Skip to content
#

tensorflow-lite

Here are 469 public repositories matching this topic...

🔥🔥🔥色情图片离线识别,基于TensorFlow实现。识别只需20ms,可断网测试,成功率99%,调用只要一行代码,从雅虎的开源项目open_nsfw移植,该模型文件可用于iOS、java、C++等平台

  • Updated Apr 23, 2021
  • Kotlin

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]

  • Updated Oct 25, 2021
  • Python

物体検出を用いてNARUTOの印(子~亥、壬、合掌)を検出するモデルとサンプルプログラムです。このリポジトリでは、Tensorflow2 Object Detection APIを使用しています(This is a model and sample program that detects NARUTO's hand sign using object detection. This repository use Tensorflow2 Object Detection API.)

  • Updated Aug 30, 2021
  • Python

This script converts the ONNX/OpenVINO IR model to Tensorflow's saved_model, tflite, h5, tfjs, tftrt(TensorRT), CoreML, EdgeTPU, ONNX and pb. PyTorch (NCHW) -> ONNX (NCHW) -> OpenVINO (NCHW) -> openvino2tensorflow -> Tensorflow/Keras (NHWC/NCHW) -> TFLite (NHWC/NCHW). And the conversion from .pb to saved_model and from saved_model to .pb and from .pb to .tflite and saved_model to .tflite and saved_model to onnx. Support for building environments with Docker. It is possible to directly access the host PC GUI and the camera to verify the operation. NVIDIA GPU (dGPU) support. Intel iHD GPU (iGPU) support.

  • Updated Oct 25, 2021
  • Python

Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite, ONNX, OpenVINO, Myriad Inference Engine blob and .pb from .tflite. Support for building environments with Docker. It is possible to directly access the host PC GUI and the camera to verify the operation. NVIDIA GPU (dGPU) support. Intel iHD GPU (iGPU) support. Supports inverse quantization of INT8 quantization model.

  • Updated Oct 25, 2021
  • Python

Improve this page

Add a description, image, and links to the tensorflow-lite topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the tensorflow-lite topic, visit your repo's landing page and select "manage topics."

Learn more