Permalink
Cannot retrieve contributors at this time
5834 lines (5301 sloc)
135 KB
/********************************************************************** | |
numeric.c - | |
$Author$ | |
created at: Fri Aug 13 18:33:09 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
**********************************************************************/ | |
#include "ruby/internal/config.h" | |
#include <assert.h> | |
#include <ctype.h> | |
#include <math.h> | |
#include <stdio.h> | |
#ifdef HAVE_FLOAT_H | |
#include <float.h> | |
#endif | |
#ifdef HAVE_IEEEFP_H | |
#include <ieeefp.h> | |
#endif | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/array.h" | |
#include "internal/compilers.h" | |
#include "internal/complex.h" | |
#include "internal/enumerator.h" | |
#include "internal/gc.h" | |
#include "internal/hash.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/rational.h" | |
#include "internal/util.h" | |
#include "internal/variable.h" | |
#include "ruby/encoding.h" | |
#include "ruby/util.h" | |
#include "builtin.h" | |
/* use IEEE 64bit values if not defined */ | |
#ifndef FLT_RADIX | |
#define FLT_RADIX 2 | |
#endif | |
#ifndef DBL_MIN | |
#define DBL_MIN 2.2250738585072014e-308 | |
#endif | |
#ifndef DBL_MAX | |
#define DBL_MAX 1.7976931348623157e+308 | |
#endif | |
#ifndef DBL_MIN_EXP | |
#define DBL_MIN_EXP (-1021) | |
#endif | |
#ifndef DBL_MAX_EXP | |
#define DBL_MAX_EXP 1024 | |
#endif | |
#ifndef DBL_MIN_10_EXP | |
#define DBL_MIN_10_EXP (-307) | |
#endif | |
#ifndef DBL_MAX_10_EXP | |
#define DBL_MAX_10_EXP 308 | |
#endif | |
#ifndef DBL_DIG | |
#define DBL_DIG 15 | |
#endif | |
#ifndef DBL_MANT_DIG | |
#define DBL_MANT_DIG 53 | |
#endif | |
#ifndef DBL_EPSILON | |
#define DBL_EPSILON 2.2204460492503131e-16 | |
#endif | |
#ifndef USE_RB_INFINITY | |
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ | |
const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}}; | |
#else | |
const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}}; | |
#endif | |
#ifndef USE_RB_NAN | |
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */ | |
const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}}; | |
#else | |
const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}}; | |
#endif | |
#ifndef HAVE_ROUND | |
double | |
round(double x) | |
{ | |
double f; | |
if (x > 0.0) { | |
f = floor(x); | |
x = f + (x - f >= 0.5); | |
} | |
else if (x < 0.0) { | |
f = ceil(x); | |
x = f - (f - x >= 0.5); | |
} | |
return x; | |
} | |
#endif | |
static double | |
round_half_up(double x, double s) | |
{ | |
double f, xs = x * s; | |
f = round(xs); | |
if (s == 1.0) return f; | |
if (x > 0) { | |
if ((double)((f + 0.5) / s) <= x) f += 1; | |
x = f; | |
} | |
else { | |
if ((double)((f - 0.5) / s) >= x) f -= 1; | |
x = f; | |
} | |
return x; | |
} | |
static double | |
round_half_down(double x, double s) | |
{ | |
double f, xs = x * s; | |
f = round(xs); | |
if (x > 0) { | |
if ((double)((f - 0.5) / s) >= x) f -= 1; | |
x = f; | |
} | |
else { | |
if ((double)((f + 0.5) / s) <= x) f += 1; | |
x = f; | |
} | |
return x; | |
} | |
static double | |
round_half_even(double x, double s) | |
{ | |
double f, d, xs = x * s; | |
if (x > 0.0) { | |
f = floor(xs); | |
d = xs - f; | |
if (d > 0.5) | |
d = 1.0; | |
else if (d == 0.5 || ((double)((f + 0.5) / s) <= x)) | |
d = fmod(f, 2.0); | |
else | |
d = 0.0; | |
x = f + d; | |
} | |
else if (x < 0.0) { | |
f = ceil(xs); | |
d = f - xs; | |
if (d > 0.5) | |
d = 1.0; | |
else if (d == 0.5 || ((double)((f - 0.5) / s) >= x)) | |
d = fmod(-f, 2.0); | |
else | |
d = 0.0; | |
x = f - d; | |
} | |
return x; | |
} | |
static VALUE fix_lshift(long, unsigned long); | |
static VALUE fix_rshift(long, unsigned long); | |
static VALUE int_pow(long x, unsigned long y); | |
static VALUE rb_int_floor(VALUE num, int ndigits); | |
static VALUE rb_int_ceil(VALUE num, int ndigits); | |
static VALUE flo_to_i(VALUE num); | |
static int float_round_overflow(int ndigits, int binexp); | |
static int float_round_underflow(int ndigits, int binexp); | |
static ID id_coerce; | |
#define id_div idDiv | |
#define id_divmod idDivmod | |
#define id_to_i idTo_i | |
#define id_eq idEq | |
#define id_cmp idCmp | |
VALUE rb_cNumeric; | |
VALUE rb_cFloat; | |
VALUE rb_cInteger; | |
VALUE rb_eZeroDivError; | |
VALUE rb_eFloatDomainError; | |
static ID id_to, id_by; | |
void | |
rb_num_zerodiv(void) | |
{ | |
rb_raise(rb_eZeroDivError, "divided by 0"); | |
} | |
enum ruby_num_rounding_mode | |
rb_num_get_rounding_option(VALUE opts) | |
{ | |
static ID round_kwds[1]; | |
VALUE rounding; | |
VALUE str; | |
const char *s; | |
if (!NIL_P(opts)) { | |
if (!round_kwds[0]) { | |
round_kwds[0] = rb_intern_const("half"); | |
} | |
if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt; | |
if (SYMBOL_P(rounding)) { | |
str = rb_sym2str(rounding); | |
} | |
else if (NIL_P(rounding)) { | |
goto noopt; | |
} | |
else if (!RB_TYPE_P(str = rounding, T_STRING)) { | |
str = rb_check_string_type(rounding); | |
if (NIL_P(str)) goto invalid; | |
} | |
rb_must_asciicompat(str); | |
s = RSTRING_PTR(str); | |
switch (RSTRING_LEN(str)) { | |
case 2: | |
if (rb_memcicmp(s, "up", 2) == 0) | |
return RUBY_NUM_ROUND_HALF_UP; | |
break; | |
case 4: | |
if (rb_memcicmp(s, "even", 4) == 0) | |
return RUBY_NUM_ROUND_HALF_EVEN; | |
if (strncasecmp(s, "down", 4) == 0) | |
return RUBY_NUM_ROUND_HALF_DOWN; | |
break; | |
} | |
invalid: | |
rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding); | |
} | |
noopt: | |
return RUBY_NUM_ROUND_DEFAULT; | |
} | |
/* experimental API */ | |
int | |
rb_num_to_uint(VALUE val, unsigned int *ret) | |
{ | |
#define NUMERR_TYPE 1 | |
#define NUMERR_NEGATIVE 2 | |
#define NUMERR_TOOLARGE 3 | |
if (FIXNUM_P(val)) { | |
long v = FIX2LONG(val); | |
#if SIZEOF_INT < SIZEOF_LONG | |
if (v > (long)UINT_MAX) return NUMERR_TOOLARGE; | |
#endif | |
if (v < 0) return NUMERR_NEGATIVE; | |
*ret = (unsigned int)v; | |
return 0; | |
} | |
if (RB_BIGNUM_TYPE_P(val)) { | |
if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE; | |
#if SIZEOF_INT < SIZEOF_LONG | |
/* long is 64bit */ | |
return NUMERR_TOOLARGE; | |
#else | |
/* long is 32bit */ | |
if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE; | |
*ret = (unsigned int)rb_big2ulong((VALUE)val); | |
return 0; | |
#endif | |
} | |
return NUMERR_TYPE; | |
} | |
#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid) | |
static inline int | |
int_pos_p(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return FIXNUM_POSITIVE_P(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return BIGNUM_POSITIVE_P(num); | |
} | |
rb_raise(rb_eTypeError, "not an Integer"); | |
} | |
static inline int | |
int_neg_p(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return FIXNUM_NEGATIVE_P(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return BIGNUM_NEGATIVE_P(num); | |
} | |
rb_raise(rb_eTypeError, "not an Integer"); | |
} | |
int | |
rb_int_positive_p(VALUE num) | |
{ | |
return int_pos_p(num); | |
} | |
int | |
rb_int_negative_p(VALUE num) | |
{ | |
return int_neg_p(num); | |
} | |
int | |
rb_num_negative_p(VALUE num) | |
{ | |
return rb_num_negative_int_p(num); | |
} | |
static VALUE | |
num_funcall_op_0(VALUE x, VALUE arg, int recursive) | |
{ | |
ID func = (ID)arg; | |
if (recursive) { | |
const char *name = rb_id2name(func); | |
if (ISALNUM(name[0])) { | |
rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE, | |
x, ID2SYM(func)); | |
} | |
else if (name[0] && name[1] == '@' && !name[2]) { | |
rb_name_error(func, "%c%"PRIsVALUE, | |
name[0], x); | |
} | |
else { | |
rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE, | |
ID2SYM(func), x); | |
} | |
} | |
return rb_funcallv(x, func, 0, 0); | |
} | |
static VALUE | |
num_funcall0(VALUE x, ID func) | |
{ | |
return rb_exec_recursive(num_funcall_op_0, x, (VALUE)func); | |
} | |
NORETURN(static void num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)); | |
static void | |
num_funcall_op_1_recursion(VALUE x, ID func, VALUE y) | |
{ | |
const char *name = rb_id2name(func); | |
if (ISALNUM(name[0])) { | |
rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")", | |
x, ID2SYM(func), y); | |
} | |
else { | |
rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE, | |
x, ID2SYM(func), y); | |
} | |
} | |
static VALUE | |
num_funcall_op_1(VALUE y, VALUE arg, int recursive) | |
{ | |
ID func = (ID)((VALUE *)arg)[0]; | |
VALUE x = ((VALUE *)arg)[1]; | |
if (recursive) { | |
num_funcall_op_1_recursion(x, func, y); | |
} | |
return rb_funcall(x, func, 1, y); | |
} | |
static VALUE | |
num_funcall1(VALUE x, ID func, VALUE y) | |
{ | |
VALUE args[2]; | |
args[0] = (VALUE)func; | |
args[1] = x; | |
return rb_exec_recursive_paired(num_funcall_op_1, y, x, (VALUE)args); | |
} | |
/* | |
* call-seq: | |
* coerce(other) -> array | |
* | |
* Returns a 2-element array containing two numeric elements, | |
* formed from the two operands +self+ and +other+, | |
* of a common compatible type. | |
* | |
* Of the Core and Standard Library classes, | |
* Integer, Rational, and Complex use this implementation. | |
* | |
* Examples: | |
* | |
* i = 2 # => 2 | |
* i.coerce(3) # => [3, 2] | |
* i.coerce(3.0) # => [3.0, 2.0] | |
* i.coerce(Rational(1, 2)) # => [0.5, 2.0] | |
* i.coerce(Complex(3, 4)) # Raises RangeError. | |
* | |
* r = Rational(5, 2) # => (5/2) | |
* r.coerce(2) # => [(2/1), (5/2)] | |
* r.coerce(2.0) # => [2.0, 2.5] | |
* r.coerce(Rational(2, 3)) # => [(2/3), (5/2)] | |
* r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)] | |
* | |
* c = Complex(2, 3) # => (2+3i) | |
* c.coerce(2) # => [(2+0i), (2+3i)] | |
* c.coerce(2.0) # => [(2.0+0i), (2+3i)] | |
* c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)] | |
* c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)] | |
* | |
* Raises an exception if any type conversion fails. | |
* | |
*/ | |
static VALUE | |
num_coerce(VALUE x, VALUE y) | |
{ | |
if (CLASS_OF(x) == CLASS_OF(y)) | |
return rb_assoc_new(y, x); | |
x = rb_Float(x); | |
y = rb_Float(y); | |
return rb_assoc_new(y, x); | |
} | |
NORETURN(static void coerce_failed(VALUE x, VALUE y)); | |
static void | |
coerce_failed(VALUE x, VALUE y) | |
{ | |
if (SPECIAL_CONST_P(y) || SYMBOL_P(y) || RB_FLOAT_TYPE_P(y)) { | |
y = rb_inspect(y); | |
} | |
else { | |
y = rb_obj_class(y); | |
} | |
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE, | |
y, rb_obj_class(x)); | |
} | |
static int | |
do_coerce(VALUE *x, VALUE *y, int err) | |
{ | |
VALUE ary = rb_check_funcall(*y, id_coerce, 1, x); | |
if (ary == Qundef) { | |
if (err) { | |
coerce_failed(*x, *y); | |
} | |
return FALSE; | |
} | |
if (!err && NIL_P(ary)) { | |
return FALSE; | |
} | |
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) { | |
rb_raise(rb_eTypeError, "coerce must return [x, y]"); | |
} | |
*x = RARRAY_AREF(ary, 0); | |
*y = RARRAY_AREF(ary, 1); | |
return TRUE; | |
} | |
VALUE | |
rb_num_coerce_bin(VALUE x, VALUE y, ID func) | |
{ | |
do_coerce(&x, &y, TRUE); | |
return rb_funcall(x, func, 1, y); | |
} | |
VALUE | |
rb_num_coerce_cmp(VALUE x, VALUE y, ID func) | |
{ | |
if (do_coerce(&x, &y, FALSE)) | |
return rb_funcall(x, func, 1, y); | |
return Qnil; | |
} | |
static VALUE | |
ensure_cmp(VALUE c, VALUE x, VALUE y) | |
{ | |
if (NIL_P(c)) rb_cmperr(x, y); | |
return c; | |
} | |
VALUE | |
rb_num_coerce_relop(VALUE x, VALUE y, ID func) | |
{ | |
VALUE x0 = x, y0 = y; | |
if (!do_coerce(&x, &y, FALSE)) { | |
rb_cmperr(x0, y0); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
return ensure_cmp(rb_funcall(x, func, 1, y), x0, y0); | |
} | |
NORETURN(static VALUE num_sadded(VALUE x, VALUE name)); | |
/* | |
* :nodoc: | |
* | |
* Trap attempts to add methods to Numeric objects. Always raises a TypeError. | |
* | |
* Numerics should be values; singleton_methods should not be added to them. | |
*/ | |
static VALUE | |
num_sadded(VALUE x, VALUE name) | |
{ | |
ID mid = rb_to_id(name); | |
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */ | |
rb_remove_method_id(rb_singleton_class(x), mid); | |
rb_raise(rb_eTypeError, | |
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE, | |
rb_id2str(mid), | |
rb_obj_class(x)); | |
UNREACHABLE_RETURN(Qnil); | |
} | |
#if 0 | |
/* | |
* call-seq: | |
* clone(freeze: true) -> self | |
* | |
* Returns +self+. | |
* | |
* Raises an exception if the value for +freeze+ is neither +true+ nor +nil+. | |
* | |
* Related: Numeric#dup. | |
* | |
*/ | |
static VALUE | |
num_clone(int argc, VALUE *argv, VALUE x) | |
{ | |
return rb_immutable_obj_clone(argc, argv, x); | |
} | |
#else | |
# define num_clone rb_immutable_obj_clone | |
#endif | |
#if 0 | |
/* | |
* call-seq: | |
* dup -> self | |
* | |
* Returns +self+. | |
* | |
* Related: Numeric#clone. | |
* | |
*/ | |
static VALUE | |
num_dup(VALUE x) | |
{ | |
return x; | |
} | |
#else | |
# define num_dup num_uplus | |
#endif | |
/* | |
* call-seq: | |
* +self -> self | |
* | |
* Returns +self+. | |
* | |
*/ | |
static VALUE | |
num_uplus(VALUE num) | |
{ | |
return num; | |
} | |
/* | |
* call-seq: | |
* i -> complex | |
* | |
* Returns <tt>Complex(0, self)</tt>: | |
* | |
* 2.i # => (0+2i) | |
* -2.i # => (0-2i) | |
* 2.0.i # => (0+2.0i) | |
* Rational(1, 2).i # => (0+(1/2)*i) | |
* Complex(3, 4).i # Raises NoMethodError. | |
* | |
*/ | |
static VALUE | |
num_imaginary(VALUE num) | |
{ | |
return rb_complex_new(INT2FIX(0), num); | |
} | |
/* | |
* call-seq: | |
* -self -> numeric | |
* | |
* Unary Minus---Returns the receiver, negated. | |
*/ | |
static VALUE | |
num_uminus(VALUE num) | |
{ | |
VALUE zero; | |
zero = INT2FIX(0); | |
do_coerce(&zero, &num, TRUE); | |
return num_funcall1(zero, '-', num); | |
} | |
/* | |
* call-seq: | |
* fdiv(other) -> float | |
* | |
* Returns the quotient <tt>self/other</tt> as a float, | |
* using method +/+ in the derived class of +self+. | |
* (\Numeric itself does not define method +/+.) | |
* | |
* Of the Core and Standard Library classes, | |
* only BigDecimal uses this implementation. | |
* | |
*/ | |
static VALUE | |
num_fdiv(VALUE x, VALUE y) | |
{ | |
return rb_funcall(rb_Float(x), '/', 1, y); | |
} | |
/* | |
* call-seq: | |
* div(other) -> integer | |
* | |
* Returns the quotient <tt>self/other</tt> as an integer (via +floor+), | |
* using method +/+ in the derived class of +self+. | |
* (\Numeric itself does not define method +/+.) | |
* | |
* Of the Core and Standard Library classes, | |
* Float, Rational, and Complex use this implementation. | |
* | |
*/ | |
static VALUE | |
num_div(VALUE x, VALUE y) | |
{ | |
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv(); | |
return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0); | |
} | |
/* | |
* call-seq: | |
* self % other -> real_numeric | |
* | |
* Returns +self+ modulo +other+ as a real number. | |
* | |
* Of the Core and Standard Library classes, | |
* only Rational uses this implementation. | |
* | |
* For \Rational +r+ and real number +n+, these expressions are equivalent: | |
* | |
* c % n | |
* c-n*(c/n).floor | |
* c.divmod(n)[1] | |
* | |
* See Numeric#divmod. | |
* | |
* Examples: | |
* | |
* r = Rational(1, 2) # => (1/2) | |
* r2 = Rational(2, 3) # => (2/3) | |
* r % r2 # => (1/2) | |
