Permalink
Cannot retrieve contributors at this time
/********************************************************************** | |
random.c - | |
$Author$ | |
created at: Fri Dec 24 16:39:21 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
**********************************************************************/ | |
#include "ruby/internal/config.h" | |
#include <errno.h> | |
#include <limits.h> | |
#include <math.h> | |
#include <float.h> | |
#include <time.h> | |
#ifdef HAVE_UNISTD_H | |
# include <unistd.h> | |
#endif | |
#include <sys/types.h> | |
#include <sys/stat.h> | |
#ifdef HAVE_FCNTL_H | |
# include <fcntl.h> | |
#endif | |
#if defined(HAVE_SYS_TIME_H) | |
# include <sys/time.h> | |
#endif | |
#ifdef HAVE_SYSCALL_H | |
# include <syscall.h> | |
#elif defined HAVE_SYS_SYSCALL_H | |
# include <sys/syscall.h> | |
#endif | |
#ifdef _WIN32 | |
# include <winsock2.h> | |
# include <windows.h> | |
# include <wincrypt.h> | |
#endif | |
#ifdef __OpenBSD__ | |
/* to define OpenBSD for version check */ | |
# include <sys/param.h> | |
#endif | |
#if defined HAVE_GETRANDOM | |
# include <sys/random.h> | |
#elif defined __linux__ && defined __NR_getrandom | |
# include <linux/random.h> | |
#endif | |
#include "internal.h" | |
#include "internal/array.h" | |
#include "internal/compilers.h" | |
#include "internal/numeric.h" | |
#include "internal/random.h" | |
#include "internal/sanitizers.h" | |
#include "internal/variable.h" | |
#include "ruby_atomic.h" | |
#include "ruby/random.h" | |
#include "ruby/ractor.h" | |
typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1]; | |
#include "missing/mt19937.c" | |
/* generates a random number on [0,1) with 53-bit resolution*/ | |
static double int_pair_to_real_exclusive(uint32_t a, uint32_t b); | |
static double | |
genrand_real(struct MT *mt) | |
{ | |
/* mt must be initialized */ | |
unsigned int a = genrand_int32(mt), b = genrand_int32(mt); | |
return int_pair_to_real_exclusive(a, b); | |
} | |
static const double dbl_reduce_scale = /* 2**(-DBL_MANT_DIG) */ | |
(1.0 | |
/ (double)(DBL_MANT_DIG > 2*31 ? (1ul<<31) : 1.0) | |
/ (double)(DBL_MANT_DIG > 1*31 ? (1ul<<31) : 1.0) | |
/ (double)(1ul<<(DBL_MANT_DIG%31))); | |
static double | |
int_pair_to_real_exclusive(uint32_t a, uint32_t b) | |
{ | |
static const int a_shift = DBL_MANT_DIG < 64 ? | |
(64-DBL_MANT_DIG)/2 : 0; | |
static const int b_shift = DBL_MANT_DIG < 64 ? | |
(65-DBL_MANT_DIG)/2 : 0; | |
a >>= a_shift; | |
b >>= b_shift; | |
return (a*(double)(1ul<<(32-b_shift))+b)*dbl_reduce_scale; | |
} | |
/* generates a random number on [0,1] with 53-bit resolution*/ | |
static double int_pair_to_real_inclusive(uint32_t a, uint32_t b); | |
#if 0 | |
static double | |
genrand_real2(struct MT *mt) | |
{ | |
/* mt must be initialized */ | |
uint32_t a = genrand_int32(mt), b = genrand_int32(mt); | |
return int_pair_to_real_inclusive(a, b); | |
} | |
#endif | |
/* These real versions are due to Isaku Wada, 2002/01/09 added */ | |
#undef N | |
#undef M | |
typedef struct { | |
rb_random_t base; | |
struct MT mt; | |
} rb_random_mt_t; | |
#define DEFAULT_SEED_CNT 4 | |
static VALUE rand_init(const rb_random_interface_t *, rb_random_t *, VALUE); | |
static VALUE random_seed(VALUE); | |
static void fill_random_seed(uint32_t *seed, size_t cnt); | |
static VALUE make_seed_value(uint32_t *ptr, size_t len); | |
RB_RANDOM_INTERFACE_DECLARE(rand_mt); | |
static const rb_random_interface_t random_mt_if = { | |
DEFAULT_SEED_CNT * 32, | |
RB_RANDOM_INTERFACE_DEFINE(rand_mt) | |
}; | |
static rb_random_mt_t * | |
rand_mt_start(rb_random_mt_t *r) | |
{ | |
if (!genrand_initialized(&r->mt)) { | |
r->base.seed = rand_init(&random_mt_if, &r->base, random_seed(Qundef)); | |
} | |
return r; | |
} | |
static rb_random_t * | |
rand_start(rb_random_mt_t *r) | |
{ | |
return &rand_mt_start(r)->base; | |
} | |
static rb_ractor_local_key_t default_rand_key; | |
static void | |
default_rand_mark(void *ptr) | |
{ | |
rb_random_mt_t *rnd = (rb_random_mt_t *)ptr; | |
rb_gc_mark(rnd->base.seed); | |
} | |
static const struct rb_ractor_local_storage_type default_rand_key_storage_type = { | |
default_rand_mark, | |
ruby_xfree, | |
}; | |
static rb_random_mt_t * | |
default_rand(void) | |
{ | |
rb_random_mt_t *rnd; | |
if ((rnd = rb_ractor_local_storage_ptr(default_rand_key)) == NULL) { | |
rnd = ZALLOC(rb_random_mt_t); | |
rb_ractor_local_storage_ptr_set(default_rand_key, rnd); | |
} | |
return rnd; | |
} | |
static rb_random_mt_t * | |
default_mt(void) | |
{ | |
return rand_mt_start(default_rand()); | |
} | |
unsigned int | |
rb_genrand_int32(void) | |
{ | |
struct MT *mt = &default_mt()->mt; | |
return genrand_int32(mt); | |
} | |
double | |
rb_genrand_real(void) | |
{ | |
struct MT *mt = &default_mt()->mt; | |
return genrand_real(mt); | |
} | |
#define SIZEOF_INT32 (31/CHAR_BIT + 1) | |
static double | |
int_pair_to_real_inclusive(uint32_t a, uint32_t b) | |
{ | |
double r; | |
enum {dig = DBL_MANT_DIG}; | |
enum {dig_u = dig-32, dig_r64 = 64-dig, bmask = ~(~0u<<(dig_r64))}; | |
#if defined HAVE_UINT128_T | |
const uint128_t m = ((uint128_t)1 << dig) | 1; | |
uint128_t x = ((uint128_t)a << 32) | b; | |
r = (double)(uint64_t)((x * m) >> 64); | |
#elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300) | |
uint64_t x = ((uint64_t)a << dig_u) + | |
(((uint64_t)b + (a >> dig_u)) >> dig_r64); | |
r = (double)x; | |
#else | |
/* shift then add to get rid of overflow */ | |
b = (b >> dig_r64) + (((a >> dig_u) + (b & bmask)) >> dig_r64); | |
r = (double)a * (1 << dig_u) + b; | |
#endif | |
return r * dbl_reduce_scale; | |
} | |
VALUE rb_cRandom; | |
#define id_minus '-' | |
#define id_plus '+' | |
static ID id_rand, id_bytes; | |
NORETURN(static void domain_error(void)); | |
/* :nodoc: */ | |
