Permalink
Cannot retrieve contributors at this time
/********************************************************************** | |
cont.c - | |
$Author$ | |
created at: Thu May 23 09:03:43 2007 | |
Copyright (C) 2007 Koichi Sasada | |
**********************************************************************/ | |
#include "ruby/internal/config.h" | |
#ifndef _WIN32 | |
#include <unistd.h> | |
#include <sys/mman.h> | |
#endif | |
#include COROUTINE_H | |
#include "eval_intern.h" | |
#include "gc.h" | |
#include "internal.h" | |
#include "internal/cont.h" | |
#include "internal/proc.h" | |
#include "internal/warnings.h" | |
#include "internal/scheduler.h" | |
#include "mjit.h" | |
#include "vm_core.h" | |
#include "id_table.h" | |
#include "ractor_core.h" | |
static const int DEBUG = 0; | |
#define RB_PAGE_SIZE (pagesize) | |
#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1)) | |
static long pagesize; | |
static const rb_data_type_t cont_data_type, fiber_data_type; | |
static VALUE rb_cContinuation; | |
static VALUE rb_cFiber; | |
static VALUE rb_eFiberError; | |
#ifdef RB_EXPERIMENTAL_FIBER_POOL | |
static VALUE rb_cFiberPool; | |
#endif | |
#define CAPTURE_JUST_VALID_VM_STACK 1 | |
// Defined in `coroutine/$arch/Context.h`: | |
#ifdef COROUTINE_LIMITED_ADDRESS_SPACE | |
#define FIBER_POOL_ALLOCATION_FREE | |
#define FIBER_POOL_INITIAL_SIZE 8 | |
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32 | |
#else | |
#define FIBER_POOL_INITIAL_SIZE 32 | |
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024 | |
#endif | |
enum context_type { | |
CONTINUATION_CONTEXT = 0, | |
FIBER_CONTEXT = 1 | |
}; | |
struct cont_saved_vm_stack { | |
VALUE *ptr; | |
#ifdef CAPTURE_JUST_VALID_VM_STACK | |
size_t slen; /* length of stack (head of ec->vm_stack) */ | |
size_t clen; /* length of control frames (tail of ec->vm_stack) */ | |
#endif | |
}; | |
struct fiber_pool; | |
// Represents a single stack. | |
struct fiber_pool_stack { | |
// A pointer to the memory allocation (lowest address) for the stack. | |
void * base; | |
// The current stack pointer, taking into account the direction of the stack. | |
void * current; | |
// The size of the stack excluding any guard pages. | |
size_t size; | |
// The available stack capacity w.r.t. the current stack offset. | |
size_t available; | |
// The pool this stack should be allocated from. | |
struct fiber_pool * pool; | |
// If the stack is allocated, the allocation it came from. | |
struct fiber_pool_allocation * allocation; | |
}; | |
// A linked list of vacant (unused) stacks. | |
// This structure is stored in the first page of a stack if it is not in use. | |
// @sa fiber_pool_vacancy_pointer | |
struct fiber_pool_vacancy { | |
// Details about the vacant stack: | |
struct fiber_pool_stack stack; | |
// The vacancy linked list. | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
struct fiber_pool_vacancy * previous; | |
#endif | |
struct fiber_pool_vacancy * next; | |
}; | |
// Manages singly linked list of mapped regions of memory which contains 1 more more stack: | |
// | |
// base = +-------------------------------+-----------------------+ + | |
// |VM Stack |VM Stack | | | | |
// | | | | | | |
// | | | | | | |
// +-------------------------------+ | | | |
// |Machine Stack |Machine Stack | | | | |
// | | | | | | |
// | | | | | | |
// | | | . . . . | | size | |
// | | | | | | |
// | | | | | | |
// | | | | | | |
// | | | | | | |
// | | | | | | |
// +-------------------------------+ | | | |
// |Guard Page |Guard Page | | | | |
// +-------------------------------+-----------------------+ v | |
// | |
// +-------------------------------------------------------> | |
// | |
// count | |
// | |
struct fiber_pool_allocation { | |
// A pointer to the memory mapped region. | |
void * base; | |
// The size of the individual stacks. | |
size_t size; | |
// The stride of individual stacks (including any guard pages or other accounting details). | |
size_t stride; | |
// The number of stacks that were allocated. | |
size_t count; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
// The number of stacks used in this allocation. | |
size_t used; | |
#endif | |
struct fiber_pool * pool; | |
// The allocation linked list. | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
struct fiber_pool_allocation * previous; | |
#endif | |
struct fiber_pool_allocation * next; | |
}; | |
// A fiber pool manages vacant stacks to reduce the overhead of creating fibers. | |
struct fiber_pool { | |
// A singly-linked list of allocations which contain 1 or more stacks each. | |
struct fiber_pool_allocation * allocations; | |
// Provides O(1) stack "allocation": | |
struct fiber_pool_vacancy * vacancies; | |
// The size of the stack allocations (excluding any guard page). | |
size_t size; | |
// The total number of stacks that have been allocated in this pool. | |
size_t count; | |
// The initial number of stacks to allocate. | |
size_t initial_count; | |
// Whether to madvise(free) the stack or not: | |
int free_stacks; | |
// The number of stacks that have been used in this pool. | |
size_t used; | |
// The amount to allocate for the vm_stack: | |
size_t vm_stack_size; | |
}; | |
typedef struct rb_context_struct { | |
enum context_type type; | |
int argc; | |
int kw_splat; | |
VALUE self; | |
VALUE value; | |
struct cont_saved_vm_stack saved_vm_stack; | |
struct { | |
VALUE *stack; | |
VALUE *stack_src; | |
size_t stack_size; | |
} machine; | |
rb_execution_context_t saved_ec; | |
rb_jmpbuf_t jmpbuf; | |
rb_ensure_entry_t *ensure_array; | |
/* Pointer to MJIT info about the continuation. */ | |
struct mjit_cont *mjit_cont; | |
} rb_context_t; | |
/* | |
* Fiber status: | |
* [Fiber.new] ------> FIBER_CREATED | |
* | [Fiber#resume] | |
* v | |
* +--> FIBER_RESUMED ----+ | |
* [Fiber#resume] | | [Fiber.yield] | | |
* | v | | |
* +-- FIBER_SUSPENDED | [Terminate] | |
* | | |
* FIBER_TERMINATED <-+ | |
*/ | |
enum fiber_status { | |
FIBER_CREATED, | |
FIBER_RESUMED, | |
FIBER_SUSPENDED, | |
FIBER_TERMINATED | |
}; | |
#define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED) | |
#define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED) | |
#define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED) | |
#define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED) | |
#define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber)) | |
struct rb_fiber_struct { | |
rb_context_t cont; | |
VALUE first_proc; | |
struct rb_fiber_struct *prev; | |
VALUE resuming_fiber; | |
BITFIELD(enum fiber_status, status, 2); | |
/* Whether the fiber is allowed to implicitly yield. */ | |
unsigned int yielding : 1; | |
unsigned int blocking : 1; | |
struct coroutine_context context; | |
struct fiber_pool_stack stack; | |
}; | |
static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0}; | |
static ID fiber_initialize_keywords[2] = {0}; | |
/* | |
* FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL | |
* if MAP_STACK is passed. | |
* http://www.FreeBSD.org/cgi/query-pr.cgi?pr=158755 | |
*/ | |
#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__) | |
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK) | |
#else | |
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON) | |
#endif | |
#define ERRNOMSG strerror(errno) | |
// Locates the stack vacancy details for the given stack. | |
// Requires that fiber_pool_vacancy fits within one page. | |
inline static struct fiber_pool_vacancy * | |
fiber_pool_vacancy_pointer(void * base, size_t size) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
return (struct fiber_pool_vacancy *)( | |
(char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE) | |
); | |
} | |
// Reset the current stack pointer and available size of the given stack. | |
inline static void | |
fiber_pool_stack_reset(struct fiber_pool_stack * stack) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size); | |
stack->available = stack->size; | |
} | |
// A pointer to the base of the current unused portion of the stack. | |
inline static void * | |
fiber_pool_stack_base(struct fiber_pool_stack * stack) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
VM_ASSERT(stack->current); | |
return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available); | |
} | |
// Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack. | |
// @sa fiber_initialize_coroutine | |
inline static void * | |
fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", (void*)stack, offset, stack->available); | |
VM_ASSERT(stack->available >= offset); | |
// The pointer to the memory being allocated: | |
void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset); | |
// Move the stack pointer: | |
stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset); | |
stack->available -= offset; | |
return pointer; | |
} | |
// Reset the current stack pointer and available size of the given stack. | |
inline static void | |
fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy) | |
{ | |
fiber_pool_stack_reset(&vacancy->stack); | |
// Consume one page of the stack because it's used for the vacancy list: | |
fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE); | |
} | |
inline static struct fiber_pool_vacancy * | |
fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head) | |
{ | |
vacancy->next = head; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
if (head) { | |
head->previous = vacancy; | |
vacancy->previous = NULL; | |
} | |
#endif | |
return vacancy; | |
} | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
static void | |
fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy) | |
{ | |
if (vacancy->next) { | |
vacancy->next->previous = vacancy->previous; | |
} | |
if (vacancy->previous) { | |
vacancy->previous->next = vacancy->next; | |
} | |
else { | |
// It's the head of the list: | |
vacancy->stack.pool->vacancies = vacancy->next; | |
} | |
} | |
inline static struct fiber_pool_vacancy * | |
fiber_pool_vacancy_pop(struct fiber_pool * pool) | |
{ | |
struct fiber_pool_vacancy * vacancy = pool->vacancies; | |
if (vacancy) { | |
fiber_pool_vacancy_remove(vacancy); | |
} | |
return vacancy; | |
} | |
#else | |
inline static struct fiber_pool_vacancy * | |
fiber_pool_vacancy_pop(struct fiber_pool * pool) | |
{ | |
struct fiber_pool_vacancy * vacancy = pool->vacancies; | |
if (vacancy) { | |
pool->vacancies = vacancy->next; | |
} | |
return vacancy; | |
} | |
#endif | |
// Initialize the vacant stack. The [base, size] allocation should not include the guard page. | |
// @param base The pointer to the lowest address of the allocated memory. | |
// @param size The size of the allocated memory. | |
inline static struct fiber_pool_vacancy * | |
fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size) | |
{ | |
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size); | |
vacancy->stack.base = base; | |
vacancy->stack.size = size; | |
fiber_pool_vacancy_reset(vacancy); | |
vacancy->stack.pool = fiber_pool; | |
return fiber_pool_vacancy_push(vacancy, vacancies); | |
} | |
// Allocate a maximum of count stacks, size given by stride. | |
// @param count the number of stacks to allocate / were allocated. | |
// @param stride the size of the individual stacks. | |
// @return [void *] the allocated memory or NULL if allocation failed. | |
inline static void * | |
fiber_pool_allocate_memory(size_t * count, size_t stride) | |
{ | |
// We use a divide-by-2 strategy to try and allocate memory. We are trying | |
// to allocate `count` stacks. In normal situation, this won't fail. But | |