* r % 2 # => (1/2) | |
* r % 2.0 # => 0.5 | |
* | |
* r = Rational(301,100) # => (301/100) | |
* r2 = Rational(7,5) # => (7/5) | |
* r % r2 # => (21/100) | |
* r % -r2 # => (-119/100) | |
* (-r) % r2 # => (119/100) | |
* (-r) %-r2 # => (-21/100) | |
* | |
* Numeric#modulo is an alias for Numeric#%. | |
* | |
*/ | |
static VALUE | |
num_modulo(VALUE x, VALUE y) | |
{ | |
VALUE q = num_funcall1(x, id_div, y); | |
return rb_funcall(x, '-', 1, | |
rb_funcall(y, '*', 1, q)); | |
} | |
/* | |
* call-seq: | |
* remainder(other) -> real_number | |
* | |
* Returns the remainder after dividing +self+ by +other+. | |
* | |
* Of the Core and Standard Library classes, | |
* only Float and Rational use this implementation. | |
* | |
* Examples: | |
* | |
* 11.0.remainder(4) # => 3.0 | |
* 11.0.remainder(-4) # => 3.0 | |
* -11.0.remainder(4) # => -3.0 | |
* -11.0.remainder(-4) # => -3.0 | |
* | |
* 12.0.remainder(4) # => 0.0 | |
* 12.0.remainder(-4) # => 0.0 | |
* -12.0.remainder(4) # => -0.0 | |
* -12.0.remainder(-4) # => -0.0 | |
* | |
* 13.0.remainder(4.0) # => 1.0 | |
* 13.0.remainder(Rational(4, 1)) # => 1.0 | |
* | |
* Rational(13, 1).remainder(4) # => (1/1) | |
* Rational(13, 1).remainder(-4) # => (1/1) | |
* Rational(-13, 1).remainder(4) # => (-1/1) | |
* Rational(-13, 1).remainder(-4) # => (-1/1) | |
* | |
*/ | |
static VALUE | |
num_remainder(VALUE x, VALUE y) | |
{ | |
VALUE z = num_funcall1(x, '%', y); | |
if ((!rb_equal(z, INT2FIX(0))) && | |
((rb_num_negative_int_p(x) && | |
rb_num_positive_int_p(y)) || | |
(rb_num_positive_int_p(x) && | |
rb_num_negative_int_p(y)))) { | |
if (RB_FLOAT_TYPE_P(y)) { | |
if (isinf(RFLOAT_VALUE(y))) { | |
return x; | |
} | |
} | |
return rb_funcall(z, '-', 1, y); | |
} | |
return z; | |
} | |
/* | |
* call-seq: | |
* divmod(other) -> array | |
* | |
* Returns a 2-element array <tt>[q, r]</tt>, where | |
* | |
* q = (self/other).floor # Quotient | |
* r = self % other # Remainder | |
* | |
* Of the Core and Standard Library classes, | |
* only Rational uses this implementation. | |
* | |
* Examples: | |
* | |
* Rational(11, 1).divmod(4) # => [2, (3/1)] | |
* Rational(11, 1).divmod(-4) # => [-3, (-1/1)] | |
* Rational(-11, 1).divmod(4) # => [-3, (1/1)] | |
* Rational(-11, 1).divmod(-4) # => [2, (-3/1)] | |
* | |
* Rational(12, 1).divmod(4) # => [3, (0/1)] | |
* Rational(12, 1).divmod(-4) # => [-3, (0/1)] | |
* Rational(-12, 1).divmod(4) # => [-3, (0/1)] | |
* Rational(-12, 1).divmod(-4) # => [3, (0/1)] | |
* | |
* Rational(13, 1).divmod(4.0) # => [3, 1.0] | |
* Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)] | |
*/ | |
static VALUE | |
num_divmod(VALUE x, VALUE y) | |
{ | |
return rb_assoc_new(num_div(x, y), num_modulo(x, y)); | |
} | |
/* | |
* call-seq: | |
* abs -> numeric | |
* | |
* Returns the absolute value of +self+. | |
* | |
* 12.abs #=> 12 | |
* (-34.56).abs #=> 34.56 | |
* -34.56.abs #=> 34.56 | |
* | |
* Numeric#magnitude is an alias for Numeric#abs. | |
* | |
*/ | |
static VALUE | |
num_abs(VALUE num) | |
{ | |
if (rb_num_negative_int_p(num)) { | |
return num_funcall0(num, idUMinus); | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* zero? -> true or false | |
* | |
* Returns +true+ if +zero+ has a zero value, +false+ otherwise. | |
* | |
* Of the Core and Standard Library classes, | |
* only Rational and Complex use this implementation. | |
* | |
*/ | |
static VALUE | |
num_zero_p(VALUE num) | |
{ | |
return rb_equal(num, INT2FIX(0)); | |
} | |
static VALUE | |
int_zero_p(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return RBOOL(FIXNUM_ZERO_P(num)); | |
} | |
assert(RB_BIGNUM_TYPE_P(num)); | |
return RBOOL(rb_bigzero_p(num)); | |
} | |
VALUE | |
rb_int_zero_p(VALUE num) | |
{ | |
return int_zero_p(num); | |
} | |
/* | |
* call-seq: | |
* nonzero? -> self or nil | |
* | |
* Returns +self+ if +self+ is not a zero value, +nil+ otherwise; | |
* uses method <tt>zero?</tt> for the evaluation. | |
* | |
* The returned +self+ allows the method to be chained: | |
* | |
* a = %w[z Bb bB bb BB a aA Aa AA A] | |
* a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b } | |
* # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"] | |
* | |
* Of the Core and Standard Library classes, | |
* Integer, Float, Rational, and Complex use this implementation. | |
* | |
*/ | |
static VALUE | |
num_nonzero_p(VALUE num) | |
{ | |
if (RTEST(num_funcall0(num, rb_intern("zero?")))) { | |
return Qnil; | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* to_int -> integer | |
* | |
* Returns +self+ as an integer; | |
* converts using method +to_i+ in the derived class. | |
* | |
* Of the Core and Standard Library classes, | |
* only Rational and Complex use this implementation. | |
* | |
* Examples: | |
* | |
* Rational(1, 2).to_int # => 0 | |
* Rational(2, 1).to_int # => 2 | |
* Complex(2, 0).to_int # => 2 | |
* Complex(2, 1) # Raises RangeError (non-zero imaginary part) | |
* | |
*/ | |
static VALUE | |
num_to_int(VALUE num) | |
{ | |
return num_funcall0(num, id_to_i); | |
} | |
/* | |
* call-seq: | |
* positive? -> true or false | |
* | |
* Returns +true+ if +self+ is greater than 0, +false+ otherwise. | |
* | |
*/ | |
static VALUE | |
num_positive_p(VALUE num) | |
{ | |
const ID mid = '>'; | |
if (FIXNUM_P(num)) { | |
if (method_basic_p(rb_cInteger)) | |
return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0)); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
if (method_basic_p(rb_cInteger)) | |
return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num)); | |
} | |
return rb_num_compare_with_zero(num, mid); | |
} | |
/* | |
* call-seq: | |
* negative? -> true or false | |
* | |
* Returns +true+ if +self+ is less than 0, +false+ otherwise. | |
* | |
*/ | |
static VALUE | |
num_negative_p(VALUE num) | |
{ | |
return RBOOL(rb_num_negative_int_p(num)); | |
} | |
/******************************************************************** | |
* | |
* Document-class: Float | |
* | |
* Float objects represent inexact real numbers using the native | |
* architecture's double-precision floating point representation. | |
* | |
* Floating point has a different arithmetic and is an inexact number. | |
* So you should know its esoteric system. See following: | |
* | |
* - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html | |
* - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise | |
* - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems | |
*/ | |
VALUE | |
rb_float_new_in_heap(double d) | |
{ | |
NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0)); | |
flt->float_value = d; | |
OBJ_FREEZE((VALUE)flt); | |
return (VALUE)flt; | |
} | |
/* | |
* call-seq: | |
* float.to_s -> string | |
* | |
* Returns a string containing a representation of +self+. | |
* As well as a fixed or exponential form of the +float+, | |
* the call may return +NaN+, +Infinity+, and +-Infinity+. | |
*/ | |
static VALUE | |
flo_to_s(VALUE flt) | |
{ | |
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; | |
enum {float_dig = DBL_DIG+1}; | |
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; | |
double value = RFLOAT_VALUE(flt); | |
VALUE s; | |
char *p, *e; | |
int sign, decpt, digs; | |
if (isinf(value)) { | |
static const char minf[] = "-Infinity"; | |
const int pos = (value > 0); /* skip "-" */ | |
return rb_usascii_str_new(minf+pos, strlen(minf)-pos); | |
} | |
else if (isnan(value)) | |
return rb_usascii_str_new2("NaN"); | |
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e); | |
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0); | |
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1; | |
memcpy(buf, p, digs); | |
xfree(p); | |
if (decpt > 0) { | |
if (decpt < digs) { | |
memmove(buf + decpt + 1, buf + decpt, digs - decpt); | |
buf[decpt] = '.'; | |
rb_str_cat(s, buf, digs + 1); | |
} | |
else if (decpt <= DBL_DIG) { | |
long len; | |
char *ptr; | |
rb_str_cat(s, buf, digs); | |
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2); | |
ptr = RSTRING_PTR(s) + len; | |
if (decpt > digs) { | |
memset(ptr, '0', decpt - digs); | |
ptr += decpt - digs; | |
} | |
memcpy(ptr, ".0", 2); | |
} | |
else { | |
goto exp; | |
} | |
} | |
else if (decpt > -4) { | |
long len; | |
char *ptr; | |
rb_str_cat(s, "0.", 2); | |
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs); | |
ptr = RSTRING_PTR(s); | |
memset(ptr += len, '0', -decpt); | |
memcpy(ptr -= decpt, buf, digs); | |
} | |
else { | |
goto exp; | |
} | |
return s; | |
exp: | |
if (digs > 1) { | |
memmove(buf + 2, buf + 1, digs - 1); | |
} | |
else { | |
buf[2] = '0'; | |
digs++; | |
} | |
buf[1] = '.'; | |
rb_str_cat(s, buf, digs + 1); | |
rb_str_catf(s, "e%+03d", decpt - 1); | |
return s; | |
} | |
/* | |
* call-seq: | |
* coerce(other) -> array | |
* | |
* Returns a 2-element array containing +other+ converted to a \Float | |
* and +self+: | |
* | |
* f = 3.14 # => 3.14 | |
* f.coerce(2) # => [2.0, 3.14] | |
* f.coerce(2.0) # => [2.0, 3.14] | |
* f.coerce(Rational(1, 2)) # => [0.5, 3.14] | |
* f.coerce(Complex(3, 4)) # Raises RangeError. | |
* | |
* Related: Numeric#coerce (for other numeric types). | |
* | |
* Raises an exception if a type conversion fails. | |
* | |
*/ | |
static VALUE | |
flo_coerce(VALUE x, VALUE y) | |
{ | |
return rb_assoc_new(rb_Float(y), x); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_float_uminus(VALUE flt) | |
{ | |
return DBL2NUM(-RFLOAT_VALUE(flt)); | |
} | |
/* | |
* call-seq: | |
* float + other -> float | |
* | |
* Returns a new Float which is the sum of +float+ and +other+. | |
*/ | |
VALUE | |
rb_float_plus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '+'); | |
} | |
} | |
/* | |
* call-seq: | |
* float - other -> float | |
* | |
* Returns a new Float which is the difference of +float+ and +other+. | |
*/ | |
VALUE | |
rb_float_minus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '-'); | |
} | |
} | |
/* | |
* call-seq: | |
* float * other -> float | |
* | |
* Returns a new Float which is the product of +float+ and +other+. | |
*/ | |
VALUE | |
rb_float_mul(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '*'); | |
} | |
} | |
static double | |
double_div_double(double x, double y) | |
{ | |
if (LIKELY(y != 0.0)) { | |
return x / y; | |
} | |
else if (x == 0.0) { | |
return nan(""); | |
} | |
else { | |
double z = signbit(y) ? -1.0 : 1.0; | |
return x * z * HUGE_VAL; | |
} | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_flo_div_flo(VALUE x, VALUE y) | |
{ | |
double num = RFLOAT_VALUE(x); | |
double den = RFLOAT_VALUE(y); | |
double ret = double_div_double(num, den); | |
return DBL2NUM(ret); | |
} | |
/* | |
* call-seq: | |
* float / other -> float | |
* | |
* Returns a new Float which is the result of dividing +float+ by +other+. | |
*/ | |
VALUE | |
rb_float_div(VALUE x, VALUE y) | |
{ | |
double num = RFLOAT_VALUE(x); | |
double den; | |
double ret; | |
if (FIXNUM_P(y)) { | |
den = FIX2LONG(y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
den = rb_big2dbl(y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
den = RFLOAT_VALUE(y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '/'); | |
} | |
ret = double_div_double(num, den); | |
return DBL2NUM(ret); | |
} | |
/* | |
* call-seq: | |
* float.fdiv(numeric) -> float | |
* float.quo(numeric) -> float | |
* | |
* Returns <code>float / numeric</code>, same as Float#/. | |
*/ | |
static VALUE | |
flo_quo(VALUE x, VALUE y) | |
{ | |
return num_funcall1(x, '/', y); | |
} | |
static void | |
flodivmod(double x, double y, double *divp, double *modp) | |
{ | |
double div, mod; | |
if (isnan(y)) { | |
/* y is NaN so all results are NaN */ | |
if (modp) *modp = y; | |
if (divp) *divp = y; | |
return; | |
} | |
if (y == 0.0) rb_num_zerodiv(); | |
if ((x == 0.0) || (isinf(y) && !isinf(x))) | |
mod = x; | |
else { | |
#ifdef HAVE_FMOD | |
mod = fmod(x, y); | |
#else | |
double z; | |
modf(x/y, &z); | |
mod = x - z * y; | |
#endif | |
} | |
if (isinf(x) && !isinf(y)) | |
div = x; | |
else { | |
div = (x - mod) / y; | |
if (modp && divp) div = round(div); | |
} | |
if (y*mod < 0) { | |
mod += y; | |
div -= 1.0; | |
} | |
if (modp) *modp = mod; | |
if (divp) *divp = div; | |
} | |
/* | |
* Returns the modulo of division of x by y. | |
* An error will be raised if y == 0. | |
*/ | |
MJIT_FUNC_EXPORTED double | |
ruby_float_mod(double x, double y) | |
{ | |
double mod; | |
flodivmod(x, y, 0, &mod); | |
return mod; | |
} | |
/* | |
* call-seq: | |
* self % other -> float | |
* | |
* Returns +self+ modulo +other+ as a float. | |
* | |
* For float +f+ and real number +r+, these expressions are equivalent: | |
* | |
* f % r | |
* f-r*(f/r).floor | |
* f.divmod(r)[1] | |
* | |
* See Numeric#divmod. | |
* | |
* Examples: | |
* | |
* 10.0 % 2 # => 0.0 | |
* 10.0 % 3 # => 1.0 | |
* 10.0 % 4 # => 2.0 | |
* | |
* 10.0 % -2 # => 0.0 | |
* 10.0 % -3 # => -2.0 | |
* 10.0 % -4 # => -2.0 | |
* | |
* 10.0 % 4.0 # => 2.0 | |
* 10.0 % Rational(4, 1) # => 2.0 | |
* | |
* Float#modulo is an alias for Float#%. | |
* | |
*/ | |
static VALUE | |
flo_mod(VALUE x, VALUE y) | |
{ | |
double fy; | |
if (FIXNUM_P(y)) { | |
fy = (double)FIX2LONG(y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
fy = rb_big2dbl(y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
fy = RFLOAT_VALUE(y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '%'); | |
} | |
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy)); | |
} | |
static VALUE | |
dbl2ival(double d) | |
{ | |
if (FIXABLE(d)) { | |
return LONG2FIX((long)d); | |
} | |
return rb_dbl2big(d); | |
} | |
/* | |
* call-seq: | |
* divmod(other) -> array | |
* | |
* Returns a 2-element array <tt>[q, r]</tt>, where | |
* | |
* q = (self/other).floor # Quotient | |
* r = self % other # Remainder | |
* | |
* Examples: | |
* | |
* 11.0.divmod(4) # => [2, 3.0] | |
* 11.0.divmod(-4) # => [-3, -1.0] | |
* -11.0.divmod(4) # => [-3, 1.0] | |
* -11.0.divmod(-4) # => [2, -3.0] | |
* | |
* 12.0.divmod(4) # => [3, 0.0] | |
* 12.0.divmod(-4) # => [-3, 0.0] | |
* -12.0.divmod(4) # => [-3, -0.0] | |
* -12.0.divmod(-4) # => [3, -0.0] | |
* | |
* 13.0.divmod(4.0) # => [3, 1.0] | |
* 13.0.divmod(Rational(4, 1)) # => [3, 1.0] | |
* | |
*/ | |
static VALUE | |
flo_divmod(VALUE x, VALUE y) | |
{ | |
double fy, div, mod; | |
volatile VALUE a, b; | |
if (FIXNUM_P(y)) { | |
fy = (double)FIX2LONG(y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
fy = rb_big2dbl(y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
fy = RFLOAT_VALUE(y); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, id_divmod); | |
} | |
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod); | |
a = dbl2ival(div); | |
b = DBL2NUM(mod); | |
return rb_assoc_new(a, b); | |
} | |
/* | |
* call-seq: | |
* float ** other -> float | |
* | |
* Raises +float+ to the power of +other+. | |
* | |
* 2.0**3 #=> 8.0 | |
*/ | |
VALUE | |
rb_float_pow(VALUE x, VALUE y) | |
{ | |
double dx, dy; | |
if (y == INT2FIX(2)) { | |
dx = RFLOAT_VALUE(x); | |
return DBL2NUM(dx * dx); | |
} | |
else if (FIXNUM_P(y)) { | |
dx = RFLOAT_VALUE(x); | |
dy = (double)FIX2LONG(y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
dx = RFLOAT_VALUE(x); | |
dy = rb_big2dbl(y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
