead to surprising results: | |
* | |
* Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!) | |
* | |
* See also BigDecimal#sqrt and Integer.sqrt. | |
*/ | |
static VALUE | |
math_sqrt(VALUE unused_obj, VALUE x) | |
{ | |
return rb_math_sqrt(x); | |
} | |
#define f_boolcast(x) ((x) ? Qtrue : Qfalse) | |
inline static VALUE | |
f_negative_p(VALUE x) | |
{ | |
if (FIXNUM_P(x)) | |
return f_boolcast(FIX2LONG(x) < 0); | |
return rb_funcall(x, '<', 1, INT2FIX(0)); | |
} | |
inline static VALUE | |
f_signbit(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_FLOAT)) { | |
double f = RFLOAT_VALUE(x); | |
return f_boolcast(!isnan(f) && signbit(f)); | |
} | |
return f_negative_p(x); | |
} | |
static VALUE | |
rb_math_sqrt(VALUE x) | |
{ | |
double d; | |
if (RB_TYPE_P(x, T_COMPLEX)) { | |
VALUE neg = f_signbit(RCOMPLEX(x)->imag); | |
double re = Get_Double(RCOMPLEX(x)->real), im; | |
d = Get_Double(rb_complex_abs(x)); | |
im = sqrt((d - re) / 2.0); | |
re = sqrt((d + re) / 2.0); | |
if (neg) im = -im; | |
return rb_complex_new(DBL2NUM(re), DBL2NUM(im)); | |
} | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (d < 0.0) domain_error("sqrt"); | |
if (d == 0.0) return DBL2NUM(0.0); | |
return DBL2NUM(sqrt(d)); | |
} | |
/* | |
* call-seq: | |
* Math.cbrt(x) -> Float | |
* | |
* Returns the cube root of +x+. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-INFINITY, INFINITY) | |
* | |
* -9.upto(9) {|x| | |
* p [x, Math.cbrt(x), Math.cbrt(x)**3] | |
* } | |
* #=> [-9, -2.0800838230519, -9.0] | |
* # [-8, -2.0, -8.0] | |
* # [-7, -1.91293118277239, -7.0] | |
* # [-6, -1.81712059283214, -6.0] | |
* # [-5, -1.7099759466767, -5.0] | |
* # [-4, -1.5874010519682, -4.0] | |
* # [-3, -1.44224957030741, -3.0] | |
* # [-2, -1.25992104989487, -2.0] | |
* # [-1, -1.0, -1.0] | |
* # [0, 0.0, 0.0] | |
* # [1, 1.0, 1.0] | |
* # [2, 1.25992104989487, 2.0] | |
* # [3, 1.44224957030741, 3.0] | |
* # [4, 1.5874010519682, 4.0] | |
* # [5, 1.7099759466767, 5.0] | |
* # [6, 1.81712059283214, 6.0] | |
* # [7, 1.91293118277239, 7.0] | |
* # [8, 2.0, 8.0] | |
* # [9, 2.0800838230519, 9.0] | |
* | |
*/ | |
static VALUE | |
math_cbrt(VALUE unused_obj, VALUE x) | |
{ | |
double f = Get_Double(x); | |
double r = cbrt(f); | |
#if defined __GLIBC__ | |
if (isfinite(r)) { | |
r = (2.0 * r + (f / r / r)) / 3.0; | |
} | |
#endif | |
return DBL2NUM(r); | |
} | |
/* | |
* call-seq: | |
* Math.frexp(x) -> [fraction, exponent] | |
* | |
* Returns a two-element array containing the normalized fraction (a Float) | |
* and exponent (an Integer) of +x+. | |
* | |
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] | |
* fraction * 2**exponent #=> 1234.0 | |
*/ | |
static VALUE | |
math_frexp(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
int exp; | |
d = frexp(Get_Double(x), &exp); | |
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)); | |
} | |
/* | |
* call-seq: | |
* Math.ldexp(fraction, exponent) -> float | |
* | |
* Returns the value of +fraction+*(2**+exponent+). | |
* | |
* fraction, exponent = Math.frexp(1234) | |
* Math.ldexp(fraction, exponent) #=> 1234.0 | |
*/ | |
static VALUE | |
math_ldexp(VALUE unused_obj, VALUE x, VALUE n) | |
{ | |
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n))); | |
} | |
/* | |
* call-seq: | |
* Math.hypot(x, y) -> Float | |
* | |
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with | |
* sides +x+ and +y+. | |
* | |
* Math.hypot(3, 4) #=> 5.0 | |
*/ | |
static VALUE | |
math_hypot(VALUE unused_obj, VALUE x, VALUE y) | |
{ | |
return DBL2NUM(hypot(Get_Double(x), Get_Double(y))); | |
} | |
/* | |
* call-seq: | |
* Math.erf(x) -> Float | |
* | |
* Calculates the error function of +x+. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (-1, 1) | |
* | |
* Math.erf(0) #=> 0.0 | |
* | |
*/ | |
static VALUE | |