// if we ran out of address space, or we are allocating more memory than | |
// the system would allow (e.g. overcommit * physical memory + swap), we | |
// divide count by two and try again. This condition should only be | |
// encountered in edge cases, but we handle it here gracefully. | |
while (*count > 1) { | |
#if defined(_WIN32) | |
void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE); | |
if (!base) { | |
*count = (*count) >> 1; | |
} | |
else { | |
return base; | |
} | |
#else | |
errno = 0; | |
void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0); | |
if (base == MAP_FAILED) { | |
// If the allocation fails, count = count / 2, and try again. | |
*count = (*count) >> 1; | |
} | |
else { | |
return base; | |
} | |
#endif | |
} | |
return NULL; | |
} | |
// Given an existing fiber pool, expand it by the specified number of stacks. | |
// @param count the maximum number of stacks to allocate. | |
// @return the allocated fiber pool. | |
// @sa fiber_pool_allocation_free | |
static struct fiber_pool_allocation * | |
fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
size_t size = fiber_pool->size; | |
size_t stride = size + RB_PAGE_SIZE; | |
// Allocate the memory required for the stacks: | |
void * base = fiber_pool_allocate_memory(&count, stride); | |
if (base == NULL) { | |
rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG); | |
} | |
struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies; | |
struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation); | |
// Initialize fiber pool allocation: | |
allocation->base = base; | |
allocation->size = size; | |
allocation->stride = stride; | |
allocation->count = count; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
allocation->used = 0; | |
#endif | |
allocation->pool = fiber_pool; | |
if (DEBUG) { | |
fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n", | |
count, (void*)fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size); | |
} | |
// Iterate over all stacks, initializing the vacancy list: | |
for (size_t i = 0; i < count; i += 1) { | |
void * base = (char*)allocation->base + (stride * i); | |
void * page = (char*)base + STACK_DIR_UPPER(size, 0); | |
#if defined(_WIN32) | |
DWORD old_protect; | |
if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) { | |
VirtualFree(allocation->base, 0, MEM_RELEASE); | |
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG); | |
} | |
#else | |
if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) { | |
munmap(allocation->base, count*stride); | |
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG); | |
} | |
#endif | |
vacancies = fiber_pool_vacancy_initialize( | |
fiber_pool, vacancies, | |
(char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE), | |
size | |
); | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
vacancies->stack.allocation = allocation; | |
#endif | |
} | |
// Insert the allocation into the head of the pool: | |
allocation->next = fiber_pool->allocations; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
if (allocation->next) { | |
allocation->next->previous = allocation; | |
} | |
allocation->previous = NULL; | |
#endif | |
fiber_pool->allocations = allocation; | |
fiber_pool->vacancies = vacancies; | |
fiber_pool->count += count; | |
return allocation; | |
} | |
// Initialize the specified fiber pool with the given number of stacks. | |
// @param vm_stack_size The size of the vm stack to allocate. | |
static void | |
fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size) | |
{ | |
VM_ASSERT(vm_stack_size < size); | |
fiber_pool->allocations = NULL; | |
fiber_pool->vacancies = NULL; | |
fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE; | |
fiber_pool->count = 0; | |
fiber_pool->initial_count = count; | |
fiber_pool->free_stacks = 1; | |
fiber_pool->used = 0; | |
fiber_pool->vm_stack_size = vm_stack_size; | |
fiber_pool_expand(fiber_pool, count); | |
} | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
// Free the list of fiber pool allocations. | |
static void | |
fiber_pool_allocation_free(struct fiber_pool_allocation * allocation) | |
{ | |
STACK_GROW_DIR_DETECTION; | |
VM_ASSERT(allocation->used == 0); | |
if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", allocation, allocation->base, allocation->count); | |
size_t i; | |
for (i = 0; i < allocation->count; i += 1) { | |
void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE); | |
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size); | |
// Pop the vacant stack off the free list: | |
fiber_pool_vacancy_remove(vacancy); | |
} | |
#ifdef _WIN32 | |
VirtualFree(allocation->base, 0, MEM_RELEASE); | |
#else | |
munmap(allocation->base, allocation->stride * allocation->count); | |
#endif | |
if (allocation->previous) { | |
allocation->previous->next = allocation->next; | |
} | |
else { | |
// We are the head of the list, so update the pool: | |
allocation->pool->allocations = allocation->next; | |
} | |
if (allocation->next) { | |
allocation->next->previous = allocation->previous; | |
} | |
allocation->pool->count -= allocation->count; | |
ruby_xfree(allocation); | |
} | |
#endif | |
// Acquire a stack from the given fiber pool. If none are available, allocate more. | |
static struct fiber_pool_stack | |
fiber_pool_stack_acquire(struct fiber_pool * fiber_pool) | |
{ | |
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool); | |
if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", (void*)fiber_pool->vacancies, fiber_pool->used); | |
if (!vacancy) { | |
const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE; | |
const size_t minimum = fiber_pool->initial_count; | |
size_t count = fiber_pool->count; | |
if (count > maximum) count = maximum; | |
if (count < minimum) count = minimum; | |
fiber_pool_expand(fiber_pool, count); | |
// The free list should now contain some stacks: | |
VM_ASSERT(fiber_pool->vacancies); | |
vacancy = fiber_pool_vacancy_pop(fiber_pool); | |
} | |
VM_ASSERT(vacancy); | |
VM_ASSERT(vacancy->stack.base); | |
// Take the top item from the free list: | |
fiber_pool->used += 1; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
vacancy->stack.allocation->used += 1; | |
#endif | |
fiber_pool_stack_reset(&vacancy->stack); | |
return vacancy->stack; | |
} | |
// We advise the operating system that the stack memory pages are no longer being used. | |
// This introduce some performance overhead but allows system to relaim memory when there is pressure. | |
static inline void | |
fiber_pool_stack_free(struct fiber_pool_stack * stack) | |
{ | |
void * base = fiber_pool_stack_base(stack); | |
size_t size = stack->available; | |
// If this is not true, the vacancy information will almost certainly be destroyed: | |
VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE)); | |
if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"]\n", base, size, stack->base, stack->size); | |
#if VM_CHECK_MODE > 0 && defined(MADV_DONTNEED) | |
// This immediately discards the pages and the memory is reset to zero. | |
madvise(base, size, MADV_DONTNEED); | |
#elif defined(MADV_FREE_REUSABLE) | |
madvise(base, size, MADV_FREE_REUSABLE); | |
#elif defined(MADV_FREE) | |
madvise(base, size, MADV_FREE); | |
#elif defined(MADV_DONTNEED) | |
madvise(base, size, MADV_DONTNEED); | |
#elif defined(_WIN32) | |
VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE); | |
// Not available in all versions of Windows. | |
//DiscardVirtualMemory(base, size); | |
#endif | |
} | |
// Release and return a stack to the vacancy list. | |
static void | |
fiber_pool_stack_release(struct fiber_pool_stack * stack) | |
{ | |
struct fiber_pool * pool = stack->pool; | |
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size); | |
if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used); | |
// Copy the stack details into the vacancy area: | |
vacancy->stack = *stack; | |
// After this point, be careful about updating/using state in stack, since it's copied to the vacancy area. | |
// Reset the stack pointers and reserve space for the vacancy data: | |
fiber_pool_vacancy_reset(vacancy); | |
// Push the vacancy into the vancancies list: | |
pool->vacancies = fiber_pool_vacancy_push(vacancy, stack->pool->vacancies); | |
pool->used -= 1; | |
#ifdef FIBER_POOL_ALLOCATION_FREE | |
struct fiber_pool_allocation * allocation = stack->allocation; | |
allocation->used -= 1; | |
// Release address space and/or dirty memory: | |
if (allocation->used == 0) { | |
fiber_pool_allocation_free(allocation); | |
} | |
else if (stack->pool->free_stacks) { | |
fiber_pool_stack_free(&vacancy->stack); | |
} | |
#else | |
// This is entirely optional, but clears the dirty flag from the stack memory, so it won't get swapped to disk when there is memory pressure: | |
if (stack->pool->free_stacks) { | |
fiber_pool_stack_free(&vacancy->stack); | |
} | |
#endif | |
} | |
static COROUTINE | |
fiber_entry(struct coroutine_context * from, struct coroutine_context * to) | |
{ | |
rb_fiber_start(); | |
} | |
// Initialize a fiber's coroutine's machine stack and vm stack. | |
static VALUE * | |
fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size) | |
{ | |
struct fiber_pool * fiber_pool = fiber->stack.pool; | |
rb_execution_context_t *sec = &fiber->cont.saved_ec; | |
void * vm_stack = NULL; | |
VM_ASSERT(fiber_pool != NULL); | |
fiber->stack = fiber_pool_stack_acquire(fiber_pool); | |
vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size); | |
*vm_stack_size = fiber_pool->vm_stack_size; | |
#ifdef COROUTINE_PRIVATE_STACK | |
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available, sec->machine.stack_start); | |
// The stack for this execution context is still the main machine stack, so don't adjust it. | |
// If this is not managed correctly, you will fail in `rb_ec_stack_check`. | |
// We limit the machine stack usage to the fiber stack size. | |
if (sec->machine.stack_maxsize > fiber->stack.available) { | |
sec->machine.stack_maxsize = fiber->stack.available; | |
} | |
#else | |
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available); | |
// The stack for this execution context is the one we allocated: | |
sec->machine.stack_start = fiber->stack.current; | |
sec->machine.stack_maxsize = fiber->stack.available; | |
#endif | |
return vm_stack; | |
} | |
// Release the stack from the fiber, it's execution context, and return it to the fiber pool. | |
static void | |
fiber_stack_release(rb_fiber_t * fiber) | |
{ | |
rb_execution_context_t *ec = &fiber->cont.saved_ec; | |
if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", (void*)fiber, fiber->stack.base); | |
// Return the stack back to the fiber pool if it wasn't already: | |
if (fiber->stack.base) { | |
fiber_pool_stack_release(&fiber->stack); | |
fiber->stack.base = NULL; | |
} | |
// The stack is no longer associated with this execution context: | |
rb_ec_clear_vm_stack(ec); | |
} | |
static const char * | |
fiber_status_name(enum fiber_status s) | |
{ | |
switch (s) { | |
case FIBER_CREATED: return "created"; | |
case FIBER_RESUMED: return "resumed"; | |
case FIBER_SUSPENDED: return "suspended"; | |
case FIBER_TERMINATED: return "terminated"; | |
} | |
VM_UNREACHABLE(fiber_status_name); | |
return NULL; | |
} | |
static void | |
fiber_verify(const rb_fiber_t *fiber) | |
{ | |
#if VM_CHECK_MODE > 0 | |
VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber); | |
switch (fiber->status) { | |
case FIBER_RESUMED: | |