dx = RFLOAT_VALUE(x); | |
dy = RFLOAT_VALUE(y); | |
if (dx < 0 && dy != round(dy)) | |
return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, idPow); | |
} | |
return DBL2NUM(pow(dx, dy)); | |
} | |
/* | |
* call-seq: | |
* num.eql?(numeric) -> true or false | |
* | |
* Returns +true+ if +num+ and +numeric+ are the same type and have equal | |
* values. Contrast this with Numeric#==, which performs type conversions. | |
* | |
* 1 == 1.0 #=> true | |
* 1.eql?(1.0) #=> false | |
* 1.0.eql?(1.0) #=> true | |
*/ | |
static VALUE | |
num_eql(VALUE x, VALUE y) | |
{ | |
if (TYPE(x) != TYPE(y)) return Qfalse; | |
if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_eql(x, y); | |
} | |
return rb_equal(x, y); | |
} | |
/* | |
* call-seq: | |
* number <=> other -> 0 or nil | |
* | |
* Returns zero if +number+ equals +other+, otherwise returns +nil+. | |
*/ | |
static VALUE | |
num_cmp(VALUE x, VALUE y) | |
{ | |
if (x == y) return INT2FIX(0); | |
return Qnil; | |
} | |
static VALUE | |
num_equal(VALUE x, VALUE y) | |
{ | |
VALUE result; | |
if (x == y) return Qtrue; | |
result = num_funcall1(y, id_eq, x); | |
return RBOOL(RTEST(result)); | |
} | |
/* | |
* call-seq: | |
* float == obj -> true or false | |
* | |
* Returns +true+ only if +obj+ has the same value as +float+. | |
* Contrast this with Float#eql?, which requires +obj+ to be a Float. | |
* | |
* 1.0 == 1 #=> true | |
* | |
* The result of <code>NaN == NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
MJIT_FUNC_EXPORTED VALUE | |
rb_float_equal(VALUE x, VALUE y) | |
{ | |
volatile double a, b; | |
if (RB_INTEGER_TYPE_P(y)) { | |
return rb_integer_float_eq(y, x); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return num_equal(x, y); | |
} | |
a = RFLOAT_VALUE(x); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a)) return Qfalse; | |
#endif | |
return RBOOL(a == b); | |
} | |
#define flo_eq rb_float_equal | |
static VALUE rb_dbl_hash(double d); | |
/* | |
* call-seq: | |
* float.hash -> integer | |
* | |
* Returns a hash code for this float. | |
* | |
* See also Object#hash. | |
*/ | |
static VALUE | |
flo_hash(VALUE num) | |
{ | |
return rb_dbl_hash(RFLOAT_VALUE(num)); | |
} | |
static VALUE | |
rb_dbl_hash(double d) | |
{ | |
return ST2FIX(rb_dbl_long_hash(d)); | |
} | |
VALUE | |
rb_dbl_cmp(double a, double b) | |
{ | |
if (isnan(a) || isnan(b)) return Qnil; | |
if (a == b) return INT2FIX(0); | |
if (a > b) return INT2FIX(1); | |
if (a < b) return INT2FIX(-1); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* float <=> real -> -1, 0, +1, or nil | |
* | |
* Returns -1, 0, or +1 depending on whether +float+ is | |
* less than, equal to, or greater than +real+. | |
* This is the basis for the tests in the Comparable module. | |
* | |
* The result of <code>NaN <=> NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
* | |
* +nil+ is returned if the two values are incomparable. | |
*/ | |
static VALUE | |
flo_cmp(VALUE x, VALUE y) | |
{ | |
double a, b; | |
VALUE i; | |
a = RFLOAT_VALUE(x); | |
if (isnan(a)) return Qnil; | |
if (RB_INTEGER_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return LONG2FIX(-FIX2LONG(rel)); | |
return rel; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
} | |
else { | |
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) { | |
if (RTEST(i)) { | |
int j = rb_cmpint(i, x, y); | |
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1); | |
return INT2FIX(j); | |
} | |
if (a > 0.0) return INT2FIX(1); | |
return INT2FIX(-1); | |
} | |
return rb_num_coerce_cmp(x, y, id_cmp); | |
} | |
return rb_dbl_cmp(a, b); | |
} | |
MJIT_FUNC_EXPORTED int | |
rb_float_cmp(VALUE x, VALUE y) | |
{ | |
return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y)); | |
} | |
/* | |
* call-seq: | |
* float > real -> true or false | |
* | |
* Returns +true+ if +float+ is greater than +real+. | |
* | |
* The result of <code>NaN > NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
VALUE | |
rb_float_gt(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_INTEGER_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return RBOOL(-FIX2LONG(rel) > 0); | |
return Qfalse; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '>'); | |
} | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a)) return Qfalse; | |
#endif | |
return RBOOL(a > b); | |
} | |
/* | |
* call-seq: | |
* float >= real -> true or false | |
* | |
* Returns +true+ if +float+ is greater than or equal to +real+. | |
* | |
* The result of <code>NaN >= NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_ge(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return RBOOL(-FIX2LONG(rel) >= 0); | |
return Qfalse; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idGE); | |
} | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a)) return Qfalse; | |
#endif | |
return RBOOL(a >= b); | |
} | |
/* | |
* call-seq: | |
* float < real -> true or false | |
* | |
* Returns +true+ if +float+ is less than +real+. | |
* | |
* The result of <code>NaN < NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_lt(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_INTEGER_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return RBOOL(-FIX2LONG(rel) < 0); | |
return Qfalse; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '<'); | |
} | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a)) return Qfalse; | |
#endif | |
return RBOOL(a < b); | |
} | |
/* | |
* call-seq: | |
* float <= real -> true or false | |
* | |
* Returns +true+ if +float+ is less than or equal to +real+. | |
* | |
* The result of <code>NaN <= NaN</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
static VALUE | |
flo_le(VALUE x, VALUE y) | |
{ | |
double a, b; | |
a = RFLOAT_VALUE(x); | |
if (RB_INTEGER_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(y, x); | |
if (FIXNUM_P(rel)) | |
return RBOOL(-FIX2LONG(rel) <= 0); | |
return Qfalse; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(b)) return Qfalse; | |
#endif | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idLE); | |
} | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a)) return Qfalse; | |
#endif | |
return RBOOL(a <= b); | |
} | |
/* | |
* call-seq: | |
* float.eql?(obj) -> true or false | |
* | |
* Returns +true+ only if +obj+ is a Float with the same value as +float+. | |
* Contrast this with Float#==, which performs type conversions. | |
* | |
* 1.0.eql?(1) #=> false | |
* | |
* The result of <code>NaN.eql?(NaN)</code> is undefined, | |
* so an implementation-dependent value is returned. | |
*/ | |
MJIT_FUNC_EXPORTED VALUE | |
rb_float_eql(VALUE x, VALUE y) | |
{ | |
if (RB_FLOAT_TYPE_P(y)) { | |
double a = RFLOAT_VALUE(x); | |
double b = RFLOAT_VALUE(y); | |
#if MSC_VERSION_BEFORE(1300) | |
if (isnan(a) || isnan(b)) return Qfalse; | |
#endif | |
return RBOOL(a == b); | |
} | |
return Qfalse; | |
} | |
#define flo_eql rb_float_eql | |
MJIT_FUNC_EXPORTED VALUE | |
rb_float_abs(VALUE flt) | |
{ | |
double val = fabs(RFLOAT_VALUE(flt)); | |
return DBL2NUM(val); | |
} | |
/* | |
* call-seq: | |
* float.nan? -> true or false | |
* | |
* Returns +true+ if +float+ is an invalid IEEE floating point number. | |
* | |
* a = -1.0 #=> -1.0 | |
* a.nan? #=> false | |
* a = 0.0/0.0 #=> NaN | |
* a.nan? #=> true | |
*/ | |
static VALUE | |
flo_is_nan_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
return RBOOL(isnan(value)); | |
} | |
/* | |
* call-seq: | |
* float.infinite? -> -1, 1, or nil | |
* | |
* Returns +nil+, -1, or 1 depending on whether the value is | |
* finite, <code>-Infinity</code>, or <code>+Infinity</code>. | |
* | |
* (0.0).infinite? #=> nil | |
* (-1.0/0.0).infinite? #=> -1 | |
* (+1.0/0.0).infinite? #=> 1 | |
*/ | |
VALUE | |
rb_flo_is_infinite_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
if (isinf(value)) { | |
return INT2FIX( value < 0 ? -1 : 1 ); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* float.finite? -> true or false | |
* | |
* Returns +true+ if +float+ is a valid IEEE floating point number, | |
* i.e. it is not infinite and Float#nan? is +false+. | |
*/ | |
VALUE | |
rb_flo_is_finite_p(VALUE num) | |
{ | |
double value = RFLOAT_VALUE(num); | |
return RBOOL(isfinite(value)); | |
} | |
static VALUE | |
flo_nextafter(VALUE flo, double value) | |
{ | |
double x, y; | |
x = NUM2DBL(flo); | |
y = nextafter(x, value); | |
return DBL2NUM(y); | |
} | |
/* | |
* call-seq: | |
* float.next_float -> float | |
* | |
* Returns the next representable floating point number. | |
* | |
* Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY. | |
* | |
* Float::NAN.next_float is Float::NAN. | |
* | |
* For example: | |
* | |
* 0.01.next_float #=> 0.010000000000000002 | |
* 1.0.next_float #=> 1.0000000000000002 | |
* 100.0.next_float #=> 100.00000000000001 | |
* | |
* 0.01.next_float - 0.01 #=> 1.734723475976807e-18 | |
* 1.0.next_float - 1.0 #=> 2.220446049250313e-16 | |
* 100.0.next_float - 100.0 #=> 1.4210854715202004e-14 | |
* | |
* f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float } | |
* #=> 0x1.47ae147ae147bp-7 0.01 | |
* # 0x1.47ae147ae147cp-7 0.010000000000000002 | |
* # 0x1.47ae147ae147dp-7 0.010000000000000004 | |
* # 0x1.47ae147ae147ep-7 0.010000000000000005 | |
* # 0x1.47ae147ae147fp-7 0.010000000000000007 | |
* # 0x1.47ae147ae148p-7 0.010000000000000009 | |
* # 0x1.47ae147ae1481p-7 0.01000000000000001 | |
* # 0x1.47ae147ae1482p-7 0.010000000000000012 | |
* # 0x1.47ae147ae1483p-7 0.010000000000000014 | |
* # 0x1.47ae147ae1484p-7 0.010000000000000016 | |
* # 0x1.47ae147ae1485p-7 0.010000000000000018 | |
* # 0x1.47ae147ae1486p-7 0.01000000000000002 | |
* # 0x1.47ae147ae1487p-7 0.010000000000000021 | |
* # 0x1.47ae147ae1488p-7 0.010000000000000023 | |
* # 0x1.47ae147ae1489p-7 0.010000000000000024 | |
* # 0x1.47ae147ae148ap-7 0.010000000000000026 | |
* # 0x1.47ae147ae148bp-7 0.010000000000000028 | |
* # 0x1.47ae147ae148cp-7 0.01000000000000003 | |
* # 0x1.47ae147ae148dp-7 0.010000000000000031 | |
* # 0x1.47ae147ae148ep-7 0.010000000000000033 | |
* | |
* f = 0.0 | |
* 100.times { f += 0.1 } | |
* f #=> 9.99999999999998 # should be 10.0 in the ideal world. | |
* 10-f #=> 1.9539925233402755e-14 # the floating point error. | |
* 10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place). | |
* (10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp. | |
* (10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above. | |
* "%a" % 10 #=> "0x1.4p+3" | |
* "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp. | |
*/ | |
static VALUE | |
flo_next_float(VALUE vx) | |
{ | |
return flo_nextafter(vx, HUGE_VAL); | |
} | |
/* | |
* call-seq: | |
* float.prev_float -> float | |
* | |
* Returns the previous representable floating point number. | |
* | |
* (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY. | |
* | |
* Float::NAN.prev_float is Float::NAN. | |
* | |
* For example: | |
* | |
* 0.01.prev_float #=> 0.009999999999999998 | |
* 1.0.prev_float #=> 0.9999999999999999 | |
* 100.0.prev_float #=> 99.99999999999999 | |
* | |
* 0.01 - 0.01.prev_float #=> 1.734723475976807e-18 | |
* 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16 | |
* 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14 | |
* | |
* f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float } | |
* #=> 0x1.47ae147ae147bp-7 0.01 | |
* # 0x1.47ae147ae147ap-7 0.009999999999999998 | |
* # 0x1.47ae147ae1479p-7 0.009999999999999997 | |
* # 0x1.47ae147ae1478p-7 0.009999999999999995 | |
* # 0x1.47ae147ae1477p-7 0.009999999999999993 | |
* # 0x1.47ae147ae1476p-7 0.009999999999999992 | |
* # 0x1.47ae147ae1475p-7 0.00999999999999999 | |
* # 0x1.47ae147ae1474p-7 0.009999999999999988 | |
* # 0x1.47ae147ae1473p-7 0.009999999999999986 | |
* # 0x1.47ae147ae1472p-7 0.009999999999999985 | |
* # 0x1.47ae147ae1471p-7 0.009999999999999983 | |
* # 0x1.47ae147ae147p-7 0.009999999999999981 | |
* # 0x1.47ae147ae146fp-7 0.00999999999999998 | |
* # 0x1.47ae147ae146ep-7 0.009999999999999978 | |
* # 0x1.47ae147ae146dp-7 0.009999999999999976 | |
* # 0x1.47ae147ae146cp-7 0.009999999999999974 | |
* # 0x1.47ae147ae146bp-7 0.009999999999999972 | |
* # 0x1.47ae147ae146ap-7 0.00999999999999997 | |
* # 0x1.47ae147ae1469p-7 0.009999999999999969 | |
* # 0x1.47ae147ae1468p-7 0.009999999999999967 | |
*/ | |
static VALUE | |
flo_prev_float(VALUE vx) | |
{ | |
return flo_nextafter(vx, -HUGE_VAL); | |
} | |
VALUE | |
rb_float_floor(VALUE num, int ndigits) | |
{ | |
double number; | |
number = RFLOAT_VALUE(num); | |
if (number == 0.0) { | |
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0); | |
} | |
if (ndigits > 0) { | |
int binexp; | |
double f, mul, res; | |
frexp(number, &binexp); | |
if (float_round_overflow(ndigits, binexp)) return num; | |
if (number > 0.0 && float_round_underflow(ndigits, binexp)) | |
return DBL2NUM(0.0); | |
f = pow(10, ndigits); | |
mul = floor(number * f); | |
res = (mul + 1) / f; | |
if (res > number) | |
res = mul / f; | |
return DBL2NUM(res); | |
} | |
else { | |
num = dbl2ival(floor(number)); | |
if (ndigits < 0) num = rb_int_floor(num, ndigits); | |
return num; | |
} | |
} | |
/* | |
* call-seq: | |
* float.floor([ndigits]) -> integer or float | |
* | |
* Returns the largest number less than or equal to +float+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a floating point number when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* 1.2.floor #=> 1 | |
* 2.0.floor #=> 2 | |
* (-1.2).floor #=> -2 | |
* (-2.0).floor #=> -2 | |
* | |
* 1.234567.floor(2) #=> 1.23 | |
* 1.234567.floor(3) #=> 1.234 | |
* 1.234567.floor(4) #=> 1.2345 | |
* 1.234567.floor(5) #=> 1.23456 | |
* | |
* 34567.89.floor(-5) #=> 0 | |
* 34567.89.floor(-4) #=> 30000 | |
* 34567.89.floor(-3) #=> 34000 | |
* 34567.89.floor(-2) #=> 34500 | |
* 34567.89.floor(-1) #=> 34560 | |
* 34567.89.floor(0) #=> 34567 | |
* 34567.89.floor(1) #=> 34567.8 | |
* 34567.89.floor(2) #=> 34567.89 | |
* 34567.89.floor(3) #=> 34567.89 | |
* | |
* Note that the limited precision of floating point arithmetic | |
* might lead to surprising results: | |
* | |
* (0.3 / 0.1).floor #=> 2 (!) | |
*/ | |
static int | |
flo_ndigits(int argc, VALUE *argv) | |
{ | |
if (rb_check_arity(argc, 0, 1)) { | |
return NUM2INT(argv[0]); | |
} | |
return 0; | |
} | |
static VALUE | |
flo_floor(int argc, VALUE *argv, VALUE num) | |
{ | |
int ndigits = flo_ndigits(argc, argv); | |
return rb_float_floor(num, ndigits); | |
} | |
/* | |
* call-seq: | |
* float.ceil([ndigits]) -> integer or float | |
* | |
* Returns the smallest number greater than or equal to +float+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a floating point number when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* 1.2.ceil #=> 2 | |
* 2.0.ceil #=> 2 | |
* (-1.2).ceil #=> -1 | |
* (-2.0).ceil #=> -2 | |
* | |
* 1.234567.ceil(2) #=> 1.24 | |
* 1.234567.ceil(3) #=> 1.235 | |
* 1.234567.ceil(4) #=> 1.2346 | |
* 1.234567.ceil(5) #=> 1.23457 | |
* | |
* 34567.89.ceil(-5) #=> 100000 | |
* 34567.89.ceil(-4) #=> 40000 | |
* 34567.89.ceil(-3) #=> 35000 | |
* 34567.89.ceil(-2) #=> 34600 | |
* 34567.89.ceil(-1) #=> 34570 | |
* 34567.89.ceil(0) #=> 34568 | |
* 34567.89.ceil(1) #=> 34567.9 | |
* 34567.89.ceil(2) #=> 34567.89 | |