#define random_mark rb_random_mark | |
void | |
random_mark(void *ptr) | |
{ | |
rb_gc_mark(((rb_random_t *)ptr)->seed); | |
} | |
#define random_free RUBY_TYPED_DEFAULT_FREE | |
static size_t | |
random_memsize(const void *ptr) | |
{ | |
return sizeof(rb_random_t); | |
} | |
const rb_data_type_t rb_random_data_type = { | |
"random", | |
{ | |
random_mark, | |
random_free, | |
random_memsize, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
#define random_mt_mark rb_random_mark | |
static void | |
random_mt_free(void *ptr) | |
{ | |
if (ptr != default_rand()) | |
xfree(ptr); | |
} | |
static size_t | |
random_mt_memsize(const void *ptr) | |
{ | |
return sizeof(rb_random_mt_t); | |
} | |
static const rb_data_type_t random_mt_type = { | |
"random/MT", | |
{ | |
random_mt_mark, | |
random_mt_free, | |
random_mt_memsize, | |
}, | |
&rb_random_data_type, | |
(void *)&random_mt_if, | |
RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static rb_random_t * | |
get_rnd(VALUE obj) | |
{ | |
rb_random_t *ptr; | |
TypedData_Get_Struct(obj, rb_random_t, &rb_random_data_type, ptr); | |
if (RTYPEDDATA_TYPE(obj) == &random_mt_type) | |
return rand_start((rb_random_mt_t *)ptr); | |
return ptr; | |
} | |
static rb_random_mt_t * | |
get_rnd_mt(VALUE obj) | |
{ | |
rb_random_mt_t *ptr; | |
TypedData_Get_Struct(obj, rb_random_mt_t, &random_mt_type, ptr); | |
return ptr; | |
} | |
static rb_random_t * | |
try_get_rnd(VALUE obj) | |
{ | |
if (obj == rb_cRandom) { | |
return rand_start(default_rand()); | |
} | |
if (!rb_typeddata_is_kind_of(obj, &rb_random_data_type)) return NULL; | |
if (RTYPEDDATA_TYPE(obj) == &random_mt_type) | |
return rand_start(DATA_PTR(obj)); | |
rb_random_t *rnd = DATA_PTR(obj); | |
if (!rnd) { | |
rb_raise(rb_eArgError, "uninitialized random: %s", | |
RTYPEDDATA_TYPE(obj)->wrap_struct_name); | |
} | |
return rnd; | |
} | |
static const rb_random_interface_t * | |
try_rand_if(VALUE obj, rb_random_t *rnd) | |
{ | |
if (rnd == &default_rand()->base) { | |
return &random_mt_if; | |
} | |
return rb_rand_if(obj); | |
} | |
/* :nodoc: */ | |
void | |
rb_random_base_init(rb_random_t *rnd) | |
{ | |
rnd->seed = INT2FIX(0); | |
} | |
/* :nodoc: */ | |
static VALUE | |
random_alloc(VALUE klass) | |
{ | |
rb_random_mt_t *rnd; | |
VALUE obj = TypedData_Make_Struct(klass, rb_random_mt_t, &random_mt_type, rnd); | |
rb_random_base_init(&rnd->base); | |
return obj; | |
} | |
static VALUE | |
rand_init_default(const rb_random_interface_t *rng, rb_random_t *rnd) | |
{ | |
VALUE seed, buf0 = 0; | |
size_t len = roomof(rng->default_seed_bits, 32); | |
uint32_t *buf = ALLOCV_N(uint32_t, buf0, len+1); | |
fill_random_seed(buf, len); | |
rng->init(rnd, buf, len); | |
seed = make_seed_value(buf, len); | |
explicit_bzero(buf, len * sizeof(*buf)); | |
ALLOCV_END(buf0); | |
return seed; | |
} | |
static VALUE | |
rand_init(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE seed) | |
{ | |
uint32_t *buf; | |
VALUE buf0 = 0; | |
size_t len; | |
int sign; | |
len = rb_absint_numwords(seed, 32, NULL); | |
buf = ALLOCV_N(uint32_t, buf0, len); | |
sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
if (sign < 0) | |
sign = -sign; | |
if (len == 0) { | |
buf[0] = 0; | |
len = 1; | |
} | |
if (len > 1) { | |
if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */ | |
len--; | |
} | |
rng->init(rnd, buf, len); | |
explicit_bzero(buf, len * sizeof(*buf)); | |
ALLOCV_END(buf0); | |
return seed; | |
} | |
/* | |
* call-seq: | |
* Random.new(seed = Random.new_seed) -> prng | |
* | |
* Creates a new PRNG using +seed+ to set the initial state. If +seed+ is | |
* omitted, the generator is initialized with Random.new_seed. | |
* | |
* See Random.srand for more information on the use of seed values. | |
*/ | |
static VALUE | |
random_init(int argc, VALUE *argv, VALUE obj) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
const rb_random_interface_t *rng = rb_rand_if(obj); | |
if (!rng) { | |
rb_raise(rb_eTypeError, "undefined random interface: %s", | |
RTYPEDDATA_TYPE(obj)->wrap_struct_name); | |
} | |
argc = rb_check_arity(argc, 0, 1); | |
rb_check_frozen(obj); | |
if (argc == 0) { | |
rnd->seed = rand_init_default(rng, rnd); | |
} | |
else { | |
rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0])); | |
} | |
return obj; | |
} | |
#define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t)) | |
#if defined(S_ISCHR) && !defined(DOSISH) | |
# define USE_DEV_URANDOM 1 | |
#else | |
# define USE_DEV_URANDOM 0 | |
#endif | |
#if USE_DEV_URANDOM | |
static int | |
fill_random_bytes_urandom(void *seed, size_t size) | |
{ | |
/* | |
O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points | |
to a urandom device. But it protects from several strange hazard if | |
/dev/urandom is not a urandom device. | |
*/ | |
int fd = rb_cloexec_open("/dev/urandom", | |
# ifdef O_NONBLOCK | |
O_NONBLOCK| | |
# endif | |
# ifdef O_NOCTTY | |
O_NOCTTY| | |
# endif | |
O_RDONLY, 0); | |
struct stat statbuf; | |
ssize_t ret = 0; | |
size_t offset = 0; | |
if (fd < 0) return -1; | |
rb_update_max_fd(fd); | |
if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) { | |
do { | |
ret = read(fd, ((char*)seed) + offset, size - offset); | |
if (ret < 0) { | |
close(fd); | |
return -1; | |
} | |
offset += (size_t)ret; | |
} while (offset < size); | |
} | |
close(fd); | |
return 0; | |
} | |
#else | |
# define fill_random_bytes_urandom(seed, size) -1 | |
#endif | |
#if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom | |
# ifndef GRND_NONBLOCK | |
# define GRND_NONBLOCK 0x0001 /* not defined in musl libc */ | |
# endif | |
# define getrandom(ptr, size, flags) \ | |
(ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags)) | |
# define HAVE_GETRANDOM 1 | |
#endif | |
#if 0 | |
#elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7 | |
#include <Security/Security.h> | |
static int | |
fill_random_bytes_syscall(void *seed, size_t size, int unused) | |
{ | |
int status = SecRandomCopyBytes(kSecRandomDefault, size, seed); | |
if (status != errSecSuccess) { | |
# if 0 | |
CFStringRef s = SecCopyErrorMessageString(status, NULL); | |
const char *m = s ? CFStringGetCStringPtr(s, kCFStringEncodingUTF8) : NULL; | |
fprintf(stderr, "SecRandomCopyBytes failed: %d: %s\n", status, | |
m ? m : "unknown"); | |
if (s) CFRelease(s); | |
# endif | |
return -1; | |
} | |
return 0; | |
} | |
#elif defined(HAVE_ARC4RANDOM_BUF) | |
static int | |
fill_random_bytes_syscall(void *buf, size_t size, int unused) | |
{ | |
#if (defined(__OpenBSD__) && OpenBSD >= 201411) || \ | |
(defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \ | |
(defined(__FreeBSD__) && __FreeBSD_version >= 1200079) | |
arc4random_buf(buf, size); | |
return 0; | |
#else | |
return -1; | |
#endif | |
} | |
#elif defined(_WIN32) | |
static void | |
release_crypt(void *p) | |
{ | |
HCRYPTPROV prov = (HCRYPTPROV)ATOMIC_PTR_EXCHANGE(*(HCRYPTPROV *)p, INVALID_HANDLE_VALUE); | |
if (prov && prov != (HCRYPTPROV)INVALID_HANDLE_VALUE) { | |
CryptReleaseContext(prov, 0); | |
} | |
} | |
static int | |
fill_random_bytes_syscall(void *seed, size_t size, int unused) | |
{ | |
static HCRYPTPROV perm_prov; | |
HCRYPTPROV prov = perm_prov, old_prov; | |
if (!prov) { | |
if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { | |
prov = (HCRYPTPROV)INVALID_HANDLE_VALUE; | |
} | |
old_prov = (HCRYPTPROV)ATOMIC_PTR_CAS(perm_prov, 0, prov); | |
if (LIKELY(!old_prov)) { /* no other threads acquired */ | |
if (prov != (HCRYPTPROV)INVALID_HANDLE_VALUE) { | |
#undef RUBY_UNTYPED_DATA_WARNING | |
#define RUBY_UNTYPED_DATA_WARNING 0 | |
rb_gc_register_mark_object(Data_Wrap_Struct(0, 0, release_crypt, &perm_prov)); | |
} | |
} | |
else { /* another thread acquired */ | |
if (prov != (HCRYPTPROV)INVALID_HANDLE_VALUE) { | |
CryptReleaseContext(prov, 0); | |
} | |
prov = old_prov; | |
} | |
} | |
if (prov == (HCRYPTPROV)INVALID_HANDLE_VALUE) return -1; | |
CryptGenRandom(prov, size, seed); | |
return 0; | |
} | |
#elif defined HAVE_GETRANDOM | |
static int | |
fill_random_bytes_syscall(void *seed, size_t size, int need_secure) | |
{ | |
static rb_atomic_t try_syscall = 1; | |
if (try_syscall) { | |
size_t offset = 0; | |
int flags = 0; | |
if (!need_secure) | |
flags = GRND_NONBLOCK; | |
do { | |
errno = 0; | |
ssize_t ret = getrandom(((char*)seed) + offset, size - offset, flags); | |
if (ret == -1) { | |
ATOMIC_SET(try_syscall, 0); | |
return -1; | |
} | |
offset += (size_t)ret; | |
} while (offset < size); | |
return 0; | |
} | |
return -1; | |
} | |
#else | |
# define fill_random_bytes_syscall(seed, size, need_secure) -1 | |
#endif | |
int | |
ruby_fill_random_bytes(void *seed, size_t size, int need_secure) | |
{ | |
int ret = fill_random_bytes_syscall(seed, size, need_secure); | |
if (ret == 0) return ret; | |
return fill_random_bytes_urandom(seed, size); | |
} | |
#define fill_random_bytes ruby_fill_random_bytes | |
/* cnt must be 4 or more */ | |
static void | |
fill_random_seed(uint32_t *seed, size_t cnt) | |
{ | |
static int n = 0; | |
#if defined HAVE_CLOCK_GETTIME | |
struct timespec tv; | |
#elif defined HAVE_GETTIMEOFDAY | |
struct timeval tv; | |
#endif | |
size_t len = cnt * sizeof(*seed); | |
memset(seed, 0, len); | |
fill_random_bytes(seed, len, FALSE); | |
#if defined HAVE_CLOCK_GETTIME | |
clock_gettime(CLOCK_REALTIME, &tv); | |
seed[0] ^= tv.tv_nsec; | |
#elif defined HAVE_GETTIMEOFDAY | |
gettimeofday(&tv, 0); | |
seed[0] ^= tv.tv_usec; | |
#endif | |
seed[1] ^= (uint32_t)tv.tv_sec; | |
#if SIZEOF_TIME_T > SIZEOF_INT | |
seed[0] ^= (uint32_t)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT); | |
#endif | |
seed[2] ^= getpid() ^ (n++ << 16); | |
seed[3] ^= (uint32_t)(VALUE)&seed; | |
#if SIZEOF_VOIDP > SIZEOF_INT | |
seed[2] ^= (uint32_t)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT); | |
#endif | |
} | |
static VALUE | |
make_seed_value(uint32_t *ptr, size_t len) | |
{ | |
VALUE seed; | |
if (ptr[len-1] <= 1) { | |
/* set leading-zero-guard */ | |
ptr[len++] = 1; | |
} | |
seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
return seed; | |
} | |
#define with_random_seed(size, add) \ | |
for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size)), 1); \ | |
loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0) | |
/* | |
* call-seq: Random.new_seed -> integer | |
* | |
* Returns an arbitrary seed value. This is used by Random.new | |
* when no seed value is specified as an argument. | |
* | |
* Random.new_seed #=> 115032730400174366788466674494640623225 | |
*/ | |
static VALUE | |
random_seed(VALUE _) | |
{ | |
VALUE v; | |
with_random_seed(DEFAULT_SEED_CNT, 1) { | |
v = make_seed_value(seedbuf, DEFAULT_SEED_CNT); | |
} | |
return v; | |
} | |
/* | |
* call-seq: Random.urandom(size) -> string | |
* | |
* Returns a string, using platform providing features. | |
* Returned value is expected to be a cryptographically secure | |
* pseudo-random number in binary form. | |
* This method raises a RuntimeError if the feature provided by platform | |
* failed to prepare the result. | |
* | |
* In 2017, Linux manpage random(7) writes that "no cryptographic | |
* primitive available today can hope to promise more than 256 bits of | |
* security". So it might be questionable to pass size > 32 to this | |
* method. | |
* | |
* Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA" | |
*/ | |
static VALUE | |
random_raw_seed(VALUE self, VALUE size) | |
{ | |
long n = NUM2ULONG(size); | |
VALUE buf = rb_str_new(0, n); | |
if (n == 0) return buf; | |
if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE)) | |