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL); | |
break; | |
case FIBER_SUSPENDED: | |
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL); | |
break; | |
case FIBER_CREATED: | |
case FIBER_TERMINATED: | |
/* TODO */ | |
break; | |
default: | |
VM_UNREACHABLE(fiber_verify); | |
} | |
#endif | |
} | |
inline static void | |
fiber_status_set(rb_fiber_t *fiber, enum fiber_status s) | |
{ | |
// if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s)); | |
VM_ASSERT(!FIBER_TERMINATED_P(fiber)); | |
VM_ASSERT(fiber->status != s); | |
fiber_verify(fiber); | |
fiber->status = s; | |
} | |
static inline void | |
ec_switch(rb_thread_t *th, rb_fiber_t *fiber) | |
{ | |
rb_execution_context_t *ec = &fiber->cont.saved_ec; | |
rb_ractor_set_current_ec(th->ractor, th->ec = ec); | |
// ruby_current_execution_context_ptr = th->ec = ec; | |
/* | |
* timer-thread may set trap interrupt on previous th->ec at any time; | |
* ensure we do not delay (or lose) the trap interrupt handling. | |
*/ | |
if (th->vm->ractor.main_thread == th && | |
rb_signal_buff_size() > 0) { | |
RUBY_VM_SET_TRAP_INTERRUPT(ec); | |
} | |
VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL); | |
} | |
static rb_context_t * | |
cont_ptr(VALUE obj) | |
{ | |
rb_context_t *cont; | |
TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont); | |
return cont; | |
} | |
static rb_fiber_t * | |
fiber_ptr(VALUE obj) | |
{ | |
rb_fiber_t *fiber; | |
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber); | |
if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber"); | |
return fiber; | |
} | |
NOINLINE(static VALUE cont_capture(volatile int *volatile stat)); | |
#define THREAD_MUST_BE_RUNNING(th) do { \ | |
if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \ | |
} while (0) | |
rb_thread_t* | |
rb_fiber_threadptr(const rb_fiber_t *fiber) | |
{ | |
return fiber->cont.saved_ec.thread_ptr; | |
} | |
static VALUE | |
cont_thread_value(const rb_context_t *cont) | |
{ | |
return cont->saved_ec.thread_ptr->self; | |
} | |
static void | |
cont_compact(void *ptr) | |
{ | |
rb_context_t *cont = ptr; | |
if (cont->self) { | |
cont->self = rb_gc_location(cont->self); | |
} | |
cont->value = rb_gc_location(cont->value); | |
rb_execution_context_update(&cont->saved_ec); | |
} | |
static void | |
cont_mark(void *ptr) | |
{ | |
rb_context_t *cont = ptr; | |
RUBY_MARK_ENTER("cont"); | |
if (cont->self) { | |
rb_gc_mark_movable(cont->self); | |
} | |
rb_gc_mark_movable(cont->value); | |
rb_execution_context_mark(&cont->saved_ec); | |
rb_gc_mark(cont_thread_value(cont)); | |
if (cont->saved_vm_stack.ptr) { | |
#ifdef CAPTURE_JUST_VALID_VM_STACK | |
rb_gc_mark_locations(cont->saved_vm_stack.ptr, | |
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen); | |
#else | |
rb_gc_mark_locations(cont->saved_vm_stack.ptr, | |
cont->saved_vm_stack.ptr, cont->saved_ec.stack_size); | |
#endif | |
} | |
if (cont->machine.stack) { | |
if (cont->type == CONTINUATION_CONTEXT) { | |
/* cont */ | |
rb_gc_mark_locations(cont->machine.stack, | |
cont->machine.stack + cont->machine.stack_size); | |
} | |
else { | |
/* fiber */ | |
const rb_fiber_t *fiber = (rb_fiber_t*)cont; | |
if (!FIBER_TERMINATED_P(fiber)) { | |
rb_gc_mark_locations(cont->machine.stack, | |
cont->machine.stack + cont->machine.stack_size); | |
} | |
} | |
} | |
RUBY_MARK_LEAVE("cont"); | |
} | |
#if 0 | |
static int | |
fiber_is_root_p(const rb_fiber_t *fiber) | |
{ | |
return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber; | |
} | |
#endif | |
static void | |
cont_free(void *ptr) | |
{ | |
rb_context_t *cont = ptr; | |
RUBY_FREE_ENTER("cont"); | |
if (cont->type == CONTINUATION_CONTEXT) { | |
ruby_xfree(cont->saved_ec.vm_stack); | |
ruby_xfree(cont->ensure_array); | |
RUBY_FREE_UNLESS_NULL(cont->machine.stack); | |
} | |
else { | |
rb_fiber_t *fiber = (rb_fiber_t*)cont; | |
coroutine_destroy(&fiber->context); | |
fiber_stack_release(fiber); | |
} | |
RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr); | |
if (mjit_enabled) { | |
VM_ASSERT(cont->mjit_cont != NULL); | |
mjit_cont_free(cont->mjit_cont); | |
} | |
/* free rb_cont_t or rb_fiber_t */ | |
ruby_xfree(ptr); | |
RUBY_FREE_LEAVE("cont"); | |
} | |
static size_t | |
cont_memsize(const void *ptr) | |
{ | |
const rb_context_t *cont = ptr; | |
size_t size = 0; | |
size = sizeof(*cont); | |
if (cont->saved_vm_stack.ptr) { | |
#ifdef CAPTURE_JUST_VALID_VM_STACK | |
size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen); | |
#else | |
size_t n = cont->saved_ec.vm_stack_size; | |
#endif | |
size += n * sizeof(*cont->saved_vm_stack.ptr); | |
} | |
if (cont->machine.stack) { | |
size += cont->machine.stack_size * sizeof(*cont->machine.stack); | |
} | |
return size; | |
} | |
void | |
rb_fiber_update_self(rb_fiber_t *fiber) | |
{ | |
if (fiber->cont.self) { | |
fiber->cont.self = rb_gc_location(fiber->cont.self); | |
} | |
else { | |
rb_execution_context_update(&fiber->cont.saved_ec); | |
} | |
} | |
void | |
rb_fiber_mark_self(const rb_fiber_t *fiber) | |
{ | |
if (fiber->cont.self) { | |
rb_gc_mark_movable(fiber->cont.self); | |
} | |
else { | |
rb_execution_context_mark(&fiber->cont.saved_ec); | |
} | |
} | |
static void | |
fiber_compact(void *ptr) | |
{ | |
rb_fiber_t *fiber = ptr; | |
fiber->first_proc = rb_gc_location(fiber->first_proc); | |
if (fiber->prev) rb_fiber_update_self(fiber->prev); | |
cont_compact(&fiber->cont); | |
fiber_verify(fiber); | |
} | |
static void | |
fiber_mark(void *ptr) | |
{ | |
rb_fiber_t *fiber = ptr; | |
RUBY_MARK_ENTER("cont"); | |
fiber_verify(fiber); | |
rb_gc_mark_movable(fiber->first_proc); | |
if (fiber->prev) rb_fiber_mark_self(fiber->prev); | |
cont_mark(&fiber->cont); | |
RUBY_MARK_LEAVE("cont"); | |
} | |
static void | |
fiber_free(void *ptr) | |
{ | |
rb_fiber_t *fiber = ptr; | |
RUBY_FREE_ENTER("fiber"); | |
//if (DEBUG) fprintf(stderr, "fiber_free: %p[%p]\n", fiber, fiber->stack.base); | |
if (fiber->cont.saved_ec.local_storage) { | |
rb_id_table_free(fiber->cont.saved_ec.local_storage); | |
} | |
cont_free(&fiber->cont); | |
RUBY_FREE_LEAVE("fiber"); | |
} | |
static size_t | |
fiber_memsize(const void *ptr) | |
{ | |
const rb_fiber_t *fiber = ptr; | |
size_t size = sizeof(*fiber); | |
const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec; | |
const rb_thread_t *th = rb_ec_thread_ptr(saved_ec); | |
/* | |
* vm.c::thread_memsize already counts th->ec->local_storage | |
*/ | |
if (saved_ec->local_storage && fiber != th->root_fiber) { | |
size += rb_id_table_memsize(saved_ec->local_storage); | |
} | |
size += cont_memsize(&fiber->cont); | |
return size; | |
} | |
VALUE | |
rb_obj_is_fiber(VALUE obj) | |
{ | |
if (rb_typeddata_is_kind_of(obj, &fiber_data_type)) { | |
return Qtrue; | |
} | |
else { | |
return Qfalse; | |
} | |
} | |
static void | |
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont) | |
{ | |
size_t size; | |
SET_MACHINE_STACK_END(&th->ec->machine.stack_end); | |
if (th->ec->machine.stack_start > th->ec->machine.stack_end) { | |
size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end; | |
cont->machine.stack_src = th->ec->machine.stack_end; | |
} | |
else { | |
size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start; | |
cont->machine.stack_src = th->ec->machine.stack_start; | |
} | |
if (cont->machine.stack) { | |
REALLOC_N(cont->machine.stack, VALUE, size); | |
} | |
else { | |
cont->machine.stack = ALLOC_N(VALUE, size); | |
} | |
FLUSH_REGISTER_WINDOWS; | |
MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size); | |
} | |
static const rb_data_type_t cont_data_type = { | |
"continuation", | |
{cont_mark, cont_free, cont_memsize, cont_compact}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static inline void | |
cont_save_thread(rb_context_t *cont, rb_thread_t *th) | |
{ | |
rb_execution_context_t *sec = &cont->saved_ec; | |
VM_ASSERT(th->status == THREAD_RUNNABLE); | |
/* save thread context */ | |
*sec = *th->ec; | |
/* saved_ec->machine.stack_end should be NULL */ | |
/* because it may happen GC afterward */ | |
sec->machine.stack_end = NULL; | |
} | |
static void | |
cont_init_mjit_cont(rb_context_t *cont) | |
{ | |
VM_ASSERT(cont->mjit_cont == NULL); | |
if (mjit_enabled) { | |
cont->mjit_cont = mjit_cont_new(&(cont->saved_ec)); | |
} | |
} | |
static void | |
cont_init(rb_context_t *cont, rb_thread_t *th) | |
{ | |
/* save thread context */ | |
cont_save_thread(cont, th); | |
cont->saved_ec.thread_ptr = th; | |
cont->saved_ec.local_storage = NULL; | |
cont->saved_ec.local_storage_recursive_hash = Qnil; | |
cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil; | |
cont_init_mjit_cont(cont); | |
} | |
static rb_context_t * | |
cont_new(VALUE klass) | |
{ | |
rb_context_t *cont; | |
volatile VALUE contval; | |
rb_thread_t *th = GET_THREAD(); | |
THREAD_MUST_BE_RUNNING(th); | |
contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont); | |
cont->self = contval; | |
cont_init(cont, th); | |
return cont; | |
} | |
VALUE rb_fiberptr_self(struct rb_fiber_struct *fiber) | |
{ | |
return fiber->cont.self; | |
} | |
// This is used for root_fiber because other fibers call cont_init_mjit_cont through cont_new. | |
void | |
rb_fiber_init_mjit_cont(struct rb_fiber_struct *fiber) | |
{ | |
cont_init_mjit_cont(&fiber->cont); | |
} | |
#if 0 | |
void | |
show_vm_stack(const rb_execution_context_t *ec) | |
{ | |
VALUE *p = ec->vm_stack; | |
while (p < ec->cfp->sp) { | |
fprintf(stderr, "%3d ", (int)(p - ec->vm_stack)); | |
rb_obj_info_dump(*p); | |
p++; | |
} | |
} | |
void | |
show_vm_pcs(const rb_control_frame_t *cfp, | |
const rb_control_frame_t *end_of_cfp) | |
{ | |
int i=0; | |
while (cfp != end_of_cfp) { | |
int pc = 0; | |
if (cfp->iseq) { | |
pc = cfp->pc - cfp->iseq->body->iseq_encoded; | |
} | |
fprintf(stderr, "%2d pc: %d\n", i++, pc); | |
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); | |
} | |
} | |
#endif | |
COMPILER_WARNING_PUSH | |
#ifdef __clang__ | |
COMPILER_WARNING_IGNORED(-Wduplicate-decl-specifier) | |
#endif | |
static VALUE | |
cont_capture(volatile int *volatile stat) | |
{ | |
rb_context_t *volatile cont; | |
rb_thread_t *th = GET_THREAD(); | |
volatile VALUE contval; | |
const rb_execution_context_t *ec = th->ec; | |
THREAD_MUST_BE_RUNNING(th); | |
rb_vm_stack_to_heap(th->ec); | |
cont = cont_new(rb_cContinuation); | |
contval = cont->self; | |
#ifdef CAPTURE_JUST_VALID_VM_STACK | |
cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack; | |
cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp; | |
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen); | |
MEMCPY(cont->saved_vm_stack.ptr, | |
ec->vm_stack, | |
VALUE, cont->saved_vm_stack.slen); | |
MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen, | |
(VALUE*)ec->cfp, | |
VALUE, | |
cont->saved_vm_stack.clen); | |
#else | |
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size); | |
MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size); | |
#endif | |
// At this point, `cfp` is valid but `vm_stack` should be cleared: | |
rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0); | |
VM_ASSERT(cont->saved_ec.cfp != NULL); | |
cont_save_machine_stack(th, cont); | |
/* backup ensure_list to array for search in another context */ | |
{ | |
rb_ensure_list_t *p; | |
int size = 0; | |
rb_ensure_entry_t *entry; | |
for (p=th->ec->ensure_list; p; p=p->next) | |
size++; | |
entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1); | |
for (p=th->ec->ensure_list; p; p=p->next) { | |
if (!p->entry.marker) | |