* 34567.89.ceil(3) #=> 34567.89 | |
* | |
* Note that the limited precision of floating point arithmetic | |
* might lead to surprising results: | |
* | |
* (2.1 / 0.7).ceil #=> 4 (!) | |
*/ | |
static VALUE | |
flo_ceil(int argc, VALUE *argv, VALUE num) | |
{ | |
int ndigits = flo_ndigits(argc, argv); | |
return rb_float_ceil(num, ndigits); | |
} | |
VALUE | |
rb_float_ceil(VALUE num, int ndigits) | |
{ | |
double number, f; | |
number = RFLOAT_VALUE(num); | |
if (number == 0.0) { | |
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0); | |
} | |
if (ndigits > 0) { | |
int binexp; | |
frexp(number, &binexp); | |
if (float_round_overflow(ndigits, binexp)) return num; | |
if (number < 0.0 && float_round_underflow(ndigits, binexp)) | |
return DBL2NUM(0.0); | |
f = pow(10, ndigits); | |
f = ceil(number * f) / f; | |
return DBL2NUM(f); | |
} | |
else { | |
num = dbl2ival(ceil(number)); | |
if (ndigits < 0) num = rb_int_ceil(num, ndigits); | |
return num; | |
} | |
} | |
static int | |
int_round_zero_p(VALUE num, int ndigits) | |
{ | |
long bytes; | |
/* If 10**N / 2 > num, then return 0 */ | |
/* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */ | |
if (FIXNUM_P(num)) { | |
bytes = sizeof(long); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
bytes = rb_big_size(num); | |
} | |
else { | |
bytes = NUM2LONG(rb_funcall(num, idSize, 0)); | |
} | |
return (-0.415241 * ndigits - 0.125 > bytes); | |
} | |
static SIGNED_VALUE | |
int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y) | |
{ | |
SIGNED_VALUE z = +(x + y / 2) / y; | |
if ((z * y - x) * 2 == y) { | |
z &= ~1; | |
} | |
return z * y; | |
} | |
static SIGNED_VALUE | |
int_round_half_up(SIGNED_VALUE x, SIGNED_VALUE y) | |
{ | |
return (x + y / 2) / y * y; | |
} | |
static SIGNED_VALUE | |
int_round_half_down(SIGNED_VALUE x, SIGNED_VALUE y) | |
{ | |
return (x + y / 2 - 1) / y * y; | |
} | |
static int | |
int_half_p_half_even(VALUE num, VALUE n, VALUE f) | |
{ | |
return (int)rb_int_odd_p(rb_int_idiv(n, f)); | |
} | |
static int | |
int_half_p_half_up(VALUE num, VALUE n, VALUE f) | |
{ | |
return int_pos_p(num); | |
} | |
static int | |
int_half_p_half_down(VALUE num, VALUE n, VALUE f) | |
{ | |
return int_neg_p(num); | |
} | |
/* | |
* Assumes num is an Integer, ndigits <= 0 | |
*/ | |
static VALUE | |
rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode) | |
{ | |
VALUE n, f, h, r; | |
if (int_round_zero_p(num, ndigits)) { | |
return INT2FIX(0); | |
} | |
f = int_pow(10, -ndigits); | |
if (FIXNUM_P(num) && FIXNUM_P(f)) { | |
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); | |
int neg = x < 0; | |
if (neg) x = -x; | |
x = ROUND_CALL(mode, int_round, (x, y)); | |
if (neg) x = -x; | |
return LONG2NUM(x); | |
} | |
if (RB_FLOAT_TYPE_P(f)) { | |
/* then int_pow overflow */ | |
return INT2FIX(0); | |
} | |
h = rb_int_idiv(f, INT2FIX(2)); | |
r = rb_int_modulo(num, f); | |
n = rb_int_minus(num, r); | |
r = rb_int_cmp(r, h); | |
if (FIXNUM_POSITIVE_P(r) || | |
(FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) { | |
n = rb_int_plus(n, f); | |
} | |
return n; | |
} | |
static VALUE | |
rb_int_floor(VALUE num, int ndigits) | |
{ | |
VALUE f; | |
if (int_round_zero_p(num, ndigits)) | |
return INT2FIX(0); | |
f = int_pow(10, -ndigits); | |
if (FIXNUM_P(num) && FIXNUM_P(f)) { | |
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); | |
int neg = x < 0; | |
if (neg) x = -x + y - 1; | |
x = x / y * y; | |
if (neg) x = -x; | |
return LONG2NUM(x); | |
} | |
if (RB_FLOAT_TYPE_P(f)) { | |
/* then int_pow overflow */ | |
return INT2FIX(0); | |
} | |
return rb_int_minus(num, rb_int_modulo(num, f)); | |
} | |
static VALUE | |
rb_int_ceil(VALUE num, int ndigits) | |
{ | |
VALUE f; | |
if (int_round_zero_p(num, ndigits)) | |
return INT2FIX(0); | |
f = int_pow(10, -ndigits); | |
if (FIXNUM_P(num) && FIXNUM_P(f)) { | |
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); | |
int neg = x < 0; | |
if (neg) x = -x; | |
else x += y - 1; | |
x = (x / y) * y; | |
if (neg) x = -x; | |
return LONG2NUM(x); | |
} | |
if (RB_FLOAT_TYPE_P(f)) { | |
/* then int_pow overflow */ | |
return INT2FIX(0); | |
} | |
return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f))); | |
} | |
VALUE | |
rb_int_truncate(VALUE num, int ndigits) | |
{ | |
VALUE f; | |
VALUE m; | |
if (int_round_zero_p(num, ndigits)) | |
return INT2FIX(0); | |
f = int_pow(10, -ndigits); | |
if (FIXNUM_P(num) && FIXNUM_P(f)) { | |
SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f); | |
int neg = x < 0; | |
if (neg) x = -x; | |
x = x / y * y; | |
if (neg) x = -x; | |
return LONG2NUM(x); | |
} | |
if (RB_FLOAT_TYPE_P(f)) { | |
/* then int_pow overflow */ | |
return INT2FIX(0); | |
} | |
m = rb_int_modulo(num, f); | |
if (int_neg_p(num)) { | |
return rb_int_plus(num, rb_int_minus(f, m)); | |
} | |
else { | |
return rb_int_minus(num, m); | |
} | |
} | |
/* | |
* call-seq: | |
* float.round([ndigits] [, half: mode]) -> integer or float | |
* | |
* Returns +float+ rounded to the nearest value with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a floating point number when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* 1.4.round #=> 1 | |
* 1.5.round #=> 2 | |
* 1.6.round #=> 2 | |
* (-1.5).round #=> -2 | |
* | |
* 1.234567.round(2) #=> 1.23 | |
* 1.234567.round(3) #=> 1.235 | |
* 1.234567.round(4) #=> 1.2346 | |
* 1.234567.round(5) #=> 1.23457 | |
* | |
* 34567.89.round(-5) #=> 0 | |
* 34567.89.round(-4) #=> 30000 | |
* 34567.89.round(-3) #=> 35000 | |
* 34567.89.round(-2) #=> 34600 | |
* 34567.89.round(-1) #=> 34570 | |
* 34567.89.round(0) #=> 34568 | |
* 34567.89.round(1) #=> 34567.9 | |
* 34567.89.round(2) #=> 34567.89 | |
* 34567.89.round(3) #=> 34567.89 | |
* | |
* If the optional +half+ keyword argument is given, | |
* numbers that are half-way between two possible rounded values | |
* will be rounded according to the specified tie-breaking +mode+: | |
* | |
* * <code>:up</code> or +nil+: round half away from zero (default) | |
* * <code>:down</code>: round half toward zero | |
* * <code>:even</code>: round half toward the nearest even number | |
* | |
* 2.5.round(half: :up) #=> 3 | |
* 2.5.round(half: :down) #=> 2 | |
* 2.5.round(half: :even) #=> 2 | |
* 3.5.round(half: :up) #=> 4 | |
* 3.5.round(half: :down) #=> 3 | |
* 3.5.round(half: :even) #=> 4 | |
* (-2.5).round(half: :up) #=> -3 | |
* (-2.5).round(half: :down) #=> -2 | |
* (-2.5).round(half: :even) #=> -2 | |
*/ | |
static VALUE | |
flo_round(int argc, VALUE *argv, VALUE num) | |
{ | |
double number, f, x; | |
VALUE nd, opt; | |
int ndigits = 0; | |
enum ruby_num_rounding_mode mode; | |
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) { | |
ndigits = NUM2INT(nd); | |
} | |
mode = rb_num_get_rounding_option(opt); | |
number = RFLOAT_VALUE(num); | |
if (number == 0.0) { | |
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0); | |
} | |
if (ndigits < 0) { | |
return rb_int_round(flo_to_i(num), ndigits, mode); | |
} | |
if (ndigits == 0) { | |
x = ROUND_CALL(mode, round, (number, 1.0)); | |
return dbl2ival(x); | |
} | |
if (isfinite(number)) { | |
int binexp; | |
frexp(number, &binexp); | |
if (float_round_overflow(ndigits, binexp)) return num; | |
if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0); | |
if (ndigits > 14) { | |
/* In this case, pow(10, ndigits) may not be accurate. */ | |
return rb_flo_round_by_rational(argc, argv, num); | |
} | |
f = pow(10, ndigits); | |
x = ROUND_CALL(mode, round, (number, f)); | |
return DBL2NUM(x / f); | |
} | |
return num; | |
} | |
static int | |
float_round_overflow(int ndigits, int binexp) | |
{ | |
enum {float_dig = DBL_DIG+2}; | |
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}", | |
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp | |
Recall that up to float_dig digits can be needed to represent a double, | |
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits) | |
will be an integer and thus the result is the original number. | |
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so | |
if ndigits + exp < 0, the result is 0. | |
We have: | |
2 ** (binexp-1) <= |number| < 2 ** binexp | |
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10)) | |
If binexp >= 0, and since log_2(10) = 3.322259: | |
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3) | |
floor(binexp/4) <= exp <= ceil(binexp/3) | |
If binexp <= 0, swap the /4 and the /3 | |
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number | |
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0 | |
*/ | |
if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) { | |
return TRUE; | |
} | |
return FALSE; | |
} | |
static int | |
float_round_underflow(int ndigits, int binexp) | |
{ | |
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) { | |
return TRUE; | |
} | |
return FALSE; | |
} | |
/* | |
* call-seq: | |
* float.to_i -> integer | |
* float.to_int -> integer | |
* | |
* Returns the +float+ truncated to an Integer. | |
* | |
* 1.2.to_i #=> 1 | |
* (-1.2).to_i #=> -1 | |
* | |
* Note that the limited precision of floating point arithmetic | |
* might lead to surprising results: | |
* | |
* (0.3 / 0.1).to_i #=> 2 (!) | |
* | |
* #to_int is an alias for #to_i. | |
*/ | |
static VALUE | |
flo_to_i(VALUE num) | |
{ | |
double f = RFLOAT_VALUE(num); | |
if (f > 0.0) f = floor(f); | |
if (f < 0.0) f = ceil(f); | |
return dbl2ival(f); | |
} | |
/* | |
* call-seq: | |
* float.truncate([ndigits]) -> integer or float | |
* | |
* Returns +float+ truncated (toward zero) to | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a floating point number when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* 2.8.truncate #=> 2 | |
* (-2.8).truncate #=> -2 | |
* 1.234567.truncate(2) #=> 1.23 | |
* 34567.89.truncate(-2) #=> 34500 | |
* | |
* Note that the limited precision of floating point arithmetic | |
* might lead to surprising results: | |
* | |
* (0.3 / 0.1).truncate #=> 2 (!) | |
*/ | |
static VALUE | |
flo_truncate(int argc, VALUE *argv, VALUE num) | |
{ | |
if (signbit(RFLOAT_VALUE(num))) | |
return flo_ceil(argc, argv, num); | |
else | |
return flo_floor(argc, argv, num); | |
} | |
/* | |
* call-seq: | |
* num.floor([ndigits]) -> integer or float | |
* | |
* Returns the largest number less than or equal to +num+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* Numeric implements this by converting its value to a Float and | |
* invoking Float#floor. | |
*/ | |
static VALUE | |
num_floor(int argc, VALUE *argv, VALUE num) | |
{ | |
return flo_floor(argc, argv, rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.ceil([ndigits]) -> integer or float | |
* | |
* Returns the smallest number greater than or equal to +num+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* Numeric implements this by converting its value to a Float and | |
* invoking Float#ceil. | |
*/ | |
static VALUE | |
num_ceil(int argc, VALUE *argv, VALUE num) | |
{ | |
return flo_ceil(argc, argv, rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.round([ndigits]) -> integer or float | |
* | |
* Returns +num+ rounded to the nearest value with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* Numeric implements this by converting its value to a Float and | |
* invoking Float#round. | |
*/ | |
static VALUE | |
num_round(int argc, VALUE* argv, VALUE num) | |
{ | |
return flo_round(argc, argv, rb_Float(num)); | |
} | |
/* | |
* call-seq: | |
* num.truncate([ndigits]) -> integer or float | |
* | |
* Returns +num+ truncated (toward zero) to | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* Numeric implements this by converting its value to a Float and | |
* invoking Float#truncate. | |
*/ | |
static VALUE | |
num_truncate(int argc, VALUE *argv, VALUE num) | |
{ | |
return flo_truncate(argc, argv, rb_Float(num)); | |
} | |
double | |
ruby_float_step_size(double beg, double end, double unit, int excl) | |
{ | |
const double epsilon = DBL_EPSILON; | |
double n, err; | |
if (unit == 0) { | |
return HUGE_VAL; | |
} | |
if (isinf(unit)) { | |
return unit > 0 ? beg <= end : beg >= end; | |
} | |
n= (end - beg)/unit; | |
err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon; | |
if (err>0.5) err=0.5; | |
if (excl) { | |
if (n<=0) return 0; | |
if (n<1) | |
n = 0; | |
else | |
n = floor(n - err); | |
if (beg < end) { | |
if ((n+1)*unit+beg < end) | |
n++; | |
} | |
else if (beg > end) { | |
if ((n+1)*unit+beg > end) | |
n++; | |
} | |
} | |
else { | |
if (n<0) return 0; | |
n = floor(n + err); | |
if (beg < end) { | |
if ((n+1)*unit+beg <= end) | |
n++; | |
} | |
else if (beg > end) { | |
if ((n+1)*unit+beg >= end) | |
n++; | |
} | |
} | |
return n+1; | |
} | |
int | |
ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless) | |
{ | |
if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) { | |
double unit = NUM2DBL(step); | |
double beg = NUM2DBL(from); | |
double end = (allow_endless && NIL_P(to)) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(to); | |
double n = ruby_float_step_size(beg, end, unit, excl); | |
long i; | |
if (isinf(unit)) { | |
/* if unit is infinity, i*unit+beg is NaN */ | |
if (n) rb_yield(DBL2NUM(beg)); | |
} | |
else if (unit == 0) { | |
VALUE val = DBL2NUM(beg); | |
for (;;) | |
rb_yield(val); | |
} | |
else { | |
for (i=0; i<n; i++) { | |
double d = i*unit+beg; | |
if (unit >= 0 ? end < d : d < end) d = end; | |
rb_yield(DBL2NUM(d)); | |
} | |
} | |
return TRUE; | |
} | |
return FALSE; | |
} | |
VALUE | |
ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl) | |
{ | |
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) { | |
long delta, diff; | |
diff = FIX2LONG(step); | |
if (diff == 0) { | |
return DBL2NUM(HUGE_VAL); | |
} | |
delta = FIX2LONG(to) - FIX2LONG(from); | |
if (diff < 0) { | |
diff = -diff; | |
delta = -delta; | |
} | |
if (excl) { | |
delta--; | |
} | |
if (delta < 0) { | |
return INT2FIX(0); | |
} | |
return ULONG2NUM(delta / diff + 1UL); | |
} | |
else if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) { | |
double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl); | |
if (isinf(n)) return DBL2NUM(n); | |
if (POSFIXABLE(n)) return LONG2FIX((long)n); | |
return rb_dbl2big(n); | |
} | |
else { | |
VALUE result; | |
ID cmp = '>'; | |
switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) { | |
case 0: return DBL2NUM(HUGE_VAL); | |
case -1: cmp = '<'; break; | |
} | |
if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0); | |
result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step); | |
if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) { | |
result = rb_funcall(result, '+', 1, INT2FIX(1)); | |
} | |
return result; | |
} | |
} | |
static int | |
num_step_negative_p(VALUE num) | |
{ | |
const ID mid = '<'; | |
VALUE zero = INT2FIX(0); | |
VALUE r; | |
if (FIXNUM_P(num)) { | |
if (method_basic_p(rb_cInteger)) | |
return (SIGNED_VALUE)num < 0; | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
if (method_basic_p(rb_cInteger)) | |
return BIGNUM_NEGATIVE_P(num); | |
} | |
r = rb_check_funcall(num, '>', 1, &zero); | |
if (r == Qundef) { | |
coerce_failed(num, INT2FIX(0)); | |
} | |
return !RTEST(r); | |
} | |
static int | |
num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE *by) | |
