Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The set [1,2,3,..., _n_ ] contains a total of n! unique permutations.
[1,2,3,..., _n_ ]
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k , return the k th permutation sequence.
Note:
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,我们可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见网友喜刷刷的博客,首先我们要知道当n = 3时,其排列组合共有3! = 6种,当n = 4时,其排列组合共有4! = 24种,我们就以n = 4, k = 17的情况来分析,所有排列组合情况如下:
1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 <--- k = 17 3421 4123 4132 4213 4231 4312 4321
我们可以发现,每一位上1,2,3,4分别都出现了6次,当最高位上的数字确定了,第二高位每个数字都出现了2次,当第二高位也确定了,第三高位上的数字都只出现了1次,当第三高位确定了,那么第四高位上的数字也只能出现一次,下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16:
最高位可取1,2,3,4中的一个,每个数字出现3!= 6次(因为当最高位确定了,后面三位可以任意排列,所以是3!,那么最高位的数字就会重复3!次),所以k = 16的第一位数字的下标为16 / 6 = 2,在 "1234" 中即3被取出。这里我们的k是要求的坐标为k的全排列序列,我们定义 k' 为当最高位确定后,要求的全排序列在新范围中的位置,同理,k'' 为当第二高为确定后,所要求的全排列序列在新范围中的位置,以此类推,下面来具体看看:
第二位此时从1,2,4中取一个,k = 16,则此时的 k' = 16 % (3!) = 4,注意思考这里为何要取余,如果对这24个数以6个一组来分,那么k=16这个位置就是在第三组(k/6 = 2)中的第五个(k%6 = 4)数字。如下所示,而剩下的每个数字出现2!= 2次,所以第二数字的下标为4 / 2 = 2,在 "124" 中即4被取出。
3124 3142 3214 3241 3412 <--- k' = 4 3421
第三位此时从1,2中去一个,k' = 4,则此时的k'' = 4 % (2!) = 0,如下所示,而剩下的每个数字出现1!= 1次,所以第三个数字的下标为 0 / 1 = 0,在 "12" 中即1被取出。
3412 <--- k'' = 0 3421
第四位是从2中取一个,k'' = 0,则此时的k''' = 0 % (1!) = 0,如下所示,而剩下的每个数字出现0!= 1次,所以第四个数字的下标为0 / 1= 0,在 "2" 中即2被取出。
3412 <--- k''' = 0
那么我们就可以找出规律了 a1 = k / (n - 1)! k1 = k
a2 = k1 / (n - 2)! k2 = k1 % (n - 2)! ...
an-1 = kn-2 / 1! kn-1 = kn-2 % 1!
an = kn-1 / 0! kn = kn-1 % 0!
代码如下:
class Solution { public: string getPermutation(int n, int k) { string res; string num = "123456789"; vector<int> f(n, 1); for (int i = 1; i < n; ++i) f[i] = f[i - 1] * i; --k; for (int i = n; i >= 1; --i) { int j = k / f[i - 1]; k %= f[i - 1]; res.push_back(num[j]); num.erase(j, 1); } return res; } };
类似题目:
Next Permutation
Permutations
参考资料:
https://leetcode.com/problems/permutation-sequence/description/
https://leetcode.com/problems/permutation-sequence/discuss/22508/An-iterative-solution-for-reference
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered:
Successfully merging a pull request may close this issue.
The set
[1,2,3,..., _n_ ]
contains a total of n! unique permutations.By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k , return the k th permutation sequence.
Note:
Example 1:
Example 2:
这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,我们可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见网友喜刷刷的博客,首先我们要知道当n = 3时,其排列组合共有3! = 6种,当n = 4时,其排列组合共有4! = 24种,我们就以n = 4, k = 17的情况来分析,所有排列组合情况如下:
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412 <--- k = 17
3421
4123
4132
4213
4231
4312
4321
我们可以发现,每一位上1,2,3,4分别都出现了6次,当最高位上的数字确定了,第二高位每个数字都出现了2次,当第二高位也确定了,第三高位上的数字都只出现了1次,当第三高位确定了,那么第四高位上的数字也只能出现一次,下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16:
最高位可取1,2,3,4中的一个,每个数字出现3!= 6次(因为当最高位确定了,后面三位可以任意排列,所以是3!,那么最高位的数字就会重复3!次),所以k = 16的第一位数字的下标为16 / 6 = 2,在 "1234" 中即3被取出。这里我们的k是要求的坐标为k的全排列序列,我们定义 k' 为当最高位确定后,要求的全排序列在新范围中的位置,同理,k'' 为当第二高为确定后,所要求的全排列序列在新范围中的位置,以此类推,下面来具体看看:
第二位此时从1,2,4中取一个,k = 16,则此时的 k' = 16 % (3!) = 4,注意思考这里为何要取余,如果对这24个数以6个一组来分,那么k=16这个位置就是在第三组(k/6 = 2)中的第五个(k%6 = 4)数字。如下所示,而剩下的每个数字出现2!= 2次,所以第二数字的下标为4 / 2 = 2,在 "124" 中即4被取出。
3124
3142
3214
3241
3412 <--- k' = 4
3421
第三位此时从1,2中去一个,k' = 4,则此时的k'' = 4 % (2!) = 0,如下所示,而剩下的每个数字出现1!= 1次,所以第三个数字的下标为 0 / 1 = 0,在 "12" 中即1被取出。
3412 <--- k'' = 0
3421
第四位是从2中取一个,k'' = 0,则此时的k''' = 0 % (1!) = 0,如下所示,而剩下的每个数字出现0!= 1次,所以第四个数字的下标为0 / 1= 0,在 "2" 中即2被取出。
3412 <--- k''' = 0
那么我们就可以找出规律了
a1 = k / (n - 1)!
k1 = k
a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...
an-1 = kn-2 / 1!
kn-1 = kn-2 % 1!
an = kn-1 / 0!
kn = kn-1 % 0!
代码如下:
类似题目:
Next Permutation
Permutations
参考资料:
https://leetcode.com/problems/permutation-sequence/description/
https://leetcode.com/problems/permutation-sequence/discuss/22508/An-iterative-solution-for-reference
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: