Skip to content
#

yolov3

Here are 1,108 public repositories matching this topic...

yfq512
yfq512 commented Nov 30, 2020
    1. 准备数据,制作训练时需要的文件(data文件夹下面的四个文件:数据类名,锚框,训练数据,测试数据)
    1. 根据步骤1修改core/config.py文件
    1. 基于yolo原始权重训练,(或者从头训练)(这步教程写的很清楚)
    1. 当loss为1左右时,模型就已经有效果了,训练过程中会保存很多模型,选择一个loss最小的,并根据所选择的模型名修改freeze_graph.py,修改后运行freeze_graph.py,会在项目根目录生成***.pb文件
    1. 修改demo文件,如修改video_demo.py,修改调用的***.pb文件路径,修改num_class为自己数据类个数

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.

  • Updated Jun 22, 2021
  • Python

Improve this page

Add a description, image, and links to the yolov3 topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the yolov3 topic, visit your repo's landing page and select "manage topics."

Learn more