rb_raise(rb_eRuntimeError, "failed to get urandom"); | |
return buf; | |
} | |
/* | |
* call-seq: prng.seed -> integer | |
* | |
* Returns the seed value used to initialize the generator. This may be used to | |
* initialize another generator with the same state at a later time, causing it | |
* to produce the same sequence of numbers. | |
* | |
* prng1 = Random.new(1234) | |
* prng1.seed #=> 1234 | |
* prng1.rand(100) #=> 47 | |
* | |
* prng2 = Random.new(prng1.seed) | |
* prng2.rand(100) #=> 47 | |
*/ | |
static VALUE | |
random_get_seed(VALUE obj) | |
{ | |
return get_rnd(obj)->seed; | |
} | |
/* :nodoc: */ | |
static VALUE | |
rand_mt_copy(VALUE obj, VALUE orig) | |
{ | |
rb_random_mt_t *rnd1, *rnd2; | |
struct MT *mt; | |
if (!OBJ_INIT_COPY(obj, orig)) return obj; | |
rnd1 = get_rnd_mt(obj); | |
rnd2 = get_rnd_mt(orig); | |
mt = &rnd1->mt; | |
*rnd1 = *rnd2; | |
mt->next = mt->state + numberof(mt->state) - mt->left + 1; | |
return obj; | |
} | |
static VALUE | |
mt_state(const struct MT *mt) | |
{ | |
return rb_integer_unpack(mt->state, numberof(mt->state), | |
sizeof(*mt->state), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
} | |
/* :nodoc: */ | |
static VALUE | |
rand_mt_state(VALUE obj) | |
{ | |
rb_random_mt_t *rnd = get_rnd_mt(obj); | |
return mt_state(&rnd->mt); | |
} | |
/* :nodoc: */ | |
static VALUE | |
random_s_state(VALUE klass) | |
{ | |
return mt_state(&default_rand()->mt); | |
} | |
/* :nodoc: */ | |
static VALUE | |
rand_mt_left(VALUE obj) | |
{ | |
rb_random_mt_t *rnd = get_rnd_mt(obj); | |
return INT2FIX(rnd->mt.left); | |
} | |
/* :nodoc: */ | |
static VALUE | |
random_s_left(VALUE klass) | |
{ | |
return INT2FIX(default_rand()->mt.left); | |
} | |
/* :nodoc: */ | |
static VALUE | |
rand_mt_dump(VALUE obj) | |
{ | |
rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type); | |
VALUE dump = rb_ary_new2(3); | |
rb_ary_push(dump, mt_state(&rnd->mt)); | |
rb_ary_push(dump, INT2FIX(rnd->mt.left)); | |
rb_ary_push(dump, rnd->base.seed); | |
return dump; | |
} | |
/* :nodoc: */ | |
static VALUE | |
rand_mt_load(VALUE obj, VALUE dump) | |
{ | |
rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type); | |
struct MT *mt = &rnd->mt; | |
VALUE state, left = INT2FIX(1), seed = INT2FIX(0); | |
unsigned long x; | |
rb_check_copyable(obj, dump); | |
Check_Type(dump, T_ARRAY); | |
switch (RARRAY_LEN(dump)) { | |
case 3: | |
seed = RARRAY_AREF(dump, 2); | |
case 2: | |
left = RARRAY_AREF(dump, 1); | |
case 1: | |
state = RARRAY_AREF(dump, 0); | |
break; | |
default: | |
rb_raise(rb_eArgError, "wrong dump data"); | |
} | |
rb_integer_pack(state, mt->state, numberof(mt->state), | |
sizeof(*mt->state), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
x = NUM2ULONG(left); | |
if (x > numberof(mt->state)) { | |
rb_raise(rb_eArgError, "wrong value"); | |
} | |
mt->left = (unsigned int)x; | |
mt->next = mt->state + numberof(mt->state) - x + 1; | |
rnd->base.seed = rb_to_int(seed); | |
return obj; | |
} | |
static void | |
rand_mt_init(rb_random_t *rnd, const uint32_t *buf, size_t len) | |
{ | |
struct MT *mt = &((rb_random_mt_t *)rnd)->mt; | |
if (len <= 1) { | |
init_genrand(mt, buf[0]); | |
} | |
else { | |
init_by_array(mt, buf, (int)len); | |
} | |
} | |
static unsigned int | |
rand_mt_get_int32(rb_random_t *rnd) | |
{ | |
struct MT *mt = &((rb_random_mt_t *)rnd)->mt; | |
return genrand_int32(mt); | |
} | |
static void | |
rand_mt_get_bytes(rb_random_t *rnd, void *ptr, size_t n) | |
{ | |
rb_rand_bytes_int32(rand_mt_get_int32, rnd, ptr, n); | |
} | |
/* | |
* call-seq: | |
* srand(number = Random.new_seed) -> old_seed | |
* | |
* Seeds the system pseudo-random number generator, with +number+. | |
* The previous seed value is returned. | |
* | |
* If +number+ is omitted, seeds the generator using a source of entropy | |
* provided by the operating system, if available (/dev/urandom on Unix systems | |
* or the RSA cryptographic provider on Windows), which is then combined with | |
* the time, the process id, and a sequence number. | |
* | |
* srand may be used to ensure repeatable sequences of pseudo-random numbers | |
* between different runs of the program. By setting the seed to a known value, | |
* programs can be made deterministic during testing. | |
* | |
* srand 1234 # => 268519324636777531569100071560086917274 | |
* [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319] | |
* [ rand(10), rand(1000) ] # => [4, 664] | |
* srand 1234 # => 1234 | |
* [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319] | |
*/ | |
static VALUE | |
rb_f_srand(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE seed, old; | |
rb_random_mt_t *r = rand_mt_start(default_rand()); | |
if (rb_check_arity(argc, 0, 1) == 0) { | |
seed = random_seed(obj); | |
} | |
else { | |
seed = rb_to_int(argv[0]); | |
} | |
old = r->base.seed; | |
rand_init(&random_mt_if, &r->base, seed); | |
r->base.seed = seed; | |
return old; | |
} | |
static unsigned long | |
make_mask(unsigned long x) | |
{ | |
x = x | x >> 1; | |
x = x | x >> 2; | |
x = x | x >> 4; | |
x = x | x >> 8; | |
x = x | x >> 16; | |
#if 4 < SIZEOF_LONG | |
x = x | x >> 32; | |
#endif | |
return x; | |
} | |
static unsigned long | |
limited_rand(const rb_random_interface_t *rng, rb_random_t *rnd, unsigned long limit) | |
{ | |
/* mt must be initialized */ | |
unsigned long val, mask; | |
if (!limit) return 0; | |
mask = make_mask(limit); | |
#if 4 < SIZEOF_LONG | |
if (0xffffffff < limit) { | |
int i; | |
retry: | |
val = 0; | |
for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) { | |
if ((mask >> (i * 32)) & 0xffffffff) { | |
val |= (unsigned long)rng->get_int32(rnd) << (i * 32); | |
val &= mask; | |
if (limit < val) | |
goto retry; | |
} | |
} | |
return val; | |
} | |
#endif | |
do { | |
val = rng->get_int32(rnd) & mask; | |
} while (limit < val); | |
return val; | |
} | |
static VALUE | |
limited_big_rand(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE limit) | |
{ | |
/* mt must be initialized */ | |
uint32_t mask; | |
long i; | |
int boundary; | |
size_t len; | |
uint32_t *tmp, *lim_array, *rnd_array; | |
VALUE vtmp; | |
VALUE val; | |
len = rb_absint_numwords(limit, 32, NULL); | |
tmp = ALLOCV_N(uint32_t, vtmp, len*2); | |
lim_array = tmp; | |
rnd_array = tmp + len; | |
rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
retry: | |
mask = 0; | |
boundary = 1; | |
for (i = len-1; 0 <= i; i--) { | |
uint32_t r = 0; | |
uint32_t lim = lim_array[i]; | |
mask = mask ? 0xffffffff : (uint32_t)make_mask(lim); | |
if (mask) { | |
r = rng->get_int32(rnd) & mask; | |
if (boundary) { | |
if (lim < r) | |
goto retry; | |
if (r < lim) | |
boundary = 0; | |
} | |
} | |
rnd_array[i] = r; | |
} | |
val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, | |
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER); | |
ALLOCV_END(vtmp); | |
return val; | |
} | |
/* | |
* Returns random unsigned long value in [0, +limit+]. | |
* | |
* Note that +limit+ is included, and the range of the argument and the | |
* return value depends on environments. | |
*/ | |
unsigned long | |
rb_genrand_ulong_limited(unsigned long limit) | |
{ | |
rb_random_mt_t *mt = default_mt(); | |
return limited_rand(&random_mt_if, &mt->base, limit); | |
} | |
static VALUE | |
obj_random_bytes(VALUE obj, void *p, long n) | |
{ | |
VALUE len = LONG2NUM(n); | |
VALUE v = rb_funcallv_public(obj, id_bytes, 1, &len); | |
long l; | |
Check_Type(v, T_STRING); | |
l = RSTRING_LEN(v); | |
if (l < n) | |
rb_raise(rb_eRangeError, "random data too short %ld", l); | |
else if (l > n) | |
rb_raise(rb_eRangeError, "random data too long %ld", l); | |
if (p) memcpy(p, RSTRING_PTR(v), n); | |
return v; | |
} | |
static unsigned int | |
random_int32(const rb_random_interface_t *rng, rb_random_t *rnd) | |
{ | |
return rng->get_int32(rnd); | |
} | |
unsigned int | |
rb_random_int32(VALUE obj) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
if (!rnd) { | |
uint32_t x; | |
obj_random_bytes(obj, &x, sizeof(x)); | |
return (unsigned int)x; | |
} | |
return random_int32(try_rand_if(obj, rnd), rnd); | |
} | |
static double | |
random_real(VALUE obj, rb_random_t *rnd, int excl) | |
{ | |
uint32_t a, b; | |
if (!rnd) { | |
uint32_t x[2] = {0, 0}; | |
obj_random_bytes(obj, x, sizeof(x)); | |
a = x[0]; | |
b = x[1]; | |
} | |
else { | |
const rb_random_interface_t *rng = try_rand_if(obj, rnd); | |
if (rng->get_real) return rng->get_real(rnd, excl); | |
a = random_int32(rng, rnd); | |
b = random_int32(rng, rnd); | |
} | |
return rb_int_pair_to_real(a, b, excl); | |
} | |
double | |
rb_int_pair_to_real(uint32_t a, uint32_t b, int excl) | |
{ | |
if (excl) { | |
return int_pair_to_real_exclusive(a, b); | |
} | |
else { | |
return int_pair_to_real_inclusive(a, b); | |
} | |
} | |
double | |
rb_random_real(VALUE obj) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
if (!rnd) { | |
VALUE v = rb_funcallv(obj, id_rand, 0, 0); | |
double d = NUM2DBL(v); | |
if (d < 0.0) { | |
rb_raise(rb_eRangeError, "random number too small %g", d); | |
} | |
else if (d >= 1.0) { | |
rb_raise(rb_eRangeError, "random number too big %g", d); | |
} | |
return d; | |
} | |
return random_real(obj, rnd, TRUE); | |
} | |
static inline VALUE | |
ulong_to_num_plus_1(unsigned long n) | |
{ | |
#if HAVE_LONG_LONG | |
return ULL2NUM((LONG_LONG)n+1); | |
#else | |
if (n >= ULONG_MAX) { | |
return rb_big_plus(ULONG2NUM(n), INT2FIX(1)); | |
} | |
return ULONG2NUM(n+1); | |
#endif | |
} | |
static unsigned long | |
random_ulong_limited(VALUE obj, rb_random_t *rnd, unsigned long limit) | |
{ | |
if (!limit) return 0; | |
if (!rnd) { | |
const int w = sizeof(limit) * CHAR_BIT - nlz_long(limit); | |
const int n = w > 32 ? sizeof(unsigned long) : sizeof(uint32_t); | |
const unsigned long mask = ~(~0UL << w); | |
const unsigned long full = | |
(size_t)n >= sizeof(unsigned long) ? ~0UL : | |
~(~0UL << n * CHAR_BIT); | |
unsigned long val, bits = 0, rest = 0; | |
do { | |
if (mask & ~rest) { | |
union {uint32_t u32; unsigned long ul;} buf; | |
obj_random_bytes(obj, &buf, n); | |
rest = full; | |
bits = (n == sizeof(uint32_t)) ? buf.u32 : buf.ul; | |
} | |
val = bits; | |
bits >>= w; | |
rest >>= w; | |
val &= mask; | |
} while (limit < val); | |
return val; | |
} | |
return limited_rand(try_rand_if(obj, rnd), rnd, limit); | |
} | |
unsigned long | |
rb_random_ulong_limited(VALUE obj, unsigned long limit) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
if (!rnd) { | |
VALUE lim = ulong_to_num_plus_1(limit); | |
VALUE v = rb_to_int(rb_funcallv_public(obj, id_rand, 1, &lim)); | |
unsigned long r = NUM2ULONG(v); | |
if (rb_num_negative_p(v)) { | |
rb_raise(rb_eRangeError, "random number too small %ld", r); | |
} | |
if (r > limit) { | |
rb_raise(rb_eRangeError, "random number too big %ld", r); | |
} | |
return r; | |
} | |
return limited_rand(try_rand_if(obj, rnd), rnd, limit); | |
} | |
static VALUE | |
random_ulong_limited_big(VALUE obj, rb_random_t *rnd, VALUE vmax) | |
{ | |
if (!rnd) { | |
VALUE v, vtmp; | |
size_t i, nlz, len = rb_absint_numwords(vmax, 32, &nlz); | |
uint32_t *tmp = ALLOCV_N(uint32_t, vtmp, len * 2); | |
uint32_t mask = (uint32_t)~0 >> nlz; | |
uint32_t *lim_array = tmp; | |
uint32_t *rnd_array = tmp + len; | |
int flag = INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER; | |
rb_integer_pack(vmax, lim_array, len, sizeof(uint32_t), 0, flag); | |
retry: | |
obj_random_bytes(obj, rnd_array, len * sizeof(uint32_t)); | |
rnd_array[0] &= mask; | |
for (i = 0; i < len; ++i) { | |