math_erf(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(erf(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.erfc(x) -> Float | |
* | |
* Calculates the complementary error function of x. | |
* | |
* Domain: (-INFINITY, INFINITY) | |
* | |
* Codomain: (0, 2) | |
* | |
* Math.erfc(0) #=> 1.0 | |
* | |
*/ | |
static VALUE | |
math_erfc(VALUE unused_obj, VALUE x) | |
{ | |
return DBL2NUM(erfc(Get_Double(x))); | |
} | |
/* | |
* call-seq: | |
* Math.gamma(x) -> Float | |
* | |
* Calculates the gamma function of x. | |
* | |
* Note that gamma(n) is same as fact(n-1) for integer n > 0. | |
* However gamma(n) returns float and can be an approximation. | |
* | |
* def fact(n) (1..n).inject(1) {|r,i| r*i } end | |
* 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] } | |
* #=> [1, 1.0, 1] | |
* # [2, 1.0, 1] | |
* # [3, 2.0, 2] | |
* # [4, 6.0, 6] | |
* # [5, 24.0, 24] | |
* # [6, 120.0, 120] | |
* # [7, 720.0, 720] | |
* # [8, 5040.0, 5040] | |
* # [9, 40320.0, 40320] | |
* # [10, 362880.0, 362880] | |
* # [11, 3628800.0, 3628800] | |
* # [12, 39916800.0, 39916800] | |
* # [13, 479001600.0, 479001600] | |
* # [14, 6227020800.0, 6227020800] | |
* # [15, 87178291200.0, 87178291200] | |
* # [16, 1307674368000.0, 1307674368000] | |
* # [17, 20922789888000.0, 20922789888000] | |
* # [18, 355687428096000.0, 355687428096000] | |
* # [19, 6.402373705728e+15, 6402373705728000] | |
* # [20, 1.21645100408832e+17, 121645100408832000] | |
* # [21, 2.43290200817664e+18, 2432902008176640000] | |
* # [22, 5.109094217170944e+19, 51090942171709440000] | |
* # [23, 1.1240007277776077e+21, 1124000727777607680000] | |
* # [24, 2.5852016738885062e+22, 25852016738884976640000] | |
* # [25, 6.204484017332391e+23, 620448401733239439360000] | |
* # [26, 1.5511210043330954e+25, 15511210043330985984000000] | |
* | |
*/ | |
static VALUE | |
math_gamma(VALUE unused_obj, VALUE x) | |
{ | |
static const double fact_table[] = { | |
/* fact(0) */ 1.0, | |
/* fact(1) */ 1.0, | |
/* fact(2) */ 2.0, | |
/* fact(3) */ 6.0, | |
/* fact(4) */ 24.0, | |
/* fact(5) */ 120.0, | |
/* fact(6) */ 720.0, | |
/* fact(7) */ 5040.0, | |
/* fact(8) */ 40320.0, | |
/* fact(9) */ 362880.0, | |
/* fact(10) */ 3628800.0, | |
/* fact(11) */ 39916800.0, | |
/* fact(12) */ 479001600.0, | |
/* fact(13) */ 6227020800.0, | |
/* fact(14) */ 87178291200.0, | |
/* fact(15) */ 1307674368000.0, | |
/* fact(16) */ 20922789888000.0, | |
/* fact(17) */ 355687428096000.0, | |
/* fact(18) */ 6402373705728000.0, | |
/* fact(19) */ 121645100408832000.0, | |
/* fact(20) */ 2432902008176640000.0, | |
/* fact(21) */ 51090942171709440000.0, | |
/* fact(22) */ 1124000727777607680000.0, | |
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is | |
* impossible to represent exactly in IEEE 754 double which have | |
* 53bit mantissa. */ | |
}; | |
enum {NFACT_TABLE = numberof(fact_table)}; | |
double d; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (isinf(d)) { | |
if (signbit(d)) domain_error("gamma"); | |
return DBL2NUM(HUGE_VAL); | |
} | |
if (d == 0.0) { | |
return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL); | |
} | |
if (d == floor(d)) { | |
if (d < 0.0) domain_error("gamma"); | |
if (1.0 <= d && d <= (double)NFACT_TABLE) { | |
return DBL2NUM(fact_table[(int)d - 1]); | |
} | |
} | |
return DBL2NUM(tgamma(d)); | |
} | |
/* | |
* call-seq: | |
* Math.lgamma(x) -> [float, -1 or 1] | |
* | |
* Calculates the logarithmic gamma of +x+ and the sign of gamma of +x+. | |
* | |
* Math.lgamma(x) is same as | |
* [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1] | |
* but avoid overflow by Math.gamma(x) for large x. | |
* | |
* Math.lgamma(0) #=> [Infinity, 1] | |
* | |
*/ | |
static VALUE | |
math_lgamma(VALUE unused_obj, VALUE x) | |
{ | |
double d; | |
int sign=1; | |