{ | |
VALUE hash; | |
argc = rb_scan_args(argc, argv, "02:", to, step, &hash); | |
if (!NIL_P(hash)) { | |
ID keys[2]; | |
VALUE values[2]; | |
keys[0] = id_to; | |
keys[1] = id_by; | |
rb_get_kwargs(hash, keys, 0, 2, values); | |
if (values[0] != Qundef) { | |
if (argc > 0) rb_raise(rb_eArgError, "to is given twice"); | |
*to = values[0]; | |
} | |
if (values[1] != Qundef) { | |
if (argc > 1) rb_raise(rb_eArgError, "step is given twice"); | |
*by = values[1]; | |
} | |
} | |
return argc; | |
} | |
static int | |
num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step) | |
{ | |
int desc; | |
if (by != Qundef) { | |
*step = by; | |
} | |
else { | |
/* compatibility */ | |
if (argc > 1 && NIL_P(*step)) { | |
rb_raise(rb_eTypeError, "step must be numeric"); | |
} | |
} | |
if (!allow_zero_step && rb_equal(*step, INT2FIX(0))) { | |
rb_raise(rb_eArgError, "step can't be 0"); | |
} | |
if (NIL_P(*step)) { | |
*step = INT2FIX(1); | |
} | |
desc = num_step_negative_p(*step); | |
if (fix_nil && NIL_P(*to)) { | |
*to = desc ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL); | |
} | |
return desc; | |
} | |
static int | |
num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, int fix_nil, int allow_zero_step) | |
{ | |
VALUE by = Qundef; | |
argc = num_step_extract_args(argc, argv, to, step, &by); | |
return num_step_check_fix_args(argc, to, step, by, fix_nil, allow_zero_step); | |
} | |
static VALUE | |
num_step_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
VALUE to, step; | |
int argc = args ? RARRAY_LENINT(args) : 0; | |
const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0; | |
num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE); | |
return ruby_num_interval_step_size(from, to, step, FALSE); | |
} | |
/* | |
* call-seq: | |
* num.step(by: step, to: limit) {|i| block } -> self | |
* num.step(by: step, to: limit) -> an_enumerator | |
* num.step(by: step, to: limit) -> an_arithmetic_sequence | |
* num.step(limit=nil, step=1) {|i| block } -> self | |
* num.step(limit=nil, step=1) -> an_enumerator | |
* num.step(limit=nil, step=1) -> an_arithmetic_sequence | |
* | |
* Invokes the given block with the sequence of numbers starting at +num+, | |
* incremented by +step+ (defaulted to +1+) on each call. | |
* | |
* The loop finishes when the value to be passed to the block is greater than | |
* +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is | |
* negative), where +limit+ is defaulted to infinity. | |
* | |
* In the recommended keyword argument style, either or both of | |
* +step+ and +limit+ (default infinity) can be omitted. In the | |
* fixed position argument style, zero as a step | |
* (i.e. <code>num.step(limit, 0)</code>) is not allowed for historical | |
* compatibility reasons. | |
* | |
* If all the arguments are integers, the loop operates using an integer | |
* counter. | |
* | |
* If any of the arguments are floating point numbers, all are converted | |
* to floats, and the loop is executed | |
* <i>floor(n + n*Float::EPSILON) + 1</i> times, | |
* where <i>n = (limit - num)/step</i>. | |
* | |
* Otherwise, the loop starts at +num+, uses either the | |
* less-than (<code><</code>) or greater-than (<code>></code>) operator | |
* to compare the counter against +limit+, | |
* and increments itself using the <code>+</code> operator. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* Especially, the enumerator is an Enumerator::ArithmeticSequence | |
* if both +limit+ and +step+ are kind of Numeric or <code>nil</code>. | |
* | |
* For example: | |
* | |
* p 1.step.take(4) | |
* p 10.step(by: -1).take(4) | |
* 3.step(to: 5) {|i| print i, " " } | |
* 1.step(10, 2) {|i| print i, " " } | |
* Math::E.step(to: Math::PI, by: 0.2) {|f| print f, " " } | |
* | |
* Will produce: | |
* | |
* [1, 2, 3, 4] | |
* [10, 9, 8, 7] | |
* 3 4 5 | |
* 1 3 5 7 9 | |
* 2.718281828459045 2.9182818284590453 3.118281828459045 | |
*/ | |
static VALUE | |
num_step(int argc, VALUE *argv, VALUE from) | |
{ | |
VALUE to, step; | |
int desc, inf; | |
if (!rb_block_given_p()) { | |
VALUE by = Qundef; | |
num_step_extract_args(argc, argv, &to, &step, &by); | |
if (by != Qundef) { | |
step = by; | |
} | |
if (NIL_P(step)) { | |
step = INT2FIX(1); | |
} | |
else if (rb_equal(step, INT2FIX(0))) { | |
rb_raise(rb_eArgError, "step can't be 0"); | |
} | |
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) && | |
rb_obj_is_kind_of(step, rb_cNumeric)) { | |
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv, | |
num_step_size, from, to, step, FALSE); | |
} | |
return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size); | |
} | |
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE); | |
if (rb_equal(step, INT2FIX(0))) { | |
inf = 1; | |
} | |
else if (RB_FLOAT_TYPE_P(to)) { | |
double f = RFLOAT_VALUE(to); | |
inf = isinf(f) && (signbit(f) ? desc : !desc); | |
} | |
else inf = 0; | |
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) { | |
long i = FIX2LONG(from); | |
long diff = FIX2LONG(step); | |
if (inf) { | |
for (;; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
else { | |
long end = FIX2LONG(to); | |
if (desc) { | |
for (; i >= end; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
else { | |
for (; i <= end; i += diff) | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
} | |
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) { | |
VALUE i = from; | |
if (inf) { | |
for (;; i = rb_funcall(i, '+', 1, step)) | |
rb_yield(i); | |
} | |
else { | |
ID cmp = desc ? '<' : '>'; | |
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step)) | |
rb_yield(i); | |
} | |
} | |
return from; | |
} | |
static char * | |
out_of_range_float(char (*pbuf)[24], VALUE val) | |
{ | |
char *const buf = *pbuf; | |
char *s; | |
snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val)); | |
if ((s = strchr(buf, ' ')) != 0) *s = '\0'; | |
return buf; | |
} | |
#define FLOAT_OUT_OF_RANGE(val, type) do { \ | |
char buf[24]; \ | |
rb_raise(rb_eRangeError, "float %s out of range of "type, \ | |
out_of_range_float(&buf, (val))); \ | |
} while (0) | |
#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1) | |
#define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1)) | |
#define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1)) | |
#define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \ | |
(LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \ | |
LONG_MIN <= (n): \ | |
LONG_MIN_MINUS_ONE < (n)) | |
long | |
rb_num2long(VALUE val) | |
{ | |
again: | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); | |
} | |
if (FIXNUM_P(val)) return FIX2LONG(val); | |
else if (RB_FLOAT_TYPE_P(val)) { | |
if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE | |
&& LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) { | |
return (long)RFLOAT_VALUE(val); | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "integer"); | |
} | |
} | |
else if (RB_BIGNUM_TYPE_P(val)) { | |
return rb_big2long(val); | |
} | |
else { | |
val = rb_to_int(val); | |
goto again; | |
} | |
} | |
static unsigned long | |
rb_num2ulong_internal(VALUE val, int *wrap_p) | |
{ | |
again: | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); | |
} | |
if (FIXNUM_P(val)) { | |
long l = FIX2LONG(val); /* this is FIX2LONG, intended */ | |
if (wrap_p) | |
*wrap_p = l < 0; | |
return (unsigned long)l; | |
} | |
else if (RB_FLOAT_TYPE_P(val)) { | |
double d = RFLOAT_VALUE(val); | |
if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) { | |
if (wrap_p) | |
*wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */ | |
if (0 <= d) | |
return (unsigned long)d; | |
return (unsigned long)(long)d; | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "integer"); | |
} | |
} | |
else if (RB_BIGNUM_TYPE_P(val)) { | |
{ | |
unsigned long ul = rb_big2ulong(val); | |
if (wrap_p) | |
*wrap_p = BIGNUM_NEGATIVE_P(val); | |
return ul; | |
} | |
} | |
else { | |
val = rb_to_int(val); | |
goto again; | |
} | |
} | |
unsigned long | |
rb_num2ulong(VALUE val) | |
{ | |
return rb_num2ulong_internal(val, NULL); | |
} | |
void | |
rb_out_of_int(SIGNED_VALUE num) | |
{ | |
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'", | |
num, num < 0 ? "small" : "big"); | |
} | |
#if SIZEOF_INT < SIZEOF_LONG | |
static void | |
check_int(long num) | |
{ | |
if ((long)(int)num != num) { | |
rb_out_of_int(num); | |
} | |
} | |
static void | |
check_uint(unsigned long num, int sign) | |
{ | |
if (sign) { | |
/* minus */ | |
if (num < (unsigned long)INT_MIN) | |
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num); | |
} | |
else { | |
/* plus */ | |
if (UINT_MAX < num) | |
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num); | |
} | |
} | |
long | |
rb_num2int(VALUE val) | |
{ | |
long num = rb_num2long(val); | |
check_int(num); | |
return num; | |
} | |
long | |
rb_fix2int(VALUE val) | |
{ | |
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); | |
check_int(num); | |
return num; | |
} | |
unsigned long | |
rb_num2uint(VALUE val) | |
{ | |
int wrap; | |
unsigned long num = rb_num2ulong_internal(val, &wrap); | |
check_uint(num, wrap); | |
return num; | |
} | |
unsigned long | |
rb_fix2uint(VALUE val) | |
{ | |
unsigned long num; | |
if (!FIXNUM_P(val)) { | |
return rb_num2uint(val); | |
} | |
num = FIX2ULONG(val); | |
check_uint(num, FIXNUM_NEGATIVE_P(val)); | |
return num; | |
} | |
#else | |
long | |
rb_num2int(VALUE val) | |
{ | |
return rb_num2long(val); | |
} | |
long | |
rb_fix2int(VALUE val) | |
{ | |
return FIX2INT(val); | |
} | |
unsigned long | |
rb_num2uint(VALUE val) | |
{ | |
return rb_num2ulong(val); | |
} | |
unsigned long | |
rb_fix2uint(VALUE val) | |
{ | |
return RB_FIX2ULONG(val); | |
} | |
#endif | |
NORETURN(static void rb_out_of_short(SIGNED_VALUE num)); | |
static void | |
rb_out_of_short(SIGNED_VALUE num) | |
{ | |
rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'", | |
num, num < 0 ? "small" : "big"); | |
} | |
static void | |
check_short(long num) | |
{ | |
if ((long)(short)num != num) { | |
rb_out_of_short(num); | |
} | |
} | |
static void | |
check_ushort(unsigned long num, int sign) | |
{ | |
if (sign) { | |
/* minus */ | |
if (num < (unsigned long)SHRT_MIN) | |
rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num); | |
} | |
else { | |
/* plus */ | |
if (USHRT_MAX < num) | |
rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num); | |
} | |
} | |
short | |
rb_num2short(VALUE val) | |
{ | |
long num = rb_num2long(val); | |
check_short(num); | |
return num; | |
} | |
short | |
rb_fix2short(VALUE val) | |
{ | |
long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); | |
check_short(num); | |
return num; | |
} | |
unsigned short | |
rb_num2ushort(VALUE val) | |
{ | |
int wrap; | |
unsigned long num = rb_num2ulong_internal(val, &wrap); | |
check_ushort(num, wrap); | |
return num; | |
} | |
unsigned short | |
rb_fix2ushort(VALUE val) | |
{ | |
unsigned long num; | |
if (!FIXNUM_P(val)) { | |
return rb_num2ushort(val); | |
} | |
num = FIX2ULONG(val); | |
check_ushort(num, FIXNUM_NEGATIVE_P(val)); | |
return num; | |
} | |
VALUE | |
rb_num2fix(VALUE val) | |
{ | |
long v; | |
if (FIXNUM_P(val)) return val; | |
v = rb_num2long(val); | |
if (!FIXABLE(v)) | |
rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v); | |
return LONG2FIX(v); | |
} | |
#if HAVE_LONG_LONG | |
#define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1) | |
#define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1)) | |
#define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1)) | |
#ifndef ULLONG_MAX | |
#define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1) | |
#endif | |
#define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \ | |
(LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \ | |
LLONG_MIN <= (n): \ | |
LLONG_MIN_MINUS_ONE < (n)) | |
LONG_LONG | |
rb_num2ll(VALUE val) | |
{ | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil"); | |
} | |
if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val); | |
else if (RB_FLOAT_TYPE_P(val)) { | |
double d = RFLOAT_VALUE(val); | |
if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) { | |
return (LONG_LONG)d; | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "long long"); | |
} | |
} | |
else if (RB_BIGNUM_TYPE_P(val)) { | |
return rb_big2ll(val); | |
} | |
else if (RB_TYPE_P(val, T_STRING)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from string"); | |
} | |
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from boolean"); | |
} | |
val = rb_to_int(val); | |
return NUM2LL(val); | |
} | |
unsigned LONG_LONG | |
rb_num2ull(VALUE val) | |
{ | |
if (NIL_P(val)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from nil"); | |
} | |
else if (FIXNUM_P(val)) { | |
return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */ | |
} | |
else if (RB_FLOAT_TYPE_P(val)) { | |
double d = RFLOAT_VALUE(val); | |
if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) { | |
if (0 <= d) | |
return (unsigned LONG_LONG)d; | |
return (unsigned LONG_LONG)(LONG_LONG)d; | |
} | |
else { | |
FLOAT_OUT_OF_RANGE(val, "unsigned long long"); | |
} | |
} | |
else if (RB_BIGNUM_TYPE_P(val)) { | |
return rb_big2ull(val); | |
} | |
else if (RB_TYPE_P(val, T_STRING)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from string"); | |
} | |
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) { | |
rb_raise(rb_eTypeError, "no implicit conversion from boolean"); | |
} | |
val = rb_to_int(val); | |
return NUM2ULL(val); | |
} | |
#endif /* HAVE_LONG_LONG */ | |
/******************************************************************** | |
* | |
* Document-class: Integer | |
* | |
* Holds Integer values. You cannot add a singleton method to an | |
* Integer object, any attempt to do so will raise a TypeError. | |
* | |
*/ | |
VALUE | |
rb_int_odd_p(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return RBOOL(num & 2); | |
} | |
else { | |
assert(RB_BIGNUM_TYPE_P(num)); | |
return rb_big_odd_p(num); | |
} | |
} | |
static VALUE | |
int_even_p(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return RBOOL((num & 2) == 0); | |
} | |
else { | |
assert(RB_BIGNUM_TYPE_P(num)); | |
return rb_big_even_p(num); | |
} | |
} | |
VALUE | |
rb_int_even_p(VALUE num) | |
{ | |
return int_even_p(num); | |
} | |
/* | |
* call-seq: | |
* int.allbits?(mask) -> true or false | |
* | |
* Returns +true+ if all bits of <code>+int+ & +mask+</code> are 1. | |
*/ | |
static VALUE | |
int_allbits_p(VALUE num, VALUE mask) | |
{ | |
mask = rb_to_int(mask); | |
return rb_int_equal(rb_int_and(num, mask), mask); | |
} | |
/* | |
* call-seq: | |
* int.anybits?(mask) -> true or false | |
* | |
* Returns +true+ if any bits of <code>+int+ & +mask+</code> are 1. | |
*/ | |
static VALUE | |
int_anybits_p(VALUE num, VALUE mask) | |
{ | |
mask = rb_to_int(mask); | |
return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue; | |
} | |
/* | |
* call-seq: | |
* int.nobits?(mask) -> true or false | |
* | |
* Returns +true+ if no bits of <code>+int+ & +mask+</code> are 1. | |
*/ | |
static VALUE | |
int_nobits_p(VALUE num, VALUE mask) | |
{ | |
mask = rb_to_int(mask); | |
return int_zero_p(rb_int_and(num, mask)); | |
} | |
