Skip to content
#

artificial-neural-network

Artificial neural networks (ANN) are computational systems that "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules.

Here are 93 public repositories matching this topic...

Aika is a new type of artificial neural network designed to more closely mimic the behavior of a biological brain and to bridge the gap to classical AI. A key design decision in the Aika network is to conceptually separate the activations from their neurons, meaning that there are two separate graphs. One graph consisting of neurons and synapses representing the knowledge the network has already acquired and another graph consisting of activations and links describing the information the network was able to infer about a concrete input data set. There is a one-to-many relation between the neurons and the activations. For example, there might be a neuron representing a word or a specific meaning of a word, but there might be several activations of this neuron, each representing an occurrence of this word within the input data set. A consequence of this decision is that we have to give up on the idea of a fixed layered topology for the network, since the sequence in which the activations are fired depends on the input data set. Within the activation network, each activation is grounded within the input data set, even if there are several activations in between. This means links between activations serve two purposes. On the one hand, they are used to sum up the synapse weights and, on the other hand they propagate the identity to higher level activations.

  • Updated Aug 31, 2021
  • Java

🏆 A Comparative Study on Handwritten Digits Recognition using Classifiers like K-Nearest Neighbours (K-NN), Multiclass Perceptron/Artificial Neural Network (ANN) and Support Vector Machine (SVM) discussing the pros and cons of each algorithm and providing the comparison results in terms of accuracy and efficiecy of each algorithm.

  • Updated Jan 17, 2021
  • Python

Business Case Study to predict customer churn rate based on Artificial Neural Network (ANN), with TensorFlow and Keras in Python. This is a customer churn analysis that contains training, testing, and evaluation of an ANN model. (Includes: Case Study Paper, Code)

  • Updated May 4, 2021
  • Python