if (lim_array[i] < rnd_array[i]) | |
goto retry; | |
if (rnd_array[i] < lim_array[i]) | |
break; | |
} | |
v = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, flag); | |
ALLOCV_END(vtmp); | |
return v; | |
} | |
return limited_big_rand(try_rand_if(obj, rnd), rnd, vmax); | |
} | |
static VALUE | |
rand_bytes(const rb_random_interface_t *rng, rb_random_t *rnd, long n) | |
{ | |
VALUE bytes; | |
char *ptr; | |
bytes = rb_str_new(0, n); | |
ptr = RSTRING_PTR(bytes); | |
rb_rand_bytes_int32(rng->get_int32, rnd, ptr, n); | |
return bytes; | |
} | |
/* | |
* call-seq: prng.bytes(size) -> string | |
* | |
* Returns a random binary string containing +size+ bytes. | |
* | |
* random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO" | |
* random_string.size # => 10 | |
*/ | |
static VALUE | |
random_bytes(VALUE obj, VALUE len) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len))); | |
} | |
void | |
rb_rand_bytes_int32(rb_random_get_int32_func *get_int32, | |
rb_random_t *rnd, void *p, size_t n) | |
{ | |
char *ptr = p; | |
unsigned int r, i; | |
for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) { | |
r = get_int32(rnd); | |
i = SIZEOF_INT32; | |
do { | |
*ptr++ = (char)r; | |
r >>= CHAR_BIT; | |
} while (--i); | |
} | |
if (n > 0) { | |
r = get_int32(rnd); | |
do { | |
*ptr++ = (char)r; | |
r >>= CHAR_BIT; | |
} while (--n); | |
} | |
} | |
VALUE | |
rb_random_bytes(VALUE obj, long n) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
if (!rnd) { | |
return obj_random_bytes(obj, NULL, n); | |
} | |
return rand_bytes(try_rand_if(obj, rnd), rnd, n); | |
} | |
/* | |
* call-seq: Random.bytes(size) -> string | |
* | |
* Returns a random binary string. | |
* The argument +size+ specifies the length of the returned string. | |
*/ | |
static VALUE | |
random_s_bytes(VALUE obj, VALUE len) | |
{ | |
rb_random_t *rnd = rand_start(default_rand()); | |
return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len))); | |
} | |
static VALUE | |
random_s_seed(VALUE obj) | |
{ | |
rb_random_mt_t *rnd = rand_mt_start(default_rand()); | |
return rnd->base.seed; | |
} | |
static VALUE | |
range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp) | |
{ | |
VALUE beg, end; | |
if (!rb_range_values(vmax, &beg, &end, exclp)) return Qfalse; | |
if (begp) *begp = beg; | |
if (NIL_P(beg)) return Qnil; | |
if (endp) *endp = end; | |
if (NIL_P(end)) return Qnil; | |
return rb_check_funcall_default(end, id_minus, 1, begp, Qfalse); | |
} | |
static VALUE | |
rand_int(VALUE obj, rb_random_t *rnd, VALUE vmax, int restrictive) | |
{ | |
/* mt must be initialized */ | |
unsigned long r; | |
if (FIXNUM_P(vmax)) { | |
long max = FIX2LONG(vmax); | |
if (!max) return Qnil; | |
if (max < 0) { | |
if (restrictive) return Qnil; | |
max = -max; | |
} | |
r = random_ulong_limited(obj, rnd, (unsigned long)max - 1); | |
return ULONG2NUM(r); | |
} | |
else { | |
VALUE ret; | |
if (rb_bigzero_p(vmax)) return Qnil; | |
if (!BIGNUM_SIGN(vmax)) { | |
if (restrictive) return Qnil; | |
vmax = rb_big_uminus(vmax); | |
} | |
vmax = rb_big_minus(vmax, INT2FIX(1)); | |
if (FIXNUM_P(vmax)) { | |
long max = FIX2LONG(vmax); | |
if (max == -1) return Qnil; | |
r = random_ulong_limited(obj, rnd, max); | |
return LONG2NUM(r); | |
} | |
ret = random_ulong_limited_big(obj, rnd, vmax); | |
RB_GC_GUARD(vmax); | |
return ret; | |
} | |
} | |
static void | |
domain_error(void) | |
{ | |
VALUE error = INT2FIX(EDOM); | |
rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError)); | |
} | |
NORETURN(static void invalid_argument(VALUE)); | |
static void | |
invalid_argument(VALUE arg0) | |
{ | |
rb_raise(rb_eArgError, "invalid argument - %"PRIsVALUE, arg0); | |
} | |
static VALUE | |
check_random_number(VALUE v, const VALUE *argv) | |
{ | |
switch (v) { | |
case Qfalse: | |
(void)NUM2LONG(argv[0]); | |
break; | |
case Qnil: | |
invalid_argument(argv[0]); | |
} | |
return v; | |
} | |
static inline double | |
float_value(VALUE v) | |
{ | |
double x = RFLOAT_VALUE(v); | |
if (isinf(x) || isnan(x)) { | |
domain_error(); | |
} | |
return x; | |
} | |
static inline VALUE | |
rand_range(VALUE obj, rb_random_t* rnd, VALUE range) | |
{ | |
VALUE beg = Qundef, end = Qundef, vmax, v; | |
int excl = 0; | |
if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse) | |
return Qfalse; | |
if (NIL_P(v)) domain_error(); | |
if (!RB_TYPE_P(vmax, T_FLOAT) && (v = rb_check_to_int(vmax), !NIL_P(v))) { | |
long max; | |
vmax = v; | |
v = Qnil; | |
fixnum: | |
if (FIXNUM_P(vmax)) { | |
if ((max = FIX2LONG(vmax) - excl) >= 0) { | |
unsigned long r = random_ulong_limited(obj, rnd, (unsigned long)max); | |
v = ULONG2NUM(r); | |
} | |
} | |
else if (BUILTIN_TYPE(vmax) == T_BIGNUM && BIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) { | |
vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax); | |
if (FIXNUM_P(vmax)) { | |
excl = 0; | |
goto fixnum; | |
} | |
v = random_ulong_limited_big(obj, rnd, vmax); | |
} | |
} | |
else if (v = rb_check_to_float(vmax), !NIL_P(v)) { | |
int scale = 1; | |
double max = RFLOAT_VALUE(v), mid = 0.5, r; | |
if (isinf(max)) { | |
double min = float_value(rb_to_float(beg)) / 2.0; | |
max = float_value(rb_to_float(end)) / 2.0; | |
scale = 2; | |
mid = max + min; | |
max -= min; | |
} | |
else if (isnan(max)) { | |
domain_error(); | |
} | |
v = Qnil; | |
if (max > 0.0) { | |
r = random_real(obj, rnd, excl); | |
if (scale > 1) { | |
return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid); | |
} | |
v = rb_float_new(r * max); | |
} | |
else if (max == 0.0 && !excl) { | |
v = rb_float_new(0.0); | |
} | |
} | |
if (FIXNUM_P(beg) && FIXNUM_P(v)) { | |
long x = FIX2LONG(beg) + FIX2LONG(v); | |
return LONG2NUM(x); | |
} | |
switch (TYPE(v)) { | |
case T_NIL: | |
break; | |
case T_BIGNUM: | |
return rb_big_plus(v, beg); | |