/* | |
* Document-method: Integer#succ | |
* Document-method: Integer#next | |
* call-seq: | |
* int.next -> integer | |
* int.succ -> integer | |
* | |
* Returns the successor of +int+, | |
* i.e. the Integer equal to <code>int+1</code>. | |
* | |
* 1.next #=> 2 | |
* (-1).next #=> 0 | |
* 1.succ #=> 2 | |
* (-1).succ #=> 0 | |
*/ | |
VALUE | |
rb_int_succ(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
long i = FIX2LONG(num) + 1; | |
return LONG2NUM(i); | |
} | |
if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_plus(num, INT2FIX(1)); | |
} | |
return num_funcall1(num, '+', INT2FIX(1)); | |
} | |
#define int_succ rb_int_succ | |
/* | |
* call-seq: | |
* int.pred -> integer | |
* | |
* Returns the predecessor of +int+, | |
* i.e. the Integer equal to <code>int-1</code>. | |
* | |
* 1.pred #=> 0 | |
* (-1).pred #=> -2 | |
*/ | |
static VALUE | |
rb_int_pred(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
long i = FIX2LONG(num) - 1; | |
return LONG2NUM(i); | |
} | |
if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_minus(num, INT2FIX(1)); | |
} | |
return num_funcall1(num, '-', INT2FIX(1)); | |
} | |
#define int_pred rb_int_pred | |
/* | |
* Document-method: Integer#chr | |
* call-seq: | |
* int.chr([encoding]) -> string | |
* | |
* Returns a string containing the character represented by the +int+'s value | |
* according to +encoding+. | |
* | |
* 65.chr #=> "A" | |
* 230.chr #=> "\xE6" | |
* 255.chr(Encoding::UTF_8) #=> "\u00FF" | |
*/ | |
VALUE | |
rb_enc_uint_chr(unsigned int code, rb_encoding *enc) | |
{ | |
int n; | |
VALUE str; | |
switch (n = rb_enc_codelen(code, enc)) { | |
case ONIGERR_INVALID_CODE_POINT_VALUE: | |
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); | |
break; | |
case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE: | |
case 0: | |
rb_raise(rb_eRangeError, "%u out of char range", code); | |
break; | |
} | |
str = rb_enc_str_new(0, n, enc); | |
rb_enc_mbcput(code, RSTRING_PTR(str), enc); | |
if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) { | |
rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); | |
} | |
return str; | |
} | |
static VALUE | |
int_chr(int argc, VALUE *argv, VALUE num) | |
{ | |
char c; | |
unsigned int i; | |
rb_encoding *enc; | |
if (rb_num_to_uint(num, &i) == 0) { | |
} | |
else if (FIXNUM_P(num)) { | |
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); | |
} | |
else { | |
rb_raise(rb_eRangeError, "bignum out of char range"); | |
} | |
switch (argc) { | |
case 0: | |
if (0xff < i) { | |
enc = rb_default_internal_encoding(); | |
if (!enc) { | |
rb_raise(rb_eRangeError, "%u out of char range", i); | |
} | |
goto decode; | |
} | |
c = (char)i; | |
if (i < 0x80) { | |
return rb_usascii_str_new(&c, 1); | |
} | |
else { | |
return rb_str_new(&c, 1); | |
} | |
case 1: | |
break; | |
default: | |
rb_error_arity(argc, 0, 1); | |
} | |
enc = rb_to_encoding(argv[0]); | |
if (!enc) enc = rb_ascii8bit_encoding(); | |
decode: | |
return rb_enc_uint_chr(i, enc); | |
} | |
/* | |
* Fixnum | |
*/ | |
static VALUE | |
fix_uminus(VALUE num) | |
{ | |
return LONG2NUM(-FIX2LONG(num)); | |
} | |
VALUE | |
rb_int_uminus(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return fix_uminus(num); | |
} | |
else { | |
assert(RB_BIGNUM_TYPE_P(num)); | |
return rb_big_uminus(num); | |
} | |
} | |
/* | |
* Document-method: Integer#to_s | |
* call-seq: | |
* int.to_s(base=10) -> string | |
* | |
* Returns a string containing the place-value representation of +int+ | |
* with radix +base+ (between 2 and 36). | |
* | |
* 12345.to_s #=> "12345" | |
* 12345.to_s(2) #=> "11000000111001" | |
* 12345.to_s(8) #=> "30071" | |
* 12345.to_s(10) #=> "12345" | |
* 12345.to_s(16) #=> "3039" | |
* 12345.to_s(36) #=> "9ix" | |
* 78546939656932.to_s(36) #=> "rubyrules" | |
*/ | |
VALUE | |
rb_fix2str(VALUE x, int base) | |
{ | |
char buf[SIZEOF_VALUE*CHAR_BIT + 1], *const e = buf + sizeof buf, *b = e; | |
long val = FIX2LONG(x); | |
unsigned long u; | |
int neg = 0; | |
if (base < 2 || 36 < base) { | |
rb_raise(rb_eArgError, "invalid radix %d", base); | |
} | |
#if SIZEOF_LONG < SIZEOF_VOIDP | |
# if SIZEOF_VOIDP == SIZEOF_LONG_LONG | |
if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) || | |
(val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) { | |
rb_bug("Unnormalized Fixnum value %p", (void *)x); | |
} | |
# else | |
/* should do something like above code, but currently ruby does not know */ | |
/* such platforms */ | |
# endif | |
#endif | |
if (val == 0) { | |
return rb_usascii_str_new2("0"); | |
} | |
if (val < 0) { | |
u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */ | |
neg = 1; | |
} | |
else { | |
u = val; | |
} | |
do { | |
*--b = ruby_digitmap[(int)(u % base)]; | |
} while (u /= base); | |
if (neg) { | |
*--b = '-'; | |
} | |
return rb_usascii_str_new(b, e - b); | |
} | |
static VALUE | |
int_to_s(int argc, VALUE *argv, VALUE x) | |
{ | |
int base; | |
if (rb_check_arity(argc, 0, 1)) | |
base = NUM2INT(argv[0]); | |
else | |
base = 10; | |
return rb_int2str(x, base); | |
} | |
VALUE | |
rb_int2str(VALUE x, int base) | |
{ | |
if (FIXNUM_P(x)) { | |
return rb_fix2str(x, base); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big2str(x, base); | |
} | |
return rb_any_to_s(x); | |
} | |
/* | |
* Document-method: Integer#+ | |
* call-seq: | |
* int + numeric -> numeric_result | |
* | |
* Performs addition: the class of the resulting object depends on | |
* the class of +numeric+. | |
*/ | |
static VALUE | |
fix_plus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return rb_fix_plus_fix(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_plus(y, x); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y)); | |
} | |
else if (RB_TYPE_P(y, T_COMPLEX)) { | |
return rb_complex_plus(y, x); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '+'); | |
} | |
} | |
VALUE | |
rb_fix_plus(VALUE x, VALUE y) | |
{ | |
return fix_plus(x, y); | |
} | |
VALUE | |
rb_int_plus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_plus(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_plus(x, y); | |
} | |
return rb_num_coerce_bin(x, y, '+'); | |
} | |
/* | |
* Document-method: Integer#- | |
* call-seq: | |
* int - numeric -> numeric_result | |
* | |
* Performs subtraction: the class of the resulting object depends on | |
* the class of +numeric+. | |
*/ | |
static VALUE | |
fix_minus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return rb_fix_minus_fix(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_minus(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '-'); | |
} | |
} | |
VALUE | |
rb_int_minus(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_minus(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_minus(x, y); | |
} | |
return rb_num_coerce_bin(x, y, '-'); | |
} | |
#define SQRT_LONG_MAX HALF_LONG_MSB | |
/*tests if N*N would overflow*/ | |
#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX)) | |
/* | |
* Document-method: Integer#* | |
* call-seq: | |
* int * numeric -> numeric_result | |
* | |
* Performs multiplication: the class of the resulting object depends on | |
* the class of +numeric+. | |
*/ | |
static VALUE | |
fix_mul(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return rb_fix_mul_fix(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
switch (x) { | |
case INT2FIX(0): return x; | |
case INT2FIX(1): return y; | |
} | |
return rb_big_mul(y, x); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y)); | |
} | |
else if (RB_TYPE_P(y, T_COMPLEX)) { | |
return rb_complex_mul(y, x); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '*'); | |
} | |
} | |
VALUE | |
rb_int_mul(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_mul(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_mul(x, y); | |
} | |
return rb_num_coerce_bin(x, y, '*'); | |
} | |
static double | |
fix_fdiv_double(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return double_div_double(FIX2LONG(x), FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y)); | |
} | |
else { | |
return NUM2DBL(rb_num_coerce_bin(x, y, idFdiv)); | |
} | |
} | |
double | |
rb_int_fdiv_double(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) { | |
VALUE gcd = rb_gcd(x, y); | |
if (!FIXNUM_ZERO_P(gcd)) { | |
x = rb_int_idiv(x, gcd); | |
y = rb_int_idiv(y, gcd); | |
} | |
} | |
if (FIXNUM_P(x)) { | |
return fix_fdiv_double(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_fdiv_double(x, y); | |
} | |
else { | |
return nan(""); | |
} | |
} | |
/* | |
* Document-method: Integer#fdiv | |
* call-seq: | |
* int.fdiv(numeric) -> float | |
* | |
* Returns the floating point result of dividing +int+ by +numeric+. | |
* | |
* 654321.fdiv(13731) #=> 47.652829364212366 | |
* 654321.fdiv(13731.24) #=> 47.65199646936475 | |
* -654321.fdiv(13731) #=> -47.652829364212366 | |
*/ | |
VALUE | |
rb_int_fdiv(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return DBL2NUM(rb_int_fdiv_double(x, y)); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#/ | |
* call-seq: | |
* int / numeric -> numeric_result | |
* | |
* Performs division: the class of the resulting object depends on | |
* the class of +numeric+. | |
*/ | |
static VALUE | |
fix_divide(VALUE x, VALUE y, ID op) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv(); | |
return rb_fix_div_fix(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_div(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
if (op == '/') { | |
double d = FIX2LONG(x); | |
return rb_flo_div_flo(DBL2NUM(d), y); | |
} | |
else { | |
VALUE v; | |
if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv(); | |
v = fix_divide(x, y, '/'); | |
return flo_floor(0, 0, v); | |
} | |
} | |
else { | |
if (RB_TYPE_P(y, T_RATIONAL) && | |
op == '/' && FIX2LONG(x) == 1) | |
return rb_rational_reciprocal(y); | |
return rb_num_coerce_bin(x, y, op); | |
} | |
} | |
static VALUE | |
fix_div(VALUE x, VALUE y) | |
{ | |
return fix_divide(x, y, '/'); | |
} | |
VALUE | |
rb_int_div(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_div(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_div(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#div | |
* call-seq: | |
* int.div(numeric) -> integer | |
* | |
* Performs integer division: returns the integer result of dividing +int+ | |
* by +numeric+. | |
*/ | |
static VALUE | |
fix_idiv(VALUE x, VALUE y) | |
{ | |
return fix_divide(x, y, id_div); | |
} | |
VALUE | |
rb_int_idiv(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_idiv(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_idiv(x, y); | |
} | |
return num_div(x, y); | |
} | |
static VALUE | |
fix_mod(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv(); | |
return rb_fix_mod_fix(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_modulo(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y))); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, '%'); | |
} | |
} | |
/* | |
* call-seq: | |
* self % other -> real_number | |
* | |
* Returns +self+ modulo +other+ as a real number. | |
* | |
* For integer +n+ and real number +r+, these expressions are equivalent: | |
* | |
* n % r | |
* n-r*(n/r).floor | |
* n.divmod(r)[1] | |
* | |
* See Numeric#divmod. | |
* | |
* Examples: | |
* | |
* 10 % 2 # => 0 | |
* 10 % 3 # => 1 | |
* 10 % 4 # => 2 | |
* | |
* 10 % -2 # => 0 | |
* 10 % -3 # => -2 | |
* 10 % -4 # => -2 | |
* | |
* 10 % 3.0 # => 1.0 | |
* 10 % Rational(3, 1) # => (1/1) | |
* | |
* Integer#modulo is an alias for Integer#%. | |
* | |
*/ | |
VALUE | |
rb_int_modulo(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_mod(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_modulo(x, y); | |
} | |
return num_modulo(x, y); | |
} | |
/* | |
* call-seq: | |
* remainder(other) -> real_number | |
* | |
* Returns the remainder after dividing +self+ by +other+. | |
* | |
* Examples: | |
* | |
* 11.remainder(4) # => 3 | |
* 11.remainder(-4) # => 3 | |
* -11.remainder(4) # => -3 | |
* -11.remainder(-4) # => -3 | |
* | |
* 12.remainder(4) # => 0 | |
* 12.remainder(-4) # => 0 | |
* -12.remainder(4) # => 0 | |
* -12.remainder(-4) # => 0 | |
* | |
* 13.remainder(4.0) # => 1.0 | |
* 13.remainder(Rational(4, 1)) # => (1/1) | |
* | |
*/ | |
static VALUE | |
int_remainder(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return num_remainder(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_remainder(x, y); | |
} | |
return Qnil; | |
} | |
static VALUE | |
fix_divmod(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
VALUE div, mod; | |
if (FIXNUM_ZERO_P(y)) rb_num_zerodiv(); | |
rb_fix_divmod_fix(x, y, &div, &mod); | |
return rb_assoc_new(div, mod); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_divmod(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
{ | |
double div, mod; | |
volatile VALUE a, b; | |
flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod); | |
a = dbl2ival(div); | |
b = DBL2NUM(mod); | |
return rb_assoc_new(a, b); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(x, y, id_divmod); | |
} | |
} | |
/* | |
* call-seq: | |
* divmod(other) -> array | |
* | |
* Returns a 2-element array <tt>[q, r]</tt>, where | |
* | |
* q = (self/other).floor # Quotient | |
* r = self % other # Remainder | |
* | |
* Examples: | |
* | |
* 11.divmod(4) # => [2, 3] | |
* 11.divmod(-4) # => [-3, -1] | |
* -11.divmod(4) # => [-3, 1] | |
* -11.divmod(-4) # => [2, -3] | |
* | |
* 12.divmod(4) # => [3, 0] | |
* 12.divmod(-4) # => [-3, 0] | |
* -12.divmod(4) # => [-3, 0] | |
* -12.divmod(-4) # => [3, 0] | |
* | |
* 13.divmod(4.0) # => [3, 1.0] | |
* 13.divmod(Rational(4, 1)) # => [3, (1/1)] | |
* | |
*/ | |
VALUE | |
rb_int_divmod(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_divmod(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_divmod(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#** | |
* call-seq: | |
* int ** numeric -> numeric_result | |
* | |
* Raises +int+ to the power of +numeric+, which may be negative or | |
* fractional. | |
* The result may be an Integer, a Float, a Rational, or a complex number. | |
* | |
* 2 ** 3 #=> 8 | |
* 2 ** -1 #=> (1/2) | |
* 2 ** 0.5 #=> 1.4142135623730951 | |
* (-1) ** 0.5 #=> (0.0+1.0i) | |
* | |
* 123456789 ** 2 #=> 15241578750190521 | |
* 123456789 ** 1.2 #=> 5126464716.0993185 | |
* 123456789 ** -2 #=> (1/15241578750190521) | |
*/ | |
static VALUE | |
int_pow(long x, unsigned long y) | |
{ | |
int neg = x < 0; | |
long z = 1; | |
if (y == 0) return INT2FIX(1); | |
if (y == 1) return LONG2NUM(x); | |
if (neg) x = -x; | |
if (y & 1) | |
z = x; | |
else | |
neg = 0; | |
y &= ~1; | |
do { | |
while (y % 2 == 0) { | |
if (!FIT_SQRT_LONG(x)) { | |
goto bignum; | |
} | |
x = x * x; | |
y >>= 1; | |
} | |
{ | |
if (MUL_OVERFLOW_FIXNUM_P(x, z)) { | |
goto bignum; | |
} | |
z = x * z; | |
} | |
} while (--y); | |
if (neg) z = -z; | |
return LONG2NUM(z); | |
VALUE v; | |
bignum: | |
v = rb_big_pow(rb_int2big(x), LONG2NUM(y)); | |
if (RB_FLOAT_TYPE_P(v)) /* infinity due to overflow */ | |
return v; | |
if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v); | |
return v; | |
} | |
VALUE | |
rb_int_positive_pow(long x, unsigned long y) | |
{ | |
return int_pow(x, y); | |
} | |
static VALUE | |