VALUE v; | |
d = Get_Double(x); | |
/* check for domain error */ | |
if (isinf(d)) { | |
if (signbit(d)) domain_error("lgamma"); | |
return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1)); | |
} | |
if (d == 0.0) { | |
VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1); | |
return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign); | |
} | |
v = DBL2NUM(lgamma_r(d, &sign)); | |
return rb_assoc_new(v, INT2FIX(sign)); | |
} | |
#define exp1(n) \ | |
VALUE \ | |
rb_math_##n(VALUE x)\ | |
{\ | |
return math_##n(0, x);\ | |
} | |
#define exp2(n) \ | |
VALUE \ | |
rb_math_##n(VALUE x, VALUE y)\ | |
{\ | |
return math_##n(0, x, y);\ | |
} | |
exp2(atan2) | |
exp1(cos) | |
exp1(cosh) | |
exp1(exp) | |
exp2(hypot) | |
exp1(sin) | |
exp1(sinh) | |
#if 0 | |
exp1(sqrt) | |
#endif | |
/* | |
* Document-class: Math::DomainError | |
* | |
* Raised when a mathematical function is evaluated outside of its | |
* domain of definition. | |
* | |
* For example, since +cos+ returns values in the range -1..1, | |
* its inverse function +acos+ is only defined on that interval: | |
* | |
* Math.acos(42) | |
* | |
* <em>produces:</em> | |
* | |
* Math::DomainError: Numerical argument is out of domain - "acos" | |
*/ | |
/* | |
* Document-class: Math | |
* | |
* The Math module contains module functions for basic | |
* trigonometric and transcendental functions. See class | |
* Float for a list of constants that | |
* define Ruby's floating point accuracy. | |
* | |
* Domains and codomains are given only for real (not complex) numbers. | |
*/ | |
void | |
InitVM_Math(void) | |
{ | |
rb_mMath = rb_define_module("Math"); | |
rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError); | |
/* Definition of the mathematical constant PI as a Float number. */ | |
rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI)); | |
#ifdef M_E | |
/* Definition of the mathematical constant E for Euler's number (e) as a Float number. */ | |
rb_define_const(rb_mMath, "E", DBL2NUM(M_E)); | |
#else | |
rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0))); | |
#endif | |
rb_define_module_function(rb_mMath, "atan2", math_atan2, 2); | |
rb_define_module_function(rb_mMath, "cos", math_cos, 1); | |
rb_define_module_function(rb_mMath, "sin", math_sin, 1); | |
rb_define_module_function(rb_mMath, "tan", math_tan, 1); | |
rb_define_module_function(rb_mMath, "acos", math_acos, 1); | |
rb_define_module_function(rb_mMath, "asin", math_asin, 1); | |
rb_define_module_function(rb_mMath, "atan", math_atan, 1); | |
rb_define_module_function(rb_mMath, "cosh", math_cosh, 1); | |
rb_define_module_function(rb_mMath, "sinh", math_sinh, 1); | |
rb_define_module_function(rb_mMath, "tanh", math_tanh, 1); | |
rb_define_module_function(rb_mMath, "acosh", math_acosh, 1); | |
rb_define_module_function(rb_mMath, "asinh", math_asinh, 1); | |
rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); | |
rb_define_module_function(rb_mMath, "exp", math_exp, 1); | |
rb_define_module_function(rb_mMath, "log", math_log, -1); | |
rb_define_module_function(rb_mMath, "log2", math_log2, 1); | |
rb_define_module_function(rb_mMath, "log10", math_log10, 1); | |
rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); | |
rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1); | |
rb_define_module_function(rb_mMath, "frexp", math_frexp, 1); | |
rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2); | |
rb_define_module_function(rb_mMath, "hypot", math_hypot, 2); | |
rb_define_module_function(rb_mMath, "erf", math_erf, 1); | |
rb_define_module_function(rb_mMath, "erfc", math_erfc, 1); | |
rb_define_module_function(rb_mMath, "gamma", math_gamma, 1); | |
rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1); | |
} | |
void | |
Init_Math(void) | |
{ | |
InitVM(Math); | |
} |