Skip to content
#

network-compression

Here are 25 public repositories matching this topic...

quic-ssiddego
quic-ssiddego commented Jul 16, 2021
  • Deprecate the usage of old quantsim implementation
  • Update bias correction implementation to use new quantsim api

If you are interested in working on this issue - please indicate via a comment on this issue. It should be possible for us to pair you up with an existing contributor to help you get started.

From a complexity perspective, this ticket is at an easy level.

Overparameterization and overfitting are common concerns when designing and training deep neural networks. Network pruning is an effective strategy used to reduce or limit the network complexity, but often suffers from time and computational intensive procedures to identify the most important connections and best performing hyperparameters. We suggest a pruning strategy which is completely integrated in the training process and which requires only marginal extra computational cost. The method relies on unstructured weight pruning which is re-interpreted in a multiobjective learning approach. A batchwise Pruning strategy is selected to be compared using different optimization methods, of which one is a multiobjective optimization algorithm. As it takes over the choice of the weighting of the objective functions, it has a great advantage in terms of reducing the time consuming hyperparameter search each neural network training suffers from. Without any a priori training, post training, or parameter fine tuning we achieve highly reductions of the dense layers of two commonly used convolution neural networks (CNNs) resulting in only a marginal loss of performance. Our results empirically demonstrate that dense layers are overparameterized as with reducing up to 98 % of its edges they provide almost the same results. We contradict the theory that retraining after pruning neural networks is of great importance and opens new insights into the usage of multiobjective optimization techniques in machine learning algorithms in a Keras framework. The Stochastic Multi Gradient Descent Algorithm implementation in Python3 is for usage with Keras and adopted from paper of S. Liu and L. N. Vicente: "The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning". It is combined with weight pruning strategies to reduce network complexity and inference time.

  • Updated Sep 1, 2020
  • Python

Improve this page

Add a description, image, and links to the network-compression topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the network-compression topic, visit your repo's landing page and select "manage topics."

Learn more