fix_pow_inverted(VALUE x, VALUE minusb) | |
{ | |
if (x == INT2FIX(0)) { | |
rb_num_zerodiv(); | |
UNREACHABLE_RETURN(Qundef); | |
} | |
else { | |
VALUE y = rb_int_pow(x, minusb); | |
if (RB_FLOAT_TYPE_P(y)) { | |
double d = pow((double)FIX2LONG(x), RFLOAT_VALUE(y)); | |
return DBL2NUM(1.0 / d); | |
} | |
else { | |
return rb_rational_raw(INT2FIX(1), y); | |
} | |
} | |
} | |
static VALUE | |
fix_pow(VALUE x, VALUE y) | |
{ | |
long a = FIX2LONG(x); | |
if (FIXNUM_P(y)) { | |
long b = FIX2LONG(y); | |
if (a == 1) return INT2FIX(1); | |
if (a == -1) return INT2FIX(b % 2 ? -1 : 1); | |
if (b < 0) return fix_pow_inverted(x, fix_uminus(y)); | |
if (b == 0) return INT2FIX(1); | |
if (b == 1) return x; | |
if (a == 0) return INT2FIX(0); | |
return int_pow(a, b); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
if (a == 1) return INT2FIX(1); | |
if (a == -1) return INT2FIX(int_even_p(y) ? 1 : -1); | |
if (BIGNUM_NEGATIVE_P(y)) return fix_pow_inverted(x, rb_big_uminus(y)); | |
if (a == 0) return INT2FIX(0); | |
x = rb_int2big(FIX2LONG(x)); | |
return rb_big_pow(x, y); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
double dy = RFLOAT_VALUE(y); | |
if (dy == 0.0) return DBL2NUM(1.0); | |
if (a == 0) { | |
return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0); | |
} | |
if (a == 1) return DBL2NUM(1.0); | |
if (a < 0 && dy != round(dy)) | |
return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy); | |
return DBL2NUM(pow((double)a, dy)); | |
} | |
else { | |
return rb_num_coerce_bin(x, y, idPow); | |
} | |
} | |
VALUE | |
rb_int_pow(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_pow(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_pow(x, y); | |
} | |
return Qnil; | |
} | |
VALUE | |
rb_num_pow(VALUE x, VALUE y) | |
{ | |
VALUE z = rb_int_pow(x, y); | |
if (!NIL_P(z)) return z; | |
if (RB_FLOAT_TYPE_P(x)) return rb_float_pow(x, y); | |
if (SPECIAL_CONST_P(x)) return Qnil; | |
switch (BUILTIN_TYPE(x)) { | |
case T_COMPLEX: | |
return rb_complex_pow(x, y); | |
case T_RATIONAL: | |
return rb_rational_pow(x, y); | |
default: | |
break; | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#== | |
* Document-method: Integer#=== | |
* call-seq: | |
* int == other -> true or false | |
* | |
* Returns +true+ if +int+ equals +other+ numerically. | |
* Contrast this with Integer#eql?, which requires +other+ to be an Integer. | |
* | |
* 1 == 2 #=> false | |
* 1 == 1.0 #=> true | |
*/ | |
static VALUE | |
fix_equal(VALUE x, VALUE y) | |
{ | |
if (x == y) return Qtrue; | |
if (FIXNUM_P(y)) return Qfalse; | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_eq(y, x); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return rb_integer_float_eq(x, y); | |
} | |
else { | |
return num_equal(x, y); | |
} | |
} | |
VALUE | |
rb_int_equal(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_equal(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_eq(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#<=> | |
* call-seq: | |
* int <=> numeric -> -1, 0, +1, or nil | |
* | |
* Comparison---Returns -1, 0, or +1 depending on whether +int+ is | |
* less than, equal to, or greater than +numeric+. | |
* | |
* This is the basis for the tests in the Comparable module. | |
* | |
* +nil+ is returned if the two values are incomparable. | |
*/ | |
static VALUE | |
fix_cmp(VALUE x, VALUE y) | |
{ | |
if (x == y) return INT2FIX(0); | |
if (FIXNUM_P(y)) { | |
if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1); | |
return INT2FIX(-1); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
VALUE cmp = rb_big_cmp(y, x); | |
switch (cmp) { | |
case INT2FIX(+1): return INT2FIX(-1); | |
case INT2FIX(-1): return INT2FIX(+1); | |
} | |
return cmp; | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return rb_integer_float_cmp(x, y); | |
} | |
else { | |
return rb_num_coerce_cmp(x, y, id_cmp); | |
} | |
} | |
VALUE | |
rb_int_cmp(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_cmp(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_cmp(x, y); | |
} | |
else { | |
rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x)); | |
} | |
} | |
/* | |
* Document-method: Integer#> | |
* call-seq: | |
* int > real -> true or false | |
* | |
* Returns +true+ if the value of +int+ is greater than that of +real+. | |
*/ | |
static VALUE | |
fix_gt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return RBOOL(FIX2LONG(x) > FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return RBOOL(rb_big_cmp(y, x) == INT2FIX(-1)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(1)); | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '>'); | |
} | |
} | |
VALUE | |
rb_int_gt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_gt(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_gt(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#>= | |
* call-seq: | |
* int >= real -> true or false | |
* | |
* Returns +true+ if the value of +int+ is greater than or equal to that of | |
* +real+. | |
*/ | |
static VALUE | |
fix_ge(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return RBOOL(FIX2LONG(x) >= FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return RBOOL(rb_big_cmp(y, x) != INT2FIX(+1)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(x, y); | |
return RBOOL(rel == INT2FIX(1) || rel == INT2FIX(0)); | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idGE); | |
} | |
} | |
VALUE | |
rb_int_ge(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_ge(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_ge(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#< | |
* call-seq: | |
* int < real -> true or false | |
* | |
* Returns +true+ if the value of +int+ is less than that of +real+. | |
*/ | |
static VALUE | |
fix_lt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return RBOOL(FIX2LONG(x) < FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return RBOOL(rb_big_cmp(y, x) == INT2FIX(+1)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(-1)); | |
} | |
else { | |
return rb_num_coerce_relop(x, y, '<'); | |
} | |
} | |
static VALUE | |
int_lt(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_lt(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_lt(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#<= | |
* call-seq: | |
* int <= real -> true or false | |
* | |
* Returns +true+ if the value of +int+ is less than or equal to that of | |
* +real+. | |
*/ | |
static VALUE | |
fix_le(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
return RBOOL(FIX2LONG(x) <= FIX2LONG(y)); | |
} | |
else if (RB_BIGNUM_TYPE_P(y)) { | |
return RBOOL(rb_big_cmp(y, x) != INT2FIX(-1)); | |
} | |
else if (RB_FLOAT_TYPE_P(y)) { | |
VALUE rel = rb_integer_float_cmp(x, y); | |
return RBOOL(rel == INT2FIX(-1) || rel == INT2FIX(0)); | |
} | |
else { | |
return rb_num_coerce_relop(x, y, idLE); | |
} | |
} | |
static VALUE | |
int_le(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_le(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_le(x, y); | |
} | |
return Qnil; | |
} | |
static VALUE | |
fix_comp(VALUE num) | |
{ | |
return ~num | FIXNUM_FLAG; | |
} | |
VALUE | |
rb_int_comp(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return fix_comp(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_comp(num); | |
} | |
return Qnil; | |
} | |
static VALUE | |
num_funcall_bit_1(VALUE y, VALUE arg, int recursive) | |
{ | |
ID func = (ID)((VALUE *)arg)[0]; | |
VALUE x = ((VALUE *)arg)[1]; | |
if (recursive) { | |
num_funcall_op_1_recursion(x, func, y); | |
} | |
return rb_check_funcall(x, func, 1, &y); | |
} | |
VALUE | |
rb_num_coerce_bit(VALUE x, VALUE y, ID func) | |
{ | |
VALUE ret, args[3]; | |
args[0] = (VALUE)func; | |
args[1] = x; | |
args[2] = y; | |
do_coerce(&args[1], &args[2], TRUE); | |
ret = rb_exec_recursive_paired(num_funcall_bit_1, | |
args[2], args[1], (VALUE)args); | |
if (ret == Qundef) { | |
/* show the original object, not coerced object */ | |
coerce_failed(x, y); | |
} | |
return ret; | |
} | |
/* | |
* Document-method: Integer#& | |
* call-seq: | |
* int & other_int -> integer | |
* | |
* Bitwise AND. | |
*/ | |
static VALUE | |
fix_and(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) & FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_and(y, x); | |
} | |
return rb_num_coerce_bit(x, y, '&'); | |
} | |
VALUE | |
rb_int_and(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_and(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_and(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#| | |
* call-seq: | |
* int | other_int -> integer | |
* | |
* Bitwise OR. | |
*/ | |
static VALUE | |
fix_or(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) | FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_or(y, x); | |
} | |
return rb_num_coerce_bit(x, y, '|'); | |
} | |
static VALUE | |
int_or(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_or(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_or(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#^ | |
* call-seq: | |
* int ^ other_int -> integer | |
* | |
* Bitwise EXCLUSIVE OR. | |
*/ | |
static VALUE | |
fix_xor(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y)) { | |
long val = FIX2LONG(x) ^ FIX2LONG(y); | |
return LONG2NUM(val); | |
} | |
if (RB_BIGNUM_TYPE_P(y)) { | |
return rb_big_xor(y, x); | |
} | |
return rb_num_coerce_bit(x, y, '^'); | |
} | |
static VALUE | |
int_xor(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return fix_xor(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_xor(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#<< | |
* call-seq: | |
* int << count -> integer | |
* | |
* Returns +int+ shifted left +count+ positions, or right if +count+ | |
* is negative. | |
*/ | |
static VALUE | |
rb_fix_lshift(VALUE x, VALUE y) | |
{ | |
long val, width; | |
val = NUM2LONG(x); | |
if (!FIXNUM_P(y)) | |
return rb_big_lshift(rb_int2big(val), y); | |
width = FIX2LONG(y); | |
if (width < 0) | |
return fix_rshift(val, (unsigned long)-width); | |
return fix_lshift(val, width); | |
} | |
static VALUE | |
fix_lshift(long val, unsigned long width) | |
{ | |
if (width > (SIZEOF_LONG*CHAR_BIT-1) | |
|| ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) { | |
return rb_big_lshift(rb_int2big(val), ULONG2NUM(width)); | |
} | |
val = val << width; | |
return LONG2NUM(val); | |
} | |
VALUE | |
rb_int_lshift(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return rb_fix_lshift(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_lshift(x, y); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#>> | |
* call-seq: | |
* int >> count -> integer | |
* | |
* Returns +int+ shifted right +count+ positions, or left if +count+ | |
* is negative. | |
*/ | |
static VALUE | |
rb_fix_rshift(VALUE x, VALUE y) | |
{ | |
long i, val; | |
val = FIX2LONG(x); | |
if (!FIXNUM_P(y)) | |
return rb_big_rshift(rb_int2big(val), y); | |
i = FIX2LONG(y); | |
if (i == 0) return x; | |
if (i < 0) | |
return fix_lshift(val, (unsigned long)-i); | |
return fix_rshift(val, i); | |
} | |
static VALUE | |
fix_rshift(long val, unsigned long i) | |
{ | |
if (i >= sizeof(long)*CHAR_BIT-1) { | |
if (val < 0) return INT2FIX(-1); | |
return INT2FIX(0); | |
} | |
val = RSHIFT(val, i); | |
return LONG2FIX(val); | |
} | |
static VALUE | |
rb_int_rshift(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x)) { | |
return rb_fix_rshift(x, y); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return rb_big_rshift(x, y); | |
} | |
return Qnil; | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_fix_aref(VALUE fix, VALUE idx) | |
{ | |
long val = FIX2LONG(fix); | |
long i; | |
idx = rb_to_int(idx); | |
if (!FIXNUM_P(idx)) { | |
idx = rb_big_norm(idx); | |
if (!FIXNUM_P(idx)) { | |
if (!BIGNUM_SIGN(idx) || val >= 0) | |
return INT2FIX(0); | |
return INT2FIX(1); | |
} | |
} | |
i = FIX2LONG(idx); | |
if (i < 0) return INT2FIX(0); | |
if (SIZEOF_LONG*CHAR_BIT-1 <= i) { | |
if (val < 0) return INT2FIX(1); | |
return INT2FIX(0); | |
} | |
if (val & (1L<<i)) | |
return INT2FIX(1); | |
return INT2FIX(0); | |
} | |
/* copied from "r_less" in range.c */ | |
/* compares _a_ and _b_ and returns: | |
* < 0: a < b | |
* = 0: a = b | |
* > 0: a > b or non-comparable | |
*/ | |
static int | |
compare_indexes(VALUE a, VALUE b) | |
{ | |
VALUE r = rb_funcall(a, id_cmp, 1, b); | |
if (NIL_P(r)) | |
return INT_MAX; | |
return rb_cmpint(r, a, b); | |
} | |
static VALUE | |
generate_mask(VALUE len) | |
{ | |
return rb_int_minus(rb_int_lshift(INT2FIX(1), len), INT2FIX(1)); | |
} | |
static VALUE | |
int_aref1(VALUE num, VALUE arg) | |
{ | |
VALUE orig_num = num, beg, end; | |
int excl; | |
if (rb_range_values(arg, &beg, &end, &excl)) { | |
if (NIL_P(beg)) { | |
/* beginless range */ | |
if (!RTEST(num_negative_p(end))) { | |
if (!excl) end = rb_int_plus(end, INT2FIX(1)); | |
VALUE mask = generate_mask(end); | |
if (RTEST(int_zero_p(rb_int_and(num, mask)))) { | |
return INT2FIX(0); | |
} | |
else { | |
rb_raise(rb_eArgError, "The beginless range for Integer#[] results in infinity"); | |
} | |
} | |
else { | |
return INT2FIX(0); | |
} | |
} | |
num = rb_int_rshift(num, beg); | |
int cmp = compare_indexes(beg, end); | |
if (!NIL_P(end) && cmp < 0) { | |
VALUE len = rb_int_minus(end, beg); | |
if (!excl) len = rb_int_plus(len, INT2FIX(1)); | |
VALUE mask = generate_mask(len); | |
num = rb_int_and(num, mask); | |
} | |
else if (cmp == 0) { | |
if (excl) return INT2FIX(0); | |
num = orig_num; | |
arg = beg; | |
goto one_bit; | |
} | |
return num; | |
} | |
one_bit: | |
if (FIXNUM_P(num)) { | |
return rb_fix_aref(num, arg); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_aref(num, arg); | |
} | |
return Qnil; | |
} | |
static VALUE | |
int_aref2(VALUE num, VALUE beg, VALUE len) | |
{ | |
num = rb_int_rshift(num, beg); | |
VALUE mask = generate_mask(len); | |
num = rb_int_and(num, mask); | |
return num; | |
} | |
/* | |
* Document-method: Integer#[] | |
* call-seq: | |
* int[n] -> 0, 1 | |
* int[n, m] -> num | |
* int[range] -> num | |
* | |
* Bit Reference---Returns the <code>n</code>th bit in the | |
* binary representation of +int+, where <code>int[0]</code> | |
* is the least significant bit. | |
* | |
* a = 0b11001100101010 | |
* 30.downto(0) {|n| print a[n] } | |
* #=> 0000000000000000011001100101010 | |
* | |
* a = 9**15 | |
* 50.downto(0) {|n| print a[n] } | |
* #=> 000101110110100000111000011110010100111100010111001 | |
* | |
* In principle, <code>n[i]</code> is equivalent to <code>(n >> i) & 1</code>. | |
* Thus, any negative index always returns zero: | |
* | |
* p 255[-1] #=> 0 | |
* | |
* Range operations <code>n[i, len]</code> and <code>n[i..j]</code> | |
* are naturally extended. | |
* | |
* * <code>n[i, len]</code> equals to <code>(n >> i) & ((1 << len) - 1)</code>. | |
* * <code>n[i..j]</code> equals to <code>(n >> i) & ((1 << (j - i + 1)) - 1)</code>. | |
* * <code>n[i...j]</code> equals to <code>(n >> i) & ((1 << (j - i)) - 1)</code>. | |
* * <code>n[i..]</code> equals to <code>(n >> i)</code>. | |
* * <code>n[..j]</code> is zero if <code>n & ((1 << (j + 1)) - 1)</code> is zero. Otherwise, raises an ArgumentError. | |
* * <code>n[...j]</code> is zero if <code>n & ((1 << j) - 1)</code> is zero. Otherwise, raises an ArgumentError. | |