p->entry.marker = rb_ary_tmp_new(0); /* dummy object */ | |
*entry++ = p->entry; | |
} | |
entry->marker = 0; | |
} | |
if (ruby_setjmp(cont->jmpbuf)) { | |
VALUE value; | |
VAR_INITIALIZED(cont); | |
value = cont->value; | |
if (cont->argc == -1) rb_exc_raise(value); | |
cont->value = Qnil; | |
*stat = 1; | |
return value; | |
} | |
else { | |
*stat = 0; | |
return contval; | |
} | |
} | |
COMPILER_WARNING_POP | |
static inline void | |
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber) | |
{ | |
ec_switch(th, fiber); | |
VM_ASSERT(th->ec->fiber_ptr == fiber); | |
} | |
static inline void | |
cont_restore_thread(rb_context_t *cont) | |
{ | |
rb_thread_t *th = GET_THREAD(); | |
/* restore thread context */ | |
if (cont->type == CONTINUATION_CONTEXT) { | |
/* continuation */ | |
rb_execution_context_t *sec = &cont->saved_ec; | |
rb_fiber_t *fiber = NULL; | |
if (sec->fiber_ptr != NULL) { | |
fiber = sec->fiber_ptr; | |
} | |
else if (th->root_fiber) { | |
fiber = th->root_fiber; | |
} | |
if (fiber && th->ec != &fiber->cont.saved_ec) { | |
ec_switch(th, fiber); | |
} | |
if (th->ec->trace_arg != sec->trace_arg) { | |
rb_raise(rb_eRuntimeError, "can't call across trace_func"); | |
} | |
/* copy vm stack */ | |
#ifdef CAPTURE_JUST_VALID_VM_STACK | |
MEMCPY(th->ec->vm_stack, | |
cont->saved_vm_stack.ptr, | |
VALUE, cont->saved_vm_stack.slen); | |
MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen, | |
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen, | |
VALUE, cont->saved_vm_stack.clen); | |
#else | |
MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size); | |
#endif | |
/* other members of ec */ | |
th->ec->cfp = sec->cfp; | |
th->ec->raised_flag = sec->raised_flag; | |
th->ec->tag = sec->tag; | |
th->ec->protect_tag = sec->protect_tag; | |
th->ec->root_lep = sec->root_lep; | |
th->ec->root_svar = sec->root_svar; | |
th->ec->ensure_list = sec->ensure_list; | |
th->ec->errinfo = sec->errinfo; | |
VM_ASSERT(th->ec->vm_stack != NULL); | |
} | |
else { | |
/* fiber */ | |
fiber_restore_thread(th, (rb_fiber_t*)cont); | |
} | |
} | |
NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)); | |
static void | |
fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber) | |
{ | |
rb_thread_t *th = GET_THREAD(); | |
/* save old_fiber's machine stack - to ensure efficient garbage collection */ | |
if (!FIBER_TERMINATED_P(old_fiber)) { | |
STACK_GROW_DIR_DETECTION; | |
SET_MACHINE_STACK_END(&th->ec->machine.stack_end); | |
if (STACK_DIR_UPPER(0, 1)) { | |
old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end; | |
old_fiber->cont.machine.stack = th->ec->machine.stack_end; | |
} | |
else { | |
old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start; | |
old_fiber->cont.machine.stack = th->ec->machine.stack_start; | |
} | |
} | |
/* exchange machine_stack_start between old_fiber and new_fiber */ | |
old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start; | |
/* old_fiber->machine.stack_end should be NULL */ | |
old_fiber->cont.saved_ec.machine.stack_end = NULL; | |
/* restore thread context */ | |
fiber_restore_thread(th, new_fiber); | |
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] -> %p[%p]\n", old_fiber, old_fiber->stack.base, new_fiber, new_fiber->stack.base); | |
/* swap machine context */ | |
coroutine_transfer(&old_fiber->context, &new_fiber->context); | |
// It's possible to get here, and new_fiber is already freed. | |
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] <- %p[%p]\n", old_fiber, old_fiber->stack.base, new_fiber, new_fiber->stack.base); | |
} | |
NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *))); | |
static void | |
cont_restore_1(rb_context_t *cont) | |
{ | |
cont_restore_thread(cont); | |
/* restore machine stack */ | |
#ifdef _M_AMD64 | |
{ | |
/* workaround for x64 SEH */ | |
jmp_buf buf; | |
setjmp(buf); | |
_JUMP_BUFFER *bp = (void*)&cont->jmpbuf; | |
bp->Frame = ((_JUMP_BUFFER*)((void*)&buf))->Frame; | |
} | |
#endif | |
if (cont->machine.stack_src) { | |
FLUSH_REGISTER_WINDOWS; | |
MEMCPY(cont->machine.stack_src, cont->machine.stack, | |
VALUE, cont->machine.stack_size); | |
} | |
ruby_longjmp(cont->jmpbuf, 1); | |
} | |
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *))); | |
static void | |
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame) | |
{ | |
if (cont->machine.stack_src) { | |
#ifdef HAVE_ALLOCA | |
#define STACK_PAD_SIZE 1 | |
#else | |
#define STACK_PAD_SIZE 1024 | |
#endif | |
VALUE space[STACK_PAD_SIZE]; | |
#if !STACK_GROW_DIRECTION | |
if (addr_in_prev_frame > &space[0]) { | |
/* Stack grows downward */ | |
#endif | |
#if STACK_GROW_DIRECTION <= 0 | |
volatile VALUE *const end = cont->machine.stack_src; | |
if (&space[0] > end) { | |
# ifdef HAVE_ALLOCA | |
volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end); | |
space[0] = *sp; | |
# else | |
cont_restore_0(cont, &space[0]); | |
# endif | |
} | |
#endif | |
#if !STACK_GROW_DIRECTION | |
} | |
else { | |
/* Stack grows upward */ | |
#endif | |
#if STACK_GROW_DIRECTION >= 0 | |
volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size; | |
if (&space[STACK_PAD_SIZE] < end) { | |
# ifdef HAVE_ALLOCA | |
volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]); | |
space[0] = *sp; | |
# else | |
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]); | |
# endif | |
} | |
#endif | |
#if !STACK_GROW_DIRECTION | |
} | |
#endif | |
} | |
cont_restore_1(cont); | |
} | |
/* | |
* Document-class: Continuation | |
* | |
* Continuation objects are generated by Kernel#callcc, | |
* after having +require+d <i>continuation</i>. They hold | |
* a return address and execution context, allowing a nonlocal return | |
* to the end of the #callcc block from anywhere within a | |
* program. Continuations are somewhat analogous to a structured | |
* version of C's <code>setjmp/longjmp</code> (although they contain | |
* more state, so you might consider them closer to threads). | |
* | |
* For instance: | |
* | |
* require "continuation" | |
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ] | |
* callcc{|cc| $cc = cc} | |
* puts(message = arr.shift) | |
* $cc.call unless message =~ /Max/ | |
* | |
* <em>produces:</em> | |
* | |
* Freddie | |
* Herbie | |
* Ron | |
* Max | |
* | |
* Also you can call callcc in other methods: | |
* | |
* require "continuation" | |
* | |
* def g | |
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ] | |
* cc = callcc { |cc| cc } | |
* puts arr.shift | |
* return cc, arr.size | |
* end | |
* | |
* def f | |
* c, size = g | |
* c.call(c) if size > 1 | |
* end | |
* | |
* f | |
* | |
* This (somewhat contrived) example allows the inner loop to abandon | |
* processing early: | |
* | |
* require "continuation" | |
* callcc {|cont| | |
* for i in 0..4 | |
* print "#{i}: " | |
* for j in i*5...(i+1)*5 | |
* cont.call() if j == 17 | |
* printf "%3d", j | |
* end | |
* end | |
* } | |
* puts | |
* | |
* <em>produces:</em> | |
* | |
* 0: 0 1 2 3 4 | |
* 1: 5 6 7 8 9 | |
* 2: 10 11 12 13 14 | |
* 3: 15 16 | |
*/ | |
/* | |
* call-seq: | |
* callcc {|cont| block } -> obj | |
* | |
* Generates a Continuation object, which it passes to | |
* the associated block. You need to <code>require | |
* 'continuation'</code> before using this method. Performing a | |
* <em>cont</em><code>.call</code> will cause the #callcc | |
* to return (as will falling through the end of the block). The | |
* value returned by the #callcc is the value of the | |
* block, or the value passed to <em>cont</em><code>.call</code>. See | |
* class Continuation for more details. Also see | |
* Kernel#throw for an alternative mechanism for | |
* unwinding a call stack. | |
*/ | |
static VALUE | |
rb_callcc(VALUE self) | |
{ | |
volatile int called; | |
volatile VALUE val = cont_capture(&called); | |
if (called) { | |
return val; | |
} | |
else { | |
return rb_yield(val); | |
} | |
} | |
static VALUE | |
make_passing_arg(int argc, const VALUE *argv) | |
{ | |
switch (argc) { | |
case -1: | |
return argv[0]; | |
case 0: | |
return Qnil; | |
case 1: | |
return argv[0]; | |
default: | |
return rb_ary_new4(argc, argv); | |
} | |
} | |
typedef VALUE e_proc(VALUE); | |
/* CAUTION!! : Currently, error in rollback_func is not supported */ | |
/* same as rb_protect if set rollback_func to NULL */ | |
void | |
ruby_register_rollback_func_for_ensure(e_proc *ensure_func, e_proc *rollback_func) | |
{ | |
st_table **table_p = &GET_VM()->ensure_rollback_table; | |
if (UNLIKELY(*table_p == NULL)) { | |
*table_p = st_init_numtable(); | |
} | |
st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func); | |
} | |
static inline e_proc * | |
lookup_rollback_func(e_proc *ensure_func) | |
{ | |
st_table *table = GET_VM()->ensure_rollback_table; | |
st_data_t val; | |
if (table && st_lookup(table, (st_data_t)ensure_func, &val)) | |
return (e_proc *) val; | |
return (e_proc *) Qundef; | |
} | |
static inline void | |
rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target) | |
{ | |
rb_ensure_list_t *p; | |
rb_ensure_entry_t *entry; | |
size_t i, j; | |
size_t cur_size; | |
size_t target_size; | |
size_t base_point; | |
e_proc *func; | |
cur_size = 0; | |
for (p=current; p; p=p->next) | |
cur_size++; | |
target_size = 0; | |
for (entry=target; entry->marker; entry++) | |
target_size++; | |
/* search common stack point */ | |
p = current; | |
base_point = cur_size; | |
while (base_point) { | |
if (target_size >= base_point && | |
p->entry.marker == target[target_size - base_point].marker) | |
break; | |
base_point --; | |
p = p->next; | |
} | |
/* rollback function check */ | |
for (i=0; i < target_size - base_point; i++) { | |
if (!lookup_rollback_func(target[i].e_proc)) { | |
rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope"); | |
} | |
} | |
/* pop ensure stack */ | |
while (cur_size > base_point) { | |
/* escape from ensure block */ | |
(*current->entry.e_proc)(current->entry.data2); | |
current = current->next; | |
cur_size--; | |
} | |
/* push ensure stack */ | |
for (j = 0; j < i; j++) { | |
func = lookup_rollback_func(target[i - j - 1].e_proc); | |
if ((VALUE)func != Qundef) { | |
(*func)(target[i - j - 1].data2); | |
} | |
} | |
} | |
NORETURN(static VALUE rb_cont_call(int argc, VALUE *argv, VALUE contval)); | |
/* | |
* call-seq: | |
* cont.call(args, ...) | |
* cont[args, ...] | |
* | |
* Invokes the continuation. The program continues from the end of | |
* the #callcc block. If no arguments are given, the original #callcc | |
* returns +nil+. If one argument is given, #callcc returns | |
* it. Otherwise, an array containing <i>args</i> is returned. | |
* | |
* callcc {|cont| cont.call } #=> nil | |
* callcc {|cont| cont.call 1 } #=> 1 | |
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3] | |
*/ | |
static VALUE | |
rb_cont_call(int argc, VALUE *argv, VALUE contval) | |
{ | |
rb_context_t *cont = cont_ptr(contval); | |
rb_thread_t *th = GET_THREAD(); | |
if (cont_thread_value(cont) != th->self) { | |
rb_raise(rb_eRuntimeError, "continuation called across threads"); | |
} | |
if (cont->saved_ec.protect_tag != th->ec->protect_tag) { | |
rb_raise(rb_eRuntimeError, "continuation called across stack rewinding barrier"); | |
} | |
if (cont->saved_ec.fiber_ptr) { | |
if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) { | |
rb_raise(rb_eRuntimeError, "continuation called across fiber"); | |
} | |
} | |
rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array); | |
cont->argc = argc; | |
cont->value = make_passing_arg(argc, argv); | |