case T_FLOAT: { | |
VALUE f = rb_check_to_float(beg); | |
if (!NIL_P(f)) { | |
return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f)); | |
} | |
} | |
default: | |
return rb_funcallv(beg, id_plus, 1, &v); | |
} | |
return v; | |
} | |
static VALUE rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd); | |
/* | |
* call-seq: | |
* prng.rand -> float | |
* prng.rand(max) -> number | |
* | |
* When +max+ is an Integer, +rand+ returns a random integer greater than | |
* or equal to zero and less than +max+. Unlike Kernel.rand, when +max+ | |
* is a negative integer or zero, +rand+ raises an ArgumentError. | |
* | |
* prng = Random.new | |
* prng.rand(100) # => 42 | |
* | |
* When +max+ is a Float, +rand+ returns a random floating point number | |
* between 0.0 and +max+, including 0.0 and excluding +max+. | |
* | |
* prng.rand(1.5) # => 1.4600282860034115 | |
* | |
* When +max+ is a Range, +rand+ returns a random number where | |
* range.member?(number) == true. | |
* | |
* prng.rand(5..9) # => one of [5, 6, 7, 8, 9] | |
* prng.rand(5...9) # => one of [5, 6, 7, 8] | |
* prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0 | |
* prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0 | |
* | |
* Both the beginning and ending values of the range must respond to subtract | |
* (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an | |
* ArgumentError. | |
*/ | |
static VALUE | |
random_rand(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj)); | |
check_random_number(v, argv); | |
return v; | |
} | |
static VALUE | |
rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd) | |
{ | |
VALUE vmax, v; | |
if (rb_check_arity(argc, 0, 1) == 0) { | |
return rb_float_new(random_real(obj, rnd, TRUE)); | |
} | |
vmax = argv[0]; | |
if (NIL_P(vmax)) return Qnil; | |
if (!RB_TYPE_P(vmax, T_FLOAT)) { | |
v = rb_check_to_int(vmax); | |
if (!NIL_P(v)) return rand_int(obj, rnd, v, 1); | |
} | |
v = rb_check_to_float(vmax); | |
if (!NIL_P(v)) { | |
const double max = float_value(v); | |
if (max < 0.0) { | |
return Qnil; | |
} | |
else { | |
double r = random_real(obj, rnd, TRUE); | |
if (max > 0.0) r *= max; | |
return rb_float_new(r); | |
} | |
} | |
return rand_range(obj, rnd, vmax); | |
} | |
/* | |
* call-seq: | |
* prng.random_number -> float | |
* prng.random_number(max) -> number | |
* prng.rand -> float | |
* prng.rand(max) -> number | |
* | |
* Generates formatted random number from raw random bytes. | |
* See Random#rand. | |
*/ | |
static VALUE | |
rand_random_number(int argc, VALUE *argv, VALUE obj) | |
{ | |
rb_random_t *rnd = try_get_rnd(obj); | |
VALUE v = rand_random(argc, argv, obj, rnd); | |
if (NIL_P(v)) v = rand_random(0, 0, obj, rnd); | |
else if (!v) invalid_argument(argv[0]); | |
return v; | |
} | |
/* | |
* call-seq: | |
* prng1 == prng2 -> true or false | |
* | |
* Returns true if the two generators have the same internal state, otherwise | |
* false. Equivalent generators will return the same sequence of | |
* pseudo-random numbers. Two generators will generally have the same state | |
* only if they were initialized with the same seed | |
* | |
* Random.new == Random.new # => false | |
* Random.new(1234) == Random.new(1234) # => true | |
* | |
* and have the same invocation history. | |
* | |
* prng1 = Random.new(1234) | |
* prng2 = Random.new(1234) | |
* prng1 == prng2 # => true | |
* | |
* prng1.rand # => 0.1915194503788923 | |
* prng1 == prng2 # => false | |
* | |
* prng2.rand # => 0.1915194503788923 | |
* prng1 == prng2 # => true | |
*/ | |
static VALUE | |
rand_mt_equal(VALUE self, VALUE other) | |
{ | |
rb_random_mt_t *r1, *r2; | |
if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse; | |
r1 = get_rnd_mt(self); | |
r2 = get_rnd_mt(other); | |
if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse; | |
if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse; | |
if (r1->mt.left != r2->mt.left) return Qfalse; | |
return rb_equal(r1->base.seed, r2->base.seed); | |
} | |
/* | |
* call-seq: | |
* rand(max=0) -> number | |
* | |
* If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand | |
* returns a pseudo-random floating point number between 0.0 and 1.0, | |
* including 0.0 and excluding 1.0. | |
* | |
* rand #=> 0.2725926052826416 | |
* | |
* When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random | |
* integer greater than or equal to 0 and less than +max.to_i.abs+. | |
* | |
* rand(100) #=> 12 | |
* | |
* When +max+ is a Range, +rand+ returns a random number where | |
* range.member?(number) == true. | |
* | |
* Negative or floating point values for +max+ are allowed, but may give | |
* surprising results. | |
* | |
* rand(-100) # => 87 | |
* rand(-0.5) # => 0.8130921818028143 | |
* rand(1.9) # equivalent to rand(1), which is always 0 | |
* | |
* Kernel.srand may be used to ensure that sequences of random numbers are | |
* reproducible between different runs of a program. | |
* | |
* See also Random.rand. | |
*/ | |
static VALUE | |
rb_f_rand(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE vmax; | |
rb_random_t *rnd = rand_start(default_rand()); | |
if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) { | |
VALUE v = rand_range(obj, rnd, vmax); | |
if (v != Qfalse) return v; | |
vmax = rb_to_int(vmax); | |
if (vmax != INT2FIX(0)) { | |
v = rand_int(obj, rnd, vmax, 0); | |
if (!NIL_P(v)) return v; | |
} | |
} | |
return DBL2NUM(random_real(obj, rnd, TRUE)); | |
} | |
/* | |
* call-seq: | |
* Random.rand -> float | |
* Random.rand(max) -> number | |
*/ | |
static VALUE | |
random_s_rand(int argc, VALUE *argv, VALUE obj) | |
{ | |
VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand())); | |
check_random_number(v, argv); | |
return v; | |
} | |
#define SIP_HASH_STREAMING 0 | |
