Skip to content
#

hyperparameter-optimization

Here are 469 public repositories matching this topic...

george-skal
george-skal commented Jun 28, 2021

Hi all!
I am trying a self-play based scheme, where I want to have two agents in waterworld environment have a policy that is being trained (“shared_policy_1”) and other 3 agents that sample a policy from a menagerie (set) of the previous policies of the first two agents ( “shared_policy_2”).
My problem is that I see that the weights in the menagerie are overwritten in every iteration by the cur

nni
Gradient-Free-Optimizers
SimonBlanke
SimonBlanke commented Mar 9, 2021

I think it would be useful to have a grid search optimizer in this package. But its implementation would probably be quite different from other ones (sklearn, ...).

The requirements are:

  • The grid search has to stop after n_iter instead of searching the entire search space
  • The positions should not be precalculated at the beginning of the optimization (i have concerns about memory load).

A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression, Quantization and Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.

  • Updated Jun 19, 2021
bcyphers
bcyphers commented Jan 31, 2018

If enter_data() is called with the same train_path twice in a row and the data itself hasn't changed, a new Dataset does not need to be created.

We should add a column which stores some kind of hash of the actual data. When a Dataset would be created, if the metadata and data hash are exactly the same as an existing Dataset, nothing should be added to the ModelHub database and the existing

Neuraxle

Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models

  • Updated Jul 3, 2021
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the hyperparameter-optimization topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the hyperparameter-optimization topic, visit your repo's landing page and select "manage topics."

Learn more