cont_restore_0(cont, &contval); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
/*********/ | |
/* fiber */ | |
/*********/ | |
/* | |
* Document-class: Fiber | |
* | |
* Fibers are primitives for implementing light weight cooperative | |
* concurrency in Ruby. Basically they are a means of creating code blocks | |
* that can be paused and resumed, much like threads. The main difference | |
* is that they are never preempted and that the scheduling must be done by | |
* the programmer and not the VM. | |
* | |
* As opposed to other stackless light weight concurrency models, each fiber | |
* comes with a stack. This enables the fiber to be paused from deeply | |
* nested function calls within the fiber block. See the ruby(1) | |
* manpage to configure the size of the fiber stack(s). | |
* | |
* When a fiber is created it will not run automatically. Rather it must | |
* be explicitly asked to run using the Fiber#resume method. | |
* The code running inside the fiber can give up control by calling | |
* Fiber.yield in which case it yields control back to caller (the | |
* caller of the Fiber#resume). | |
* | |
* Upon yielding or termination the Fiber returns the value of the last | |
* executed expression | |
* | |
* For instance: | |
* | |
* fiber = Fiber.new do | |
* Fiber.yield 1 | |
* 2 | |
* end | |
* | |
* puts fiber.resume | |
* puts fiber.resume | |
* puts fiber.resume | |
* | |
* <em>produces</em> | |
* | |
* 1 | |
* 2 | |
* FiberError: dead fiber called | |
* | |
* The Fiber#resume method accepts an arbitrary number of parameters, | |
* if it is the first call to #resume then they will be passed as | |
* block arguments. Otherwise they will be the return value of the | |
* call to Fiber.yield | |
* | |
* Example: | |
* | |
* fiber = Fiber.new do |first| | |
* second = Fiber.yield first + 2 | |
* end | |
* | |
* puts fiber.resume 10 | |
* puts fiber.resume 1_000_000 | |
* puts fiber.resume "The fiber will be dead before I can cause trouble" | |
* | |
* <em>produces</em> | |
* | |
* 12 | |
* 1000000 | |
* FiberError: dead fiber called | |
* | |
* == Non-blocking Fibers | |
* | |
* The concept of <em>non-blocking fiber</em> was introduced in Ruby 3.0. | |
* A non-blocking fiber, when reaching a operation that would normally block | |
* the fiber (like <code>sleep</code>, or wait for another process or I/O) | |
# will yield control to other fibers and allow the <em>scheduler</em> to | |
# handle blocking and waking up (resuming) this fiber when it can proceed. | |
* | |
* For a Fiber to behave as non-blocking, it need to be created in Fiber.new with | |
* <tt>blocking: false</tt> (which is the default), and Fiber.scheduler | |
* should be set with Fiber.set_scheduler. If Fiber.scheduler is not set in | |
* the current thread, blocking and non-blocking fibers' behavior is identical. | |
* | |
* Ruby doesn't provide a scheduler class: it is expected to be implemented by | |
* the user and correspond to Fiber::SchedulerInterface. | |
* | |
* There is also Fiber.schedule method, which is expected to immediately perform | |
* the given block in a non-blocking manner. Its actual implementation is up to | |
* the scheduler. | |
* | |
*/ | |
static const rb_data_type_t fiber_data_type = { | |
"fiber", | |
{fiber_mark, fiber_free, fiber_memsize, fiber_compact,}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static VALUE | |
fiber_alloc(VALUE klass) | |
{ | |
return TypedData_Wrap_Struct(klass, &fiber_data_type, 0); | |
} | |
static rb_fiber_t* | |
fiber_t_alloc(VALUE fiber_value, unsigned int blocking) | |
{ | |
rb_fiber_t *fiber; | |
rb_thread_t *th = GET_THREAD(); | |
if (DATA_PTR(fiber_value) != 0) { | |
rb_raise(rb_eRuntimeError, "cannot initialize twice"); | |
} | |
THREAD_MUST_BE_RUNNING(th); | |
fiber = ZALLOC(rb_fiber_t); | |
fiber->cont.self = fiber_value; | |
fiber->cont.type = FIBER_CONTEXT; | |
fiber->blocking = blocking; | |
cont_init(&fiber->cont, th); | |
fiber->cont.saved_ec.fiber_ptr = fiber; | |
rb_ec_clear_vm_stack(&fiber->cont.saved_ec); | |
fiber->prev = NULL; | |
/* fiber->status == 0 == CREATED | |
* So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */ | |
VM_ASSERT(FIBER_CREATED_P(fiber)); | |
DATA_PTR(fiber_value) = fiber; | |
return fiber; | |
} | |
static VALUE | |
fiber_initialize(VALUE self, VALUE proc, struct fiber_pool * fiber_pool, unsigned int blocking) | |
{ | |
rb_fiber_t *fiber = fiber_t_alloc(self, blocking); | |
fiber->first_proc = proc; | |
fiber->stack.base = NULL; | |
fiber->stack.pool = fiber_pool; | |
return self; | |
} | |
static void | |
fiber_prepare_stack(rb_fiber_t *fiber) | |
{ | |
rb_context_t *cont = &fiber->cont; | |
rb_execution_context_t *sec = &cont->saved_ec; | |
size_t vm_stack_size = 0; | |
VALUE *vm_stack = fiber_initialize_coroutine(fiber, &vm_stack_size); | |
/* initialize cont */ | |
cont->saved_vm_stack.ptr = NULL; | |
rb_ec_initialize_vm_stack(sec, vm_stack, vm_stack_size / sizeof(VALUE)); | |
sec->tag = NULL; | |
sec->local_storage = NULL; | |
sec->local_storage_recursive_hash = Qnil; | |
sec->local_storage_recursive_hash_for_trace = Qnil; | |
} | |
static struct fiber_pool * | |
rb_fiber_pool_default(VALUE pool) | |
{ | |
return &shared_fiber_pool; | |
} | |
/* :nodoc: */ | |
static VALUE | |
rb_fiber_initialize_kw(int argc, VALUE* argv, VALUE self, int kw_splat) | |
{ | |
VALUE pool = Qnil; | |
VALUE blocking = Qfalse; | |
if (kw_splat != RB_NO_KEYWORDS) { | |
VALUE options = Qnil; | |
VALUE arguments[2] = {Qundef}; | |
argc = rb_scan_args_kw(kw_splat, argc, argv, ":", &options); | |
rb_get_kwargs(options, fiber_initialize_keywords, 0, 2, arguments); | |
if (arguments[0] != Qundef) { | |
blocking = arguments[0]; | |
} | |
if (arguments[1] != Qundef) { | |
pool = arguments[1]; | |
} | |
} | |
return fiber_initialize(self, rb_block_proc(), rb_fiber_pool_default(pool), RTEST(blocking)); | |
} | |
/* | |
* call-seq: | |
* Fiber.new(blocking: false) { |*args| ... } -> fiber | |
* | |
* Creates new Fiber. Initially, the fiber is not running and can be resumed with | |
* #resume. Arguments to the first #resume call will be passed to the block: | |
* | |
* f = Fiber.new do |initial| | |
* current = initial | |
* loop do | |
* puts "current: #{current.inspect}" | |
* current = Fiber.yield | |
* end | |
* end | |
* f.resume(100) # prints: current: 100 | |
* f.resume(1, 2, 3) # prints: current: [1, 2, 3] | |
* f.resume # prints: current: nil | |
* # ... and so on ... | |
* | |
* If <tt>blocking: false</tt> is passed to <tt>Fiber.new</tt>, _and_ current thread | |
* has a Fiber.scheduler defined, the Fiber becomes non-blocking (see "Non-blocking | |
* Fibers" section in class docs). | |
*/ | |
static VALUE | |
rb_fiber_initialize(int argc, VALUE* argv, VALUE self) | |
{ | |
return rb_fiber_initialize_kw(argc, argv, self, rb_keyword_given_p()); | |
} | |
VALUE | |
rb_fiber_new(rb_block_call_func_t func, VALUE obj) | |
{ | |
return fiber_initialize(fiber_alloc(rb_cFiber), rb_proc_new(func, obj), rb_fiber_pool_default(Qnil), 1); | |
} | |
static VALUE | |
rb_f_fiber_kw(int argc, VALUE* argv, int kw_splat) | |
{ | |
rb_thread_t * th = GET_THREAD(); | |
VALUE scheduler = th->scheduler; | |
VALUE fiber = Qnil; | |
if (scheduler != Qnil) { | |
fiber = rb_funcall_passing_block_kw(scheduler, rb_intern("fiber"), argc, argv, kw_splat); | |
} | |
else { | |
rb_raise(rb_eRuntimeError, "No scheduler is available!"); | |
} | |
return fiber; | |
} | |
/* | |
* call-seq: | |
* Fiber.schedule { |*args| ... } -> fiber | |
* | |
* The method is <em>expected</em> to immediately run the provided block of code in a | |
* separate non-blocking fiber. | |
* | |
* puts "Go to sleep!" | |
* | |
* Fiber.set_scheduler(MyScheduler.new) | |
* | |
* Fiber.schedule do | |
* puts "Going to sleep" | |
* sleep(1) | |
* puts "I slept well" | |
* end | |
* | |
* puts "Wakey-wakey, sleepyhead" | |
* | |
* Assuming MyScheduler is properly implemented, this program will produce: | |
* | |
* Go to sleep! | |
* Going to sleep | |
* Wakey-wakey, sleepyhead | |
* ...1 sec pause here... | |
* I slept well | |
* | |
* ...e.g. on the first blocking operation inside the Fiber (<tt>sleep(1)</tt>), | |
* the control is yielded to the outside code (main fiber), and <em>at the end | |
* of that execution</em>, the scheduler takes care of properly resuming all the | |
* blocked fibers. | |
* | |
* Note that the behavior described above is how the method is <em>expected</em> | |
* to behave, actual behavior is up to the current scheduler's implementation of | |
* Fiber::SchedulerInterface#fiber method. Ruby doesn't enforce this method to | |
* behave in any particular way. | |
* | |
* If the scheduler is not set, the method raises | |
* <tt>RuntimeError (No scheduler is available!)</tt>. | |
* | |
*/ | |
static VALUE | |
rb_f_fiber(int argc, VALUE *argv, VALUE obj) | |
{ | |
return rb_f_fiber_kw(argc, argv, rb_keyword_given_p()); | |
} | |
/* | |
* call-seq: | |
* Fiber.scheduler -> obj or nil | |
* | |
* Returns the Fiber scheduler, that was last set for the current thread with Fiber.set_scheduler. | |
* Returns +nil+ if no scheduler is set (which is the default), and non-blocking fibers' | |
# behavior is the same as blocking. | |
* (see "Non-blocking fibers" section in class docs for details about the scheduler concept). | |
* | |
*/ | |
static VALUE | |
rb_fiber_scheduler(VALUE klass) | |
{ | |
return rb_scheduler_get(); | |
} | |
/* | |
* call-seq: | |
* Fiber.set_scheduler(scheduler) -> scheduler | |
* | |
* Sets the Fiber scheduler for the current thread. If the scheduler is set, non-blocking | |
* fibers (created by Fiber.new with <tt>blocking: false</tt>, or by Fiber.schedule) | |
* call that scheduler's hook methods on potentially blocking operations, and the current | |
* thread will call scheduler's +close+ method on finalization (allowing the scheduler to | |
* properly manage all non-finished fibers). | |
* | |
* +scheduler+ can be an object of any class corresponding to Fiber::SchedulerInterface. Its | |
* implementation is up to the user. | |
* | |
* See also the "Non-blocking fibers" section in class docs. | |
* | |
*/ | |
static VALUE | |
rb_fiber_set_scheduler(VALUE klass, VALUE scheduler) | |
{ | |
// if (rb_scheduler_get() != Qnil) { | |
// rb_raise(rb_eFiberError, "Scheduler is already defined!"); | |
// } | |
return rb_scheduler_set(scheduler); | |
} | |
static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt); | |
void | |
rb_fiber_start(void) | |
{ | |
rb_thread_t * volatile th = GET_THREAD(); | |
rb_fiber_t *fiber = th->ec->fiber_ptr; | |
rb_proc_t *proc; | |
enum ruby_tag_type state; | |
int need_interrupt = TRUE; | |
VM_ASSERT(th->ec == GET_EC()); | |
VM_ASSERT(FIBER_RESUMED_P(fiber)); | |
if (fiber->blocking) { | |
th->blocking += 1; | |
} | |
EC_PUSH_TAG(th->ec); | |
if ((state = EC_EXEC_TAG()) == TAG_NONE) { | |
rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont; | |
int argc; | |
const VALUE *argv, args = cont->value; | |
GetProcPtr(fiber->first_proc, proc); | |
argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args; | |
cont->value = Qnil; | |
th->ec->errinfo = Qnil; | |
th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc); | |
th->ec->root_svar = Qfalse; | |
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil); | |
cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, cont->kw_splat, VM_BLOCK_HANDLER_NONE); | |
} | |
EC_POP_TAG(); | |
if (state) { | |
VALUE err = th->ec->errinfo; | |
VM_ASSERT(FIBER_RESUMED_P(fiber)); | |