#define sip_hash13 ruby_sip_hash13 | |
#if !defined _WIN32 && !defined BYTE_ORDER | |
# ifdef WORDS_BIGENDIAN | |
# define BYTE_ORDER BIG_ENDIAN | |
# else | |
# define BYTE_ORDER LITTLE_ENDIAN | |
# endif | |
# ifndef LITTLE_ENDIAN | |
# define LITTLE_ENDIAN 1234 | |
# endif | |
# ifndef BIG_ENDIAN | |
# define BIG_ENDIAN 4321 | |
# endif | |
#endif | |
#include "siphash.c" | |
typedef struct { | |
st_index_t hash; | |
uint8_t sip[16]; | |
} hash_salt_t; | |
static union { | |
hash_salt_t key; | |
uint32_t u32[type_roomof(hash_salt_t, uint32_t)]; | |
} hash_salt; | |
static void | |
init_hash_salt(struct MT *mt) | |
{ | |
int i; | |
for (i = 0; i < numberof(hash_salt.u32); ++i) | |
hash_salt.u32[i] = genrand_int32(mt); | |
} | |
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t rb_hash_start(st_index_t h)); | |
st_index_t | |
rb_hash_start(st_index_t h) | |
{ | |
return st_hash_start(hash_salt.key.hash + h); | |
} | |
st_index_t | |
rb_memhash(const void *ptr, long len) | |
{ | |
sip_uint64_t h = sip_hash13(hash_salt.key.sip, ptr, len); | |
#ifdef HAVE_UINT64_T | |
return (st_index_t)h; | |
#else | |
return (st_index_t)(h.u32[0] ^ h.u32[1]); | |
#endif | |
} | |
/* Initialize Ruby internal seeds. This function is called at very early stage | |
* of Ruby startup. Thus, you can't use Ruby's object. */ | |
void | |
Init_RandomSeedCore(void) | |
{ | |
if (!fill_random_bytes(&hash_salt, sizeof(hash_salt), FALSE)) return; | |
/* | |
If failed to fill siphash's salt with random data, expand less random | |
data with MT. | |
Don't reuse this MT for default_rand(). default_rand()::seed shouldn't | |
provide a hint that an attacker guess siphash's seed. | |
*/ | |
struct MT mt; | |
with_random_seed(DEFAULT_SEED_CNT, 0) { | |
init_by_array(&mt, seedbuf, DEFAULT_SEED_CNT); | |
} | |
init_hash_salt(&mt); | |
explicit_bzero(&mt, sizeof(mt)); | |
} | |
void | |
rb_reset_random_seed(void) | |
{ | |
rb_random_mt_t *r = default_rand(); | |
uninit_genrand(&r->mt); | |
r->base.seed = INT2FIX(0); | |
} | |
/* | |
* Document-class: Random | |
* | |
* Random provides an interface to Ruby's pseudo-random number generator, or | |
* PRNG. The PRNG produces a deterministic sequence of bits which approximate | |
* true randomness. The sequence may be represented by integers, floats, or | |
* binary strings. | |
* | |
* The generator may be initialized with either a system-generated or | |
* user-supplied seed value by using Random.srand. | |
* | |
* The class method Random.rand provides the base functionality of Kernel.rand | |
* along with better handling of floating point values. These are both | |
* interfaces to the Ruby system PRNG. | |
* | |
* Random.new will create a new PRNG with a state independent of the Ruby | |
* system PRNG, allowing multiple generators with different seed values or | |
* sequence positions to exist simultaneously. Random objects can be | |
* marshaled, allowing sequences to be saved and resumed. | |
* | |
* PRNGs are currently implemented as a modified Mersenne Twister with a period | |
* of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must | |
* use SecureRandom for security purpose, instead of this PRNG. | |
*/ | |
void | |
InitVM_Random(void) | |
{ | |
VALUE base; | |
ID id_base = rb_intern_const("Base"); | |
rb_define_global_function("srand", rb_f_srand, -1); | |
rb_define_global_function("rand", rb_f_rand, -1); | |
base = rb_define_class_id(id_base, rb_cObject); | |
rb_undef_alloc_func(base); | |
rb_cRandom = rb_define_class("Random", base); | |
rb_const_set(rb_cRandom, id_base, base); | |
rb_define_alloc_func(rb_cRandom, random_alloc); | |
rb_define_method(base, "initialize", random_init, -1); | |
rb_define_method(base, "rand", random_rand, -1); | |
rb_define_method(base, "bytes", random_bytes, 1); | |
rb_define_method(base, "seed", random_get_seed, 0); | |
rb_define_method(rb_cRandom, "initialize_copy", rand_mt_copy, 1); | |
rb_define_private_method(rb_cRandom, "marshal_dump", rand_mt_dump, 0); | |
rb_define_private_method(rb_cRandom, "marshal_load", rand_mt_load, 1); | |
rb_define_private_method(rb_cRandom, "state", rand_mt_state, 0); | |
rb_define_private_method(rb_cRandom, "left", rand_mt_left, 0); | |
rb_define_method(rb_cRandom, "==", rand_mt_equal, 1); | |
#if 0 /* for RDoc: it can't handle unnamed base class */ | |
rb_define_method(rb_cRandom, "initialize", random_init, -1); | |
rb_define_method(rb_cRandom, "rand", random_rand, -1); | |
rb_define_method(rb_cRandom, "bytes", random_bytes, 1); | |
rb_define_method(rb_cRandom, "seed", random_get_seed, 0); | |
#endif | |
rb_define_const(rb_cRandom, "DEFAULT", rb_cRandom); | |
rb_deprecate_constant(rb_cRandom, "DEFAULT"); | |
rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1); | |
rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1); | |
rb_define_singleton_method(rb_cRandom, "bytes", random_s_bytes, 1); | |
rb_define_singleton_method(rb_cRandom, "seed", random_s_seed, 0); | |
rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0); | |
rb_define_singleton_method(rb_cRandom, "urandom", random_raw_seed, 1); | |
rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0); | |
rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0); | |
{ | |
/* Format raw random number as Random does */ | |
VALUE m = rb_define_module_under(rb_cRandom, "Formatter"); | |
rb_include_module(base, m); | |
rb_extend_object(base, m); | |
rb_define_method(m, "random_number", rand_random_number, -1); | |
rb_define_method(m, "rand", rand_random_number, -1); | |
} | |
default_rand_key = rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type); | |
} | |
#undef rb_intern | |
void | |
Init_Random(void) | |
{ | |
id_rand = rb_intern("rand"); | |
id_bytes = rb_intern("bytes"); | |
InitVM(Random); | |
} |