if (state == TAG_RAISE || state == TAG_FATAL) { | |
rb_threadptr_pending_interrupt_enque(th, err); | |
} | |
else { | |
err = rb_vm_make_jump_tag_but_local_jump(state, err); | |
if (!NIL_P(err)) { | |
rb_threadptr_pending_interrupt_enque(th, err); | |
} | |
} | |
need_interrupt = TRUE; | |
} | |
rb_fiber_terminate(fiber, need_interrupt); | |
VM_UNREACHABLE(rb_fiber_start); | |
} | |
static rb_fiber_t * | |
root_fiber_alloc(rb_thread_t *th) | |
{ | |
VALUE fiber_value = fiber_alloc(rb_cFiber); | |
rb_fiber_t *fiber = th->ec->fiber_ptr; | |
VM_ASSERT(DATA_PTR(fiber_value) == NULL); | |
VM_ASSERT(fiber->cont.type == FIBER_CONTEXT); | |
VM_ASSERT(fiber->status == FIBER_RESUMED); | |
th->root_fiber = fiber; | |
DATA_PTR(fiber_value) = fiber; | |
fiber->cont.self = fiber_value; | |
#ifdef COROUTINE_PRIVATE_STACK | |
fiber->stack = fiber_pool_stack_acquire(&shared_fiber_pool); | |
coroutine_initialize_main(&fiber->context, fiber_pool_stack_base(&fiber->stack), fiber->stack.available, th->ec->machine.stack_start); | |
#else | |
coroutine_initialize_main(&fiber->context); | |
#endif | |
return fiber; | |
} | |
void | |
rb_threadptr_root_fiber_setup(rb_thread_t *th) | |
{ | |
rb_fiber_t *fiber = ruby_mimmalloc(sizeof(rb_fiber_t)); | |
if (!fiber) { | |
rb_bug("%s", strerror(errno)); /* ... is it possible to call rb_bug here? */ | |
} | |
MEMZERO(fiber, rb_fiber_t, 1); | |
fiber->cont.type = FIBER_CONTEXT; | |
fiber->cont.saved_ec.fiber_ptr = fiber; | |
fiber->cont.saved_ec.thread_ptr = th; | |
fiber->blocking = 1; | |
fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */ | |
th->ec = &fiber->cont.saved_ec; | |
// This skips mjit_cont_new for the initial thread because mjit_enabled is always false | |
// at this point. mjit_init calls rb_fiber_init_mjit_cont again for this root_fiber. | |
rb_fiber_init_mjit_cont(fiber); | |
} | |
void | |
rb_threadptr_root_fiber_release(rb_thread_t *th) | |
{ | |
if (th->root_fiber) { | |
/* ignore. A root fiber object will free th->ec */ | |
} | |
else { | |
rb_execution_context_t *ec = GET_EC(); | |
VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT); | |
VM_ASSERT(th->ec->fiber_ptr->cont.self == 0); | |
if (th->ec == ec) { | |
rb_ractor_set_current_ec(th->ractor, NULL); | |
} | |
fiber_free(th->ec->fiber_ptr); | |
th->ec = NULL; | |
} | |
} | |
void | |
rb_threadptr_root_fiber_terminate(rb_thread_t *th) | |
{ | |
rb_fiber_t *fiber = th->ec->fiber_ptr; | |
fiber->status = FIBER_TERMINATED; | |
// The vm_stack is `alloca`ed on the thread stack, so it's gone too: | |
rb_ec_clear_vm_stack(th->ec); | |
} | |
static inline rb_fiber_t* | |
fiber_current(void) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
if (ec->fiber_ptr->cont.self == 0) { | |
root_fiber_alloc(rb_ec_thread_ptr(ec)); | |
} | |
return ec->fiber_ptr; | |
} | |
static inline rb_fiber_t* | |
return_fiber(bool terminate) | |
{ | |
rb_fiber_t *fiber = fiber_current(); | |
rb_fiber_t *prev = fiber->prev; | |
if (prev) { | |
fiber->prev = NULL; | |
prev->resuming_fiber = Qnil; | |
return prev; | |
} | |
else { | |
if (!terminate) { | |
rb_raise(rb_eFiberError, "attempt to yield on a not resumed fiber"); | |
} | |
rb_thread_t *th = GET_THREAD(); | |
rb_fiber_t *root_fiber = th->root_fiber; | |
VM_ASSERT(root_fiber != NULL); | |
// search resuming fiber | |
for (fiber = root_fiber; | |
RTEST(fiber->resuming_fiber); | |
fiber = fiber_ptr(fiber->resuming_fiber)) { | |
} | |
return fiber; | |
} | |
} | |
VALUE | |
rb_fiber_current(void) | |
{ | |
return fiber_current()->cont.self; | |
} | |
// Prepare to execute next_fiber on the given thread. | |
static inline VALUE | |
fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th) | |
{ | |
rb_fiber_t *fiber; | |
if (th->ec->fiber_ptr != NULL) { | |
fiber = th->ec->fiber_ptr; | |
} | |
else { | |
/* create root fiber */ | |
fiber = root_fiber_alloc(th); | |
} | |
if (FIBER_CREATED_P(next_fiber)) { | |
fiber_prepare_stack(next_fiber); | |
} | |
VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber)); | |
VM_ASSERT(FIBER_RUNNABLE_P(next_fiber)); | |
if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED); | |
fiber_status_set(next_fiber, FIBER_RESUMED); | |
fiber_setcontext(next_fiber, fiber); | |
fiber = th->ec->fiber_ptr; | |
/* Raise an exception if that was the result of executing the fiber */ | |
if (fiber->cont.argc == -1) rb_exc_raise(fiber->cont.value); | |
return fiber->cont.value; | |
} | |
static inline VALUE | |
fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int kw_splat, VALUE resuming_fiber, bool yielding) | |
{ | |
VALUE value; | |
rb_context_t *cont = &fiber->cont; | |
rb_thread_t *th = GET_THREAD(); | |
/* make sure the root_fiber object is available */ | |
if (th->root_fiber == NULL) root_fiber_alloc(th); | |
if (th->ec->fiber_ptr == fiber) { | |
/* ignore fiber context switch | |
* because destination fiber is the same as current fiber | |
*/ | |
return make_passing_arg(argc, argv); | |
} | |
if (cont_thread_value(cont) != th->self) { | |
rb_raise(rb_eFiberError, "fiber called across threads"); | |
} | |
else if (cont->saved_ec.protect_tag != th->ec->protect_tag) { | |
rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier"); | |
} | |
else if (FIBER_TERMINATED_P(fiber)) { | |
value = rb_exc_new2(rb_eFiberError, "dead fiber called"); | |
if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) { | |
rb_exc_raise(value); | |
VM_UNREACHABLE(fiber_switch); | |
} | |
else { | |
/* th->ec->fiber_ptr is also dead => switch to root fiber */ | |
/* (this means we're being called from rb_fiber_terminate, */ | |
/* and the terminated fiber's return_fiber() is already dead) */ | |
VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber)); | |
cont = &th->root_fiber->cont; | |
cont->argc = -1; | |
cont->value = value; | |
fiber_setcontext(th->root_fiber, th->ec->fiber_ptr); | |
VM_UNREACHABLE(fiber_switch); | |
} | |
} | |
VM_ASSERT(FIBER_RUNNABLE_P(fiber)); | |
rb_fiber_t *current_fiber = fiber_current(); | |
VM_ASSERT(!RTEST(current_fiber->resuming_fiber)); | |
if (RTEST(resuming_fiber)) { | |
current_fiber->resuming_fiber = resuming_fiber; | |
fiber->prev = fiber_current(); | |
fiber->yielding = 0; | |
} | |
VM_ASSERT(!current_fiber->yielding); | |
if (yielding) { | |
current_fiber->yielding = 1; | |
} | |
if (current_fiber->blocking) { | |
th->blocking -= 1; | |
} | |
cont->argc = argc; | |
cont->kw_splat = kw_splat; | |
cont->value = make_passing_arg(argc, argv); | |
value = fiber_store(fiber, th); | |
if (RTEST(resuming_fiber) && FIBER_TERMINATED_P(fiber)) { | |
fiber_stack_release(fiber); | |
} | |
if (fiber_current()->blocking) { | |
th->blocking += 1; | |
} | |
RUBY_VM_CHECK_INTS(th->ec); | |
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil); | |
return value; | |
} | |
VALUE | |
rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv) | |
{ | |
return fiber_switch(fiber_ptr(fiber_value), argc, argv, RB_NO_KEYWORDS, Qfalse, false); | |
} | |
/* | |
* call-seq: | |
* fiber.blocking? -> true or false | |
* | |
* Returns +true+ if +fiber+ is blocking and +false+ otherwise. | |
* Fiber is non-blocking if it was created via passing <tt>blocking: false</tt> | |
* to Fiber.new, or via Fiber.schedule. | |
* | |
* Note that, even if the method returns +false+, the fiber behaves differently | |
* only if Fiber.scheduler is set in the current thread. | |
* | |
* See the "Non-blocking fibers" section in class docs for details. | |
* | |
*/ | |
VALUE | |
rb_fiber_blocking_p(VALUE fiber) | |
{ | |
return (fiber_ptr(fiber)->blocking == 0) ? Qfalse : Qtrue; | |
} | |
/* | |
* call-seq: | |
* Fiber.blocking? -> false or 1 | |
* | |
* Returns +false+ if the current fiber is non-blocking. | |
* Fiber is non-blocking if it was created via passing <tt>blocking: false</tt> | |
* to Fiber.new, or via Fiber.schedule. | |
* | |
* If the current Fiber is blocking, the method returns 1. | |
* Future developments may allow for situations where larger integers | |
* could be returned. | |
* | |
* Note that, even if the method returns +false+, Fiber behaves differently | |
* only if Fiber.scheduler is set in the current thread. | |
* | |
* See the "Non-blocking fibers" section in class docs for details. | |
* | |
*/ | |
static VALUE | |
rb_f_fiber_blocking_p(VALUE klass) | |
{ | |
rb_thread_t *thread = GET_THREAD(); | |
unsigned blocking = thread->blocking; | |
if (blocking == 0) | |
return Qfalse; | |
return INT2NUM(blocking); | |
} | |
void | |
rb_fiber_close(rb_fiber_t *fiber) | |
{ | |
fiber_status_set(fiber, FIBER_TERMINATED); | |
} | |
static void | |
rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt) | |
{ | |
VALUE value = fiber->cont.value; | |
rb_fiber_t *next_fiber; | |
VM_ASSERT(FIBER_RESUMED_P(fiber)); | |
rb_fiber_close(fiber); | |
coroutine_destroy(&fiber->context); | |
fiber->cont.machine.stack = NULL; | |
fiber->cont.machine.stack_size = 0; | |
next_fiber = return_fiber(true); | |
if (need_interrupt) RUBY_VM_SET_INTERRUPT(&next_fiber->cont.saved_ec); | |
fiber_switch(next_fiber, 1, &value, RB_NO_KEYWORDS, Qfalse, false); | |
} | |
VALUE | |
rb_fiber_resume_kw(VALUE fiber_value, int argc, const VALUE *argv, int kw_splat) | |
{ | |
rb_fiber_t *fiber = fiber_ptr(fiber_value); | |
rb_fiber_t *current_fiber = fiber_current(); | |
if (argc == -1 && FIBER_CREATED_P(fiber)) { | |
rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber"); | |
} | |
else if (FIBER_TERMINATED_P(fiber)) { | |
rb_raise(rb_eFiberError, "attempt to resume a terminated fiber"); | |
} | |
else if (fiber == current_fiber) { | |
rb_raise(rb_eFiberError, "attempt to resume the current fiber"); | |
} | |
else if (fiber->prev != NULL) { | |
rb_raise(rb_eFiberError, "attempt to resume a resumed fiber (double resume)"); | |
} | |
else if (RTEST(fiber->resuming_fiber)) { | |
rb_raise(rb_eFiberError, "attempt to resume a resuming fiber"); | |
} | |
else if (fiber->prev == NULL && | |
(!fiber->yielding && fiber->status != FIBER_CREATED)) { | |
rb_raise(rb_eFiberError, "attempt to resume a transferring fiber"); | |
} | |
return fiber_switch(fiber, argc, argv, kw_splat, fiber_value, false); | |
} | |
VALUE | |
rb_fiber_resume(VALUE fiber_value, int argc, const VALUE *argv) | |
{ | |
return rb_fiber_resume_kw(fiber_value, argc, argv, RB_NO_KEYWORDS); | |
} | |
VALUE | |
rb_fiber_yield_kw(int argc, const VALUE *argv, int kw_splat) | |
{ | |
return fiber_switch(return_fiber(false), argc, argv, kw_splat, Qfalse, true); | |
} | |
VALUE | |
rb_fiber_yield(int argc, const VALUE *argv) | |
{ | |
return fiber_switch(return_fiber(false), argc, argv, RB_NO_KEYWORDS, Qfalse, true); | |
} | |
void | |
rb_fiber_reset_root_local_storage(rb_thread_t *th) | |
{ | |
if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) { | |
th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage; | |
} | |
} | |
/* | |
* call-seq: | |
* fiber.alive? -> true or false | |
* | |
* Returns true if the fiber can still be resumed (or transferred | |
* to). After finishing execution of the fiber block this method will | |
* always return +false+. You need to <code>require 'fiber'</code> | |
* before using this method. | |
*/ | |
VALUE | |
rb_fiber_alive_p(VALUE fiber_value) | |
{ | |
return FIBER_TERMINATED_P(fiber_ptr(fiber_value)) ? Qfalse : Qtrue; | |
} | |
/* | |
* call-seq: | |
* fiber.resume(args, ...) -> obj | |
* | |
* Resumes the fiber from the point at which the last Fiber.yield was | |
* called, or starts running it if it is the first call to | |
* #resume. Arguments passed to resume will be the value of the | |
* Fiber.yield expression or will be passed as block parameters to | |
* the fiber's block if this is the first #resume. | |
* | |
* Alternatively, when resume is called it evaluates to the arguments passed | |
* to the next Fiber.yield statement inside the fiber's block | |
* or to the block value if it runs to completion without any | |
* Fiber.yield | |
*/ | |
static VALUE | |
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber) | |
{ | |
return rb_fiber_resume_kw(fiber, argc, argv, rb_keyword_given_p()); | |
} | |
static VALUE rb_fiber_transfer_kw(VALUE fiber_value, int argc, VALUE *argv, int kw_splat); | |
/* | |
* call-seq: | |
* fiber.raise -> obj | |
* fiber.raise(string) -> obj | |
* fiber.raise(exception [, string [, array]]) -> obj | |
* | |
* Raises an exception in the fiber at the point at which the last | |
* +Fiber.yield+ was called. If the fiber has not been started or has | |
* already run to completion, raises +FiberError+. If the fiber is | |
* yielding, it is resumed. If it is transferring, it is transferred into. | |
* But if it is resuming, raises +FiberError+. | |
* | |
* With no arguments, raises a +RuntimeError+. With a single +String+ | |
* argument, raises a +RuntimeError+ with the string as a message. Otherwise, | |
* the first parameter should be the name of an +Exception+ class (or an | |
* object that returns an +Exception+ object when sent an +exception+ | |
* message). The optional second parameter sets the message associated with | |
* the exception, and the third parameter is an array of callback information. | |
* Exceptions are caught by the +rescue+ clause of <code>begin...end</code> | |
* blocks. | |
*/ | |
static VALUE | |
rb_fiber_raise(int argc, VALUE *argv, VALUE fiber_value) | |
{ | |
rb_fiber_t *fiber = fiber_ptr(fiber_value); | |
VALUE exc = rb_make_exception(argc, argv); | |
if (RTEST(fiber->resuming_fiber)) { | |
rb_raise(rb_eFiberError, "attempt to raise a resuming fiber"); | |
} | |
else if (FIBER_SUSPENDED_P(fiber) && !fiber->yielding) { | |
return rb_fiber_transfer_kw(fiber_value, -1, &exc, RB_NO_KEYWORDS); | |
} | |
else { | |
return rb_fiber_resume_kw(fiber_value, -1, &exc, RB_NO_KEYWORDS); | |
} | |
} | |
/* | |
* call-seq: | |
* fiber.backtrace -> array | |
* fiber.backtrace(start) -> array | |
* fiber.backtrace(start, count) -> array | |
* fiber.backtrace(start..end) -> array | |
* | |
* Returns the current execution stack of the fiber. +start+, +count+ and +end+ allow | |
* to select only parts of the backtrace. | |
* | |
* def level3 | |
* Fiber.yield | |
* end | |
* | |
* def level2 | |
* level3 | |
* end | |
* | |
* def level1 | |
* level2 | |
* end | |
* | |
* f = Fiber.new { level1 } | |
* | |
* # It is empty before the fiber started | |
* f.backtrace | |
* #=> [] | |
* | |
* f.resume | |
* | |
* f.backtrace | |
* #=> ["test.rb:2:in `yield'", "test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] | |
* p f.backtrace(1) # start from the item 1 | |
* #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'", "test.rb:13:in `block in <main>'"] | |
* p f.backtrace(2, 2) # start from item 2, take 2 | |
* #=> ["test.rb:6:in `level2'", "test.rb:10:in `level1'"] | |
* p f.backtrace(1..3) # take items from 1 to 3 | |
* #=> ["test.rb:2:in `level3'", "test.rb:6:in `level2'", "test.rb:10:in `level1'"] | |
* | |
* f.resume | |
* | |
* # It is nil after the fiber is finished | |
* f.backtrace | |
* #=> nil | |
* | |
*/ | |
static VALUE | |
rb_fiber_backtrace(int argc, VALUE *argv, VALUE fiber) | |
{ | |
return rb_vm_backtrace(argc, argv, &fiber_ptr(fiber)->cont.saved_ec); | |
} | |
/* | |
* call-seq: | |
* fiber.backtrace_locations -> array | |
* fiber.backtrace_locations(start) -> array | |
* fiber.backtrace_locations(start, count) -> array | |
* fiber.backtrace_locations(start..end) -> array | |
* | |
* Like #backtrace, but returns each line of the execution stack as a | |
* Thread::Backtrace::Location. Accepts the same arguments as #backtrace. | |
* | |
* f = Fiber.new { Fiber.yield } | |
* f.resume | |
* loc = f.backtrace_locations.first | |
* loc.label #=> "yield" | |
* loc.path #=> "test.rb" | |
* loc.lineno #=> 1 | |
* | |
* | |
*/ | |
static VALUE | |
rb_fiber_backtrace_locations(int argc, VALUE *argv, VALUE fiber) | |
{ | |
return rb_vm_backtrace_locations(argc, argv, &fiber_ptr(fiber)->cont.saved_ec); | |
} | |
/* | |
* call-seq: | |
* fiber.transfer(args, ...) -> obj | |
* | |
* Transfer control to another fiber, resuming it from where it last | |
* stopped or starting it if it was not resumed before. The calling | |
* fiber will be suspended much like in a call to | |
* Fiber.yield. You need to <code>require 'fiber'</code> | |
* before using this method. | |
* | |
* The fiber which receives the transfer call treats it much like | |
* a resume call. Arguments passed to transfer are treated like those | |
* passed to resume. | |
* | |
* The two style of control passing to and from fiber (one is #resume and | |
* Fiber::yield, another is #transfer to and from fiber) can't be freely | |
* mixed. | |
* | |
* * If the Fiber's lifecycle had started with transfer, it will never | |
* be able to yield or be resumed control passing, only | |
* finish or transfer back. (It still can resume other fibers that | |
* are allowed to be resumed.) | |
* * If the Fiber's lifecycle had started with resume, it can yield | |
* or transfer to another Fiber, but can receive control back only | |
* the way compatible with the way it was given away: if it had | |
* transferred, it only can be transferred back, and if it had | |
* yielded, it only can be resumed back. After that, it again can | |
* transfer or yield. | |
* | |
* If those rules are broken FiberError is raised. | |
* | |
* For an individual Fiber design, yield/resume is easier to use | |
* (the Fiber just gives away control, it doesn't need to think | |
* about who the control is given to), while transfer is more flexible | |
* for complex cases, allowing to build arbitrary graphs of Fibers | |
* dependent on each other. | |
* | |
* | |
* Example: | |
* | |
* require 'fiber' | |
* | |
* manager = nil # For local var to be visible inside worker block | |
* | |
* # This fiber would be started with transfer | |
* # It can't yield, and can't be resumed | |
* worker = Fiber.new { |work| | |
* puts "Worker: starts" | |
* puts "Worker: Performed #{work.inspect}, transferring back" | |
* # Fiber.yield # this would raise FiberError: attempt to yield on a not resumed fiber | |
* # manager.resume # this would raise FiberError: attempt to resume a resumed fiber (double resume) | |
* manager.transfer(work.capitalize) | |
* } | |
* | |
* # This fiber would be started with resume | |
* # It can yield or transfer, and can be transferred | |
* # back or resumed | |
* manager = Fiber.new { | |
* puts "Manager: starts" | |
* puts "Manager: transferring 'something' to worker" | |
* result = worker.transfer('something') | |
* puts "Manager: worker returned #{result.inspect}" | |
* # worker.resume # this would raise FiberError: attempt to resume a transferring fiber | |
* Fiber.yield # this is OK, the fiber transferred from and to, now it can yield | |
* puts "Manager: finished" | |
* } | |
* | |
* puts "Starting the manager" | |
* manager.resume | |
* puts "Resuming the manager" | |
* # manager.transfer # this would raise FiberError: attempt to transfer to a yielding fiber | |
* manager.resume | |
* | |
* <em>produces</em> | |
* | |
* Starting the manager | |
* Manager: starts | |
* Manager: transferring 'something' to worker | |
* Worker: starts | |
* Worker: Performed "something", transferring back | |
* Manager: worker returned "Something" | |
* Resuming the manager | |
* Manager: finished | |
* | |
*/ | |
static VALUE | |
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fiber_value) | |
{ | |
return rb_fiber_transfer_kw(fiber_value, argc, argv, rb_keyword_given_p()); | |
} | |
static VALUE | |
rb_fiber_transfer_kw(VALUE fiber_value, int argc, VALUE *argv, int kw_splat) | |
{ | |
rb_fiber_t *fiber = fiber_ptr(fiber_value); | |
if (RTEST(fiber->resuming_fiber)) { | |
rb_raise(rb_eFiberError, "attempt to transfer to a resuming fiber"); | |
} | |
if (fiber->yielding) { | |
rb_raise(rb_eFiberError, "attempt to transfer to a yielding fiber"); | |
} | |
return fiber_switch(fiber, argc, argv, kw_splat, Qfalse, false); | |
} | |
/* | |
* call-seq: | |
* Fiber.yield(args, ...) -> obj | |
* | |
* Yields control back to the context that resumed the fiber, passing | |
* along any arguments that were passed to it. The fiber will resume | |
* processing at this point when #resume is called next. | |
* Any arguments passed to the next #resume will be the value that | |
* this Fiber.yield expression evaluates to. | |
*/ | |
static VALUE | |
rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass) | |
{ | |
return rb_fiber_yield_kw(argc, argv, rb_keyword_given_p()); | |
} | |
/* | |
* call-seq: | |
* Fiber.current -> fiber | |
* | |
* Returns the current fiber. You need to <code>require 'fiber'</code> | |
* before using this method. If you are not running in the context of | |
* a fiber this method will return the root fiber. | |
*/ | |
static VALUE | |
rb_fiber_s_current(VALUE klass) | |
{ | |
return rb_fiber_current(); | |
} | |
static VALUE | |
fiber_to_s(VALUE fiber_value) | |
{ | |
const rb_fiber_t *fiber = fiber_ptr(fiber_value); | |
const rb_proc_t *proc; | |
char status_info[0x20]; | |
if (RTEST(fiber->resuming_fiber)) { | |
snprintf(status_info, 0x20, " (%s by resuming)", fiber_status_name(fiber->status)); | |
} | |
else { | |
snprintf(status_info, 0x20, " (%s)", fiber_status_name(fiber->status)); | |
} | |
if (!rb_obj_is_proc(fiber->first_proc)) { | |
VALUE str = rb_any_to_s(fiber_value); | |
strlcat(status_info, ">", sizeof(status_info)); | |
rb_str_set_len(str, RSTRING_LEN(str)-1); | |
rb_str_cat_cstr(str, status_info); | |
return str; | |
} | |
GetProcPtr(fiber->first_proc, proc); | |
return rb_block_to_s(fiber_value, &proc->block, status_info); | |
} | |
#ifdef HAVE_WORKING_FORK | |
void | |
rb_fiber_atfork(rb_thread_t *th) | |
{ | |
if (th->root_fiber) { | |
if (&th->root_fiber->cont.saved_ec != th->ec) { | |
th->root_fiber = th->ec->fiber_ptr; | |
} | |
th->root_fiber->prev = 0; | |
} | |
} | |
#endif | |
#ifdef RB_EXPERIMENTAL_FIBER_POOL | |
static void | |
fiber_pool_free(void *ptr) | |
{ | |
struct fiber_pool * fiber_pool = ptr; | |
RUBY_FREE_ENTER("fiber_pool"); | |
fiber_pool_free_allocations(fiber_pool->allocations); | |
ruby_xfree(fiber_pool); | |
RUBY_FREE_LEAVE("fiber_pool"); | |
} | |
static size_t | |
fiber_pool_memsize(const void *ptr) | |
{ | |
const struct fiber_pool * fiber_pool = ptr; | |
size_t size = sizeof(*fiber_pool); | |
size += fiber_pool->count * fiber_pool->size; | |
return size; | |
} | |
static const rb_data_type_t FiberPoolDataType = { | |
"fiber_pool", | |
{NULL, fiber_pool_free, fiber_pool_memsize,}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static VALUE | |
fiber_pool_alloc(VALUE klass) | |
{ | |
struct fiber_pool * fiber_pool = RB_ALLOC(struct fiber_pool); | |
return TypedData_Wrap_Struct(klass, &FiberPoolDataType, fiber_pool); | |
} | |
static VALUE | |
rb_fiber_pool_initialize(int argc, VALUE* argv, VALUE self) | |
{ | |
rb_thread_t *th = GET_THREAD(); | |
VALUE size = Qnil, count = Qnil, vm_stack_size = Qnil; | |
struct fiber_pool * fiber_pool = NULL; | |
// Maybe these should be keyword arguments. | |
rb_scan_args(argc, argv, "03", &size, &count, &vm_stack_size); | |
if (NIL_P(size)) { | |
size = INT2NUM(th->vm->default_params.fiber_machine_stack_size); | |
} | |
if (NIL_P(count)) { | |
count = INT2NUM(128); | |
} | |
if (NIL_P(vm_stack_size)) { | |
vm_stack_size = INT2NUM(th->vm->default_params.fiber_vm_stack_size); | |
} | |
TypedData_Get_Struct(self, struct fiber_pool, &FiberPoolDataType, fiber_pool); | |
fiber_pool_initialize(fiber_pool, NUM2SIZET(size), NUM2SIZET(count), NUM2SIZET(vm_stack_size)); | |
return self; | |
} | |
#endif | |
/* | |
* Document-class: FiberError | |
* | |
* Raised when an invalid operation is attempted on a Fiber, in | |
* particular when attempting to call/resume a dead fiber, | |
* attempting to yield from the root fiber, or calling a fiber across | |
* threads. | |
* | |
* fiber = Fiber.new{} | |
* fiber.resume #=> nil | |
* fiber.resume #=> FiberError: dead fiber called | |
*/ | |
/* | |
* Document-class: Fiber::SchedulerInterface | |
* | |
* This is not an existing class, but documentation of the interface that Scheduler | |
* object should comply to in order to be used as argument to Fiber.scheduler and handle non-blocking | |
* fibers. See also the "Non-blocking fibers" section in Fiber class docs for explanations | |
* of some concepts. | |
* | |
* Scheduler's behavior and usage are expected to be as follows: | |
* | |
* * When the execution in the non-blocking Fiber reaches some blocking operation (like | |
* sleep, wait for a process, or a non-ready I/O), it calls some of the scheduler's | |
* hook methods, listed below. | |
* * Scheduler somehow registers what the current fiber is waiting on, and yields control | |
* to other fibers with Fiber.yield (so the fiber would be suspended while expecting its | |
* wait to end, and other fibers in the same thread can perform) | |
* * At the end of the current thread execution, the scheduler's method #close is called | |
* * The scheduler runs into a wait loop, checking all the blocked fibers (which it has | |
* registered on hook calls) and resuming them when the awaited resource is ready | |
* (e.g. I/O ready or sleep time elapsed). | |
* | |
* A typical implementation would probably rely for this closing loop on a gem like | |
* EventMachine[https://github.com/eventmachine/eventmachine] or | |
* Async[https://github.com/socketry/async]. | |
* | |
* This way concurrent execution will be achieved transparently for every | |
* individual Fiber's code. | |
* | |
* Hook methods are: | |
* | |
* * #io_wait | |
* * #process_wait | |
* * #kernel_sleep | |
* * #block and #unblock | |
* * (the list is expanded as Ruby developers make more methods having non-blocking calls) | |
* | |
* When not specified otherwise, the hook implementations are mandatory: if they are not | |
* implemented, the methods trying to call hook will fail. To provide backward compatibility, | |
* in the future hooks will be optional (if they are not implemented, due to the scheduler | |
* being created for the older Ruby version, the code which needs this hook will not fail, | |
* and will just behave in a blocking fashion). | |
* | |
* It is also strongly recommended that the scheduler implements the #fiber method, which is | |
* delegated to by Fiber.schedule. | |
* | |
* Sample _toy_ implementation of the scheduler can be found in Ruby's code, in | |
* <tt>test/fiber/scheduler.rb</tt> | |
* | |
*/ | |
#if 0 /* for RDoc */ | |
/* | |
* | |
* Document-method: Fiber::SchedulerInterface#close | |
* | |
* Called when the current thread exits. The scheduler is expected to implement this | |
* method in order to allow all waiting fibers to finalize their execution. | |
* | |
* The suggested pattern is to implement the main event loop in the #close method. | |
* | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_close(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#process_wait | |
* call-seq: process_wait(pid, flags) | |
* | |
* Invoked by Process::Status.wait in order to wait for a specified process. | |
* See that method description for arguments description. | |
* | |
* Suggested minimal implementation: | |
* | |
* Thread.new do | |
* Process::Status.wait(pid, flags) | |
* end.value | |
* | |
* This hook is optional: if it is not present in the current scheduler, | |
* Process::Status.wait will behave as a blocking method. | |
* | |
* Expected to return a Process::Status instance. | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_process_wait(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#io_wait | |
* call-seq: io_wait(io, events, timeout) | |
* | |
* Invoked by IO#wait, IO#wait_readable, IO#wait_writable to ask whether the | |
* specified descriptor is ready for specified events within | |
* the specified +timeout+. | |
* | |
* +events+ is a bit mask of <tt>IO::READABLE</tt>, <tt>IO::WRITABLE</tt>, and | |
* <tt>IO::PRIORITY</tt>. | |
* | |
* Suggested implementation should register which Fiber is waiting for which | |
* resources and immediately calling Fiber.yield to pass control to other | |
* fibers. Then, in the #close method, the scheduler might dispatch all the | |
* I/O resources to fibers waiting for it. | |
* | |
* Expected to return the subset of events that are ready immediately. | |
* | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_io_wait(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#kernel_sleep | |
* call-seq: kernel_sleep(duration = nil) | |
* | |
* Invoked by Kernel#sleep and Mutex#sleep and is expected to provide | |
* an implementation of sleeping in a non-blocking way. Implementation might | |
* register the current fiber in some list of "which fiber wait until what | |
* moment", call Fiber.yield to pass control, and then in #close resume | |
* the fibers whose wait period has elapsed. | |
* | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_kernel_sleep(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#block | |
* call-seq: block(blocker, timeout = nil) | |
* | |
* Invoked by methods like Thread.join, and by Mutex, to signify that current | |
* Fiber is blocked until further notice (e.g. #unblock) or until +timeout+ has | |
* elapsed. | |
* | |
* +blocker+ is what we are waiting on, informational only (for debugging and | |
* logging). There are no guarantee about its value. | |
* | |
* Expected to return boolean, specifying whether the blocking operation was | |
* successful or not. | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_block(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#unblock | |
* call-seq: unblock(blocker, fiber) | |
* | |
* Invoked to wake up Fiber previously blocked with #block (for example, Mutex#lock | |
* calls #block and Mutex#unlock calls #unblock). The scheduler should use | |
* the +fiber+ parameter to understand which fiber is unblocked. | |
* | |
* +blocker+ is what was awaited for, but it is informational only (for debugging | |
* and logging), and it is not guaranteed to be the same value as the +blocker+ for | |
* #block. | |
* | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_unblock(VALUE self) | |
{ | |
} | |
/* | |
* Document-method: SchedulerInterface#fiber | |
* call-seq: fiber(&block) | |
* | |
* Implementation of the Fiber.schedule. The method is <em>expected</em> to immediately | |
* run the given block of code in a separate non-blocking fiber, and to return that Fiber. | |
* | |
* Minimal suggested implementation is: | |
* | |
* def fiber(&block) | |
* fiber = Fiber.new(blocking: false, &block) | |
* fiber.resume | |
* fiber | |
* end | |
*/ | |
static VALUE | |
rb_fiber_scheduler_interface_fiber(VALUE self) | |
{ | |
} | |
#endif | |
void | |
Init_Cont(void) | |
{ | |
rb_thread_t *th = GET_THREAD(); | |
size_t vm_stack_size = th->vm->default_params.fiber_vm_stack_size; | |
size_t machine_stack_size = th->vm->default_params.fiber_machine_stack_size; | |
size_t stack_size = machine_stack_size + vm_stack_size; | |
#ifdef _WIN32 | |
SYSTEM_INFO info; | |
GetSystemInfo(&info); | |
pagesize = info.dwPageSize; | |
#else /* not WIN32 */ | |
pagesize = sysconf(_SC_PAGESIZE); | |
#endif | |
SET_MACHINE_STACK_END(&th->ec->machine.stack_end); | |
fiber_pool_initialize(&shared_fiber_pool, stack_size, FIBER_POOL_INITIAL_SIZE, vm_stack_size); | |
fiber_initialize_keywords[0] = rb_intern_const("blocking"); | |
fiber_initialize_keywords[1] = rb_intern_const("pool"); | |
char * fiber_shared_fiber_pool_free_stacks = getenv("RUBY_SHARED_FIBER_POOL_FREE_STACKS"); | |
if (fiber_shared_fiber_pool_free_stacks) { | |
shared_fiber_pool.free_stacks = atoi(fiber_shared_fiber_pool_free_stacks); | |
} | |
rb_cFiber = rb_define_class("Fiber", rb_cObject); | |
rb_define_alloc_func(rb_cFiber, fiber_alloc); | |
rb_eFiberError = rb_define_class("FiberError", rb_eStandardError); | |
rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1); | |
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0); | |
rb_define_method(rb_cFiber, "initialize", rb_fiber_initialize, -1); | |
rb_define_method(rb_cFiber, "blocking?", rb_fiber_blocking_p, 0); | |
rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1); | |
rb_define_method(rb_cFiber, "raise", rb_fiber_raise, -1); | |
rb_define_method(rb_cFiber, "backtrace", rb_fiber_backtrace, -1); | |
rb_define_method(rb_cFiber, "backtrace_locations", rb_fiber_backtrace_locations, -1); | |
rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0); | |
rb_define_alias(rb_cFiber, "inspect", "to_s"); | |
rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1); | |
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0); | |
rb_define_singleton_method(rb_cFiber, "blocking?", rb_f_fiber_blocking_p, 0); | |
rb_define_singleton_method(rb_cFiber, "scheduler", rb_fiber_scheduler, 0); | |
rb_define_singleton_method(rb_cFiber, "set_scheduler", rb_fiber_set_scheduler, 1); | |
rb_define_singleton_method(rb_cFiber, "schedule", rb_f_fiber, -1); | |
//rb_define_global_function("Fiber", rb_f_fiber, -1); | |
#if 0 /* for RDoc */ | |
rb_cFiberScheduler = rb_define_class_under(rb_cFiber, "SchedulerInterface", rb_cObject); | |
rb_define_method(rb_cFiberScheduler, "close", rb_fiber_scheduler_interface_close, 0); | |
rb_define_method(rb_cFiberScheduler, "process_wait", rb_fiber_scheduler_interface_process_wait, 0); | |
rb_define_method(rb_cFiberScheduler, "io_wait", rb_fiber_scheduler_interface_io_wait, 0); | |
rb_define_method(rb_cFiberScheduler, "kernel_sleep", rb_fiber_scheduler_interface_kernel_sleep, 0); | |
rb_define_method(rb_cFiberScheduler, "block", rb_fiber_scheduler_interface_block, 0); | |
rb_define_method(rb_cFiberScheduler, "unblock", rb_fiber_scheduler_interface_unblock, 0); | |
rb_define_method(rb_cFiberScheduler, "fiber", rb_fiber_scheduler_interface_fiber, 0); | |
#endif | |
#ifdef RB_EXPERIMENTAL_FIBER_POOL | |
rb_cFiberPool = rb_define_class("Pool", rb_cFiber); | |
rb_define_alloc_func(rb_cFiberPool, fiber_pool_alloc); | |
rb_define_method(rb_cFiberPool, "initialize", rb_fiber_pool_initialize, -1); | |
#endif | |
rb_provide("fiber.so"); | |
} | |
RUBY_SYMBOL_EXPORT_BEGIN | |
void | |
ruby_Init_Continuation_body(void) | |
{ | |
rb_cContinuation = rb_define_class("Continuation", rb_cObject); | |
rb_undef_alloc_func(rb_cContinuation); | |
rb_undef_method(CLASS_OF(rb_cContinuation), "new"); | |
rb_define_method(rb_cContinuation, "call", rb_cont_call, -1); | |
rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1); | |
rb_define_global_function("callcc", rb_callcc, 0); | |
} | |
RUBY_SYMBOL_EXPORT_END |