* | |
* Note that range operation may exhaust memory. | |
* For example, <code>-1[0, 1000000000000]</code> will raise NoMemoryError. | |
*/ | |
static VALUE | |
int_aref(int const argc, VALUE * const argv, VALUE const num) | |
{ | |
rb_check_arity(argc, 1, 2); | |
if (argc == 2) { | |
return int_aref2(num, argv[0], argv[1]); | |
} | |
return int_aref1(num, argv[0]); | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#to_f | |
* call-seq: | |
* int.to_f -> float | |
* | |
* Converts +int+ to a Float. If +int+ doesn't fit in a Float, | |
* the result is infinity. | |
*/ | |
static VALUE | |
int_to_f(VALUE num) | |
{ | |
double val; | |
if (FIXNUM_P(num)) { | |
val = (double)FIX2LONG(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
val = rb_big2dbl(num); | |
} | |
else { | |
rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num)); | |
} | |
return DBL2NUM(val); | |
} | |
static VALUE | |
fix_abs(VALUE fix) | |
{ | |
long i = FIX2LONG(fix); | |
if (i < 0) i = -i; | |
return LONG2NUM(i); | |
} | |
VALUE | |
rb_int_abs(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return fix_abs(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_abs(num); | |
} | |
return Qnil; | |
} | |
static VALUE | |
fix_size(VALUE fix) | |
{ | |
return INT2FIX(sizeof(long)); | |
} | |
MJIT_FUNC_EXPORTED VALUE | |
rb_int_size(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return fix_size(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_size_m(num); | |
} | |
return Qnil; | |
} | |
static VALUE | |
rb_fix_bit_length(VALUE fix) | |
{ | |
long v = FIX2LONG(fix); | |
if (v < 0) | |
v = ~v; | |
return LONG2FIX(bit_length(v)); | |
} | |
VALUE | |
rb_int_bit_length(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return rb_fix_bit_length(num); | |
} | |
else if (RB_BIGNUM_TYPE_P(num)) { | |
return rb_big_bit_length(num); | |
} | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#digits | |
* call-seq: | |
* int.digits -> array | |
* int.digits(base) -> array | |
* | |
* Returns the digits of +int+'s place-value representation | |
* with radix +base+ (default: 10). | |
* The digits are returned as an array with the least significant digit | |
* as the first array element. | |
* | |
* +base+ must be greater than or equal to 2. | |
* | |
* 12345.digits #=> [5, 4, 3, 2, 1] | |
* 12345.digits(7) #=> [4, 6, 6, 0, 5] | |
* 12345.digits(100) #=> [45, 23, 1] | |
* | |
* -12345.digits(7) #=> Math::DomainError | |
*/ | |
static VALUE | |
rb_fix_digits(VALUE fix, long base) | |
{ | |
VALUE digits; | |
long x = FIX2LONG(fix); | |
assert(x >= 0); | |
if (base < 2) | |
rb_raise(rb_eArgError, "invalid radix %ld", base); | |
if (x == 0) | |
return rb_ary_new_from_args(1, INT2FIX(0)); | |
digits = rb_ary_new(); | |
while (x > 0) { | |
long q = x % base; | |
rb_ary_push(digits, LONG2NUM(q)); | |
x /= base; | |
} | |
return digits; | |
} | |
static VALUE | |
rb_int_digits_bigbase(VALUE num, VALUE base) | |
{ | |
VALUE digits, bases; | |
assert(!rb_num_negative_p(num)); | |
if (RB_BIGNUM_TYPE_P(base)) | |
base = rb_big_norm(base); | |
if (FIXNUM_P(base) && FIX2LONG(base) < 2) | |
rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base)); | |
else if (RB_BIGNUM_TYPE_P(base) && BIGNUM_NEGATIVE_P(base)) | |
rb_raise(rb_eArgError, "negative radix"); | |
if (FIXNUM_P(base) && FIXNUM_P(num)) | |
return rb_fix_digits(num, FIX2LONG(base)); | |
if (FIXNUM_P(num)) | |
return rb_ary_new_from_args(1, num); | |
if (int_lt(rb_int_div(rb_int_bit_length(num), rb_int_bit_length(base)), INT2FIX(50))) { | |
digits = rb_ary_new(); | |
while (!FIXNUM_P(num) || FIX2LONG(num) > 0) { | |
VALUE qr = rb_int_divmod(num, base); | |
rb_ary_push(digits, RARRAY_AREF(qr, 1)); | |
num = RARRAY_AREF(qr, 0); | |
} | |
return digits; | |
} | |
bases = rb_ary_new(); | |
for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) { | |
rb_ary_push(bases, b); | |
} | |
digits = rb_ary_new_from_args(1, num); | |
while (RARRAY_LEN(bases)) { | |
VALUE b = rb_ary_pop(bases); | |
long i, last_idx = RARRAY_LEN(digits) - 1; | |
for(i = last_idx; i >= 0; i--) { | |
VALUE n = RARRAY_AREF(digits, i); | |
VALUE divmod = rb_int_divmod(n, b); | |
VALUE div = RARRAY_AREF(divmod, 0); | |
VALUE mod = RARRAY_AREF(divmod, 1); | |
if (i != last_idx || div != INT2FIX(0)) rb_ary_store(digits, 2 * i + 1, div); | |
rb_ary_store(digits, 2 * i, mod); | |
} | |
} | |
return digits; | |
} | |
static VALUE | |
rb_int_digits(int argc, VALUE *argv, VALUE num) | |
{ | |
VALUE base_value; | |
long base; | |
if (rb_num_negative_p(num)) | |
rb_raise(rb_eMathDomainError, "out of domain"); | |
if (rb_check_arity(argc, 0, 1)) { | |
base_value = rb_to_int(argv[0]); | |
if (!RB_INTEGER_TYPE_P(base_value)) | |
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)", | |
rb_obj_classname(argv[0])); | |
if (RB_BIGNUM_TYPE_P(base_value)) | |
return rb_int_digits_bigbase(num, base_value); | |
base = FIX2LONG(base_value); | |
if (base < 0) | |
rb_raise(rb_eArgError, "negative radix"); | |
else if (base < 2) | |
rb_raise(rb_eArgError, "invalid radix %ld", base); | |
} | |
else | |
base = 10; | |
if (FIXNUM_P(num)) | |
return rb_fix_digits(num, base); | |
else if (RB_BIGNUM_TYPE_P(num)) | |
return rb_int_digits_bigbase(num, LONG2FIX(base)); | |
return Qnil; | |
} | |
/* | |
* Document-method: Integer#upto | |
* call-seq: | |
* int.upto(limit) {|i| block } -> self | |
* int.upto(limit) -> an_enumerator | |
* | |
* Iterates the given block, passing in integer values from +int+ up to and | |
* including +limit+. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* 5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10 | |
*/ | |
static VALUE | |
int_upto_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE); | |
} | |
static VALUE | |
int_upto(VALUE from, VALUE to) | |
{ | |
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); | |
if (FIXNUM_P(from) && FIXNUM_P(to)) { | |
long i, end; | |
end = FIX2LONG(to); | |
for (i = FIX2LONG(from); i <= end; i++) { | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = from, c; | |
while (!(c = rb_funcall(i, '>', 1, to))) { | |
rb_yield(i); | |
i = rb_funcall(i, '+', 1, INT2FIX(1)); | |
} | |
ensure_cmp(c, i, to); | |
} | |
return from; | |
} | |
/* | |
* Document-method: Integer#downto | |
* call-seq: | |
* int.downto(limit) {|i| block } -> self | |
* int.downto(limit) -> an_enumerator | |
* | |
* Iterates the given block, passing in decreasing values from +int+ down to | |
* and including +limit+. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* 5.downto(1) { |n| print n, ".. " } | |
* puts "Liftoff!" | |
* #=> "5.. 4.. 3.. 2.. 1.. Liftoff!" | |
*/ | |
static VALUE | |
int_downto_size(VALUE from, VALUE args, VALUE eobj) | |
{ | |
return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE); | |
} | |
static VALUE | |
int_downto(VALUE from, VALUE to) | |
{ | |
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); | |
if (FIXNUM_P(from) && FIXNUM_P(to)) { | |
long i, end; | |
end = FIX2LONG(to); | |
for (i=FIX2LONG(from); i >= end; i--) { | |
rb_yield(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = from, c; | |
while (!(c = rb_funcall(i, '<', 1, to))) { | |
rb_yield(i); | |
i = rb_funcall(i, '-', 1, INT2FIX(1)); | |
} | |
if (NIL_P(c)) rb_cmperr(i, to); | |
} | |
return from; | |
} | |
/* | |
* Document-method: Integer#times | |
* call-seq: | |
* int.times {|i| block } -> self | |
* int.times -> an_enumerator | |
* | |
* Iterates the given block +int+ times, passing in values from zero to | |
* <code>int - 1</code>. | |
* | |
* If no block is given, an Enumerator is returned instead. | |
* | |
* 5.times {|i| print i, " " } #=> 0 1 2 3 4 | |
*/ | |
static VALUE | |
int_dotimes_size(VALUE num, VALUE args, VALUE eobj) | |
{ | |
if (FIXNUM_P(num)) { | |
if (NUM2LONG(num) <= 0) return INT2FIX(0); | |
} | |
else { | |
if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0); | |
} | |
return num; | |
} | |
static VALUE | |
int_dotimes(VALUE num) | |
{ | |
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); | |
if (FIXNUM_P(num)) { | |
long i, end; | |
end = FIX2LONG(num); | |
for (i=0; i<end; i++) { | |
rb_yield_1(LONG2FIX(i)); | |
} | |
} | |
else { | |
VALUE i = INT2FIX(0); | |
for (;;) { | |
if (!RTEST(rb_funcall(i, '<', 1, num))) break; | |
rb_yield(i); | |
i = rb_funcall(i, '+', 1, INT2FIX(1)); | |
} | |
} | |
return num; | |
} | |
/* | |
* Document-method: Integer#round | |
* call-seq: | |
* int.round([ndigits] [, half: mode]) -> integer or float | |
* | |
* Returns +int+ rounded to the nearest value with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns +self+ when +ndigits+ is zero or positive. | |
* | |
* 1.round #=> 1 | |
* 1.round(2) #=> 1 | |
* 15.round(-1) #=> 20 | |
* (-15).round(-1) #=> -20 | |
* | |
* The optional +half+ keyword argument is available | |
* similar to Float#round. | |
* | |
* 25.round(-1, half: :up) #=> 30 | |
* 25.round(-1, half: :down) #=> 20 | |
* 25.round(-1, half: :even) #=> 20 | |
* 35.round(-1, half: :up) #=> 40 | |
* 35.round(-1, half: :down) #=> 30 | |
* 35.round(-1, half: :even) #=> 40 | |
* (-25).round(-1, half: :up) #=> -30 | |
* (-25).round(-1, half: :down) #=> -20 | |
* (-25).round(-1, half: :even) #=> -20 | |
*/ | |
static VALUE | |
int_round(int argc, VALUE* argv, VALUE num) | |
{ | |
int ndigits; | |
int mode; | |
VALUE nd, opt; | |
if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num; | |
ndigits = NUM2INT(nd); | |
mode = rb_num_get_rounding_option(opt); | |
if (ndigits >= 0) { | |
return num; | |
} | |
return rb_int_round(num, ndigits, mode); | |
} | |
/* | |
* Document-method: Integer#floor | |
* call-seq: | |
* int.floor([ndigits]) -> integer or float | |
* | |
* Returns the largest number less than or equal to +int+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns +self+ when +ndigits+ is zero or positive. | |
* | |
* 1.floor #=> 1 | |
* 1.floor(2) #=> 1 | |
* 18.floor(-1) #=> 10 | |
* (-18).floor(-1) #=> -20 | |
*/ | |
static VALUE | |
int_floor(int argc, VALUE* argv, VALUE num) | |
{ | |
int ndigits; | |
if (!rb_check_arity(argc, 0, 1)) return num; | |
ndigits = NUM2INT(argv[0]); | |
if (ndigits >= 0) { | |
return num; | |
} | |
return rb_int_floor(num, ndigits); | |
} | |
/* | |
* Document-method: Integer#ceil | |
* call-seq: | |
* int.ceil([ndigits]) -> integer or float | |
* | |
* Returns the smallest number greater than or equal to +int+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns +self+ when +ndigits+ is zero or positive. | |
* | |
* 1.ceil #=> 1 | |
* 1.ceil(2) #=> 1 | |
* 18.ceil(-1) #=> 20 | |
* (-18).ceil(-1) #=> -10 | |
*/ | |
static VALUE | |
int_ceil(int argc, VALUE* argv, VALUE num) | |
{ | |
int ndigits; | |
if (!rb_check_arity(argc, 0, 1)) return num; | |
ndigits = NUM2INT(argv[0]); | |
if (ndigits >= 0) { | |
return num; | |
} | |
return rb_int_ceil(num, ndigits); | |
} | |
/* | |
* Document-method: Integer#truncate | |
* call-seq: | |
* int.truncate([ndigits]) -> integer or float | |
* | |
* Returns +int+ truncated (toward zero) to | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns +self+ when +ndigits+ is zero or positive. | |
* | |
* 1.truncate #=> 1 | |
* 1.truncate(2) #=> 1 | |
* 18.truncate(-1) #=> 10 | |
* (-18).truncate(-1) #=> -10 | |
*/ | |
static VALUE | |
int_truncate(int argc, VALUE* argv, VALUE num) | |
{ | |
int ndigits; | |
if (!rb_check_arity(argc, 0, 1)) return num; | |
ndigits = NUM2INT(argv[0]); | |
if (ndigits >= 0) { | |
return num; | |
} | |
return rb_int_truncate(num, ndigits); | |
} | |
#define DEFINE_INT_SQRT(rettype, prefix, argtype) \ | |
rettype \ | |
prefix##_isqrt(argtype n) \ | |
{ \ | |
if (!argtype##_IN_DOUBLE_P(n)) { \ | |
unsigned int b = bit_length(n); \ | |
argtype t; \ | |
rettype x = (rettype)(n >> (b/2+1)); \ | |
x |= ((rettype)1LU << (b-1)/2); \ | |
while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \ | |
return x; \ | |
} \ | |
return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \ | |
} | |
#if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG | |
# define RB_ULONG_IN_DOUBLE_P(n) ((n) < (1UL << DBL_MANT_DIG)) | |
#else | |
# define RB_ULONG_IN_DOUBLE_P(n) 1 | |
#endif | |
#define RB_ULONG_TO_DOUBLE(n) (double)(n) | |
#define RB_ULONG unsigned long | |
DEFINE_INT_SQRT(unsigned long, rb_ulong, RB_ULONG) | |
#if 2*SIZEOF_BDIGIT > SIZEOF_LONG | |
# if 2*SIZEOF_BDIGIT*CHAR_BIT > DBL_MANT_DIG | |
# define BDIGIT_DBL_IN_DOUBLE_P(n) ((n) < ((BDIGIT_DBL)1UL << DBL_MANT_DIG)) | |
# else | |
# define BDIGIT_DBL_IN_DOUBLE_P(n) 1 | |
# endif | |
# ifdef ULL_TO_DOUBLE | |
# define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n) | |
# else | |
# define BDIGIT_DBL_TO_DOUBLE(n) (double)(n) | |
# endif | |
DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL) | |
#endif | |
#define domain_error(msg) \ | |
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg) | |
/* | |
* Document-method: Integer::sqrt | |
* call-seq: | |
* Integer.sqrt(n) -> integer | |
* | |
* Returns the integer square root of the non-negative integer +n+, | |
* i.e. the largest non-negative integer less than or equal to the | |
* square root of +n+. | |
* | |
* Integer.sqrt(0) #=> 0 | |
* Integer.sqrt(1) #=> 1 | |
* Integer.sqrt(24) #=> 4 | |
* Integer.sqrt(25) #=> 5 | |
* Integer.sqrt(10**400) #=> 10**200 | |
* | |
* Equivalent to <code>Math.sqrt(n).floor</code>, except that | |
* the result of the latter code may differ from the true value | |
* due to the limited precision of floating point arithmetic. | |
* | |
* Integer.sqrt(10**46) #=> 100000000000000000000000 | |
* Math.sqrt(10**46).floor #=> 99999999999999991611392 (!) | |
* | |
* If +n+ is not an Integer, it is converted to an Integer first. | |
* If +n+ is negative, a Math::DomainError is raised. | |
*/ | |
static VALUE | |
rb_int_s_isqrt(VALUE self, VALUE num) | |
{ | |
unsigned long n, sq; | |
num = rb_to_int(num); | |
if (FIXNUM_P(num)) { | |
if (FIXNUM_NEGATIVE_P(num)) { | |
domain_error("isqrt"); | |
} | |
n = FIX2ULONG(num); | |
sq = rb_ulong_isqrt(n); | |
return LONG2FIX(sq); | |
} | |
else { | |
size_t biglen; | |
if (RBIGNUM_NEGATIVE_P(num)) { | |
domain_error("isqrt"); | |
} | |
biglen = BIGNUM_LEN(num); | |
if (biglen == 0) return INT2FIX(0); | |
#if SIZEOF_BDIGIT <= SIZEOF_LONG | |
/* short-circuit */ | |
if (biglen == 1) { | |
n = BIGNUM_DIGITS(num)[0]; | |
sq = rb_ulong_isqrt(n); | |
return ULONG2NUM(sq); | |
} | |
#endif | |
return rb_big_isqrt(num); | |
} | |
} | |
static VALUE | |
int_s_try_convert(VALUE self, VALUE num) | |
{ | |
return rb_check_integer_type(num); | |
} | |
/* | |
* Document-class: ZeroDivisionError | |
* | |
* Raised when attempting to divide an integer by 0. | |
* | |
* 42 / 0 #=> ZeroDivisionError: divided by 0 | |
* | |
* Note that only division by an exact 0 will raise the exception: | |
* | |
* 42 / 0.0 #=> Float::INFINITY | |
* 42 / -0.0 #=> -Float::INFINITY | |
* 0 / 0.0 #=> NaN | |
*/ | |
/* | |
* Document-class: FloatDomainError | |
* | |
* Raised when attempting to convert special float values (in particular | |
* +Infinity+ or +NaN+) to numerical classes which don't support them. | |
* | |
* Float::INFINITY.to_r #=> FloatDomainError: Infinity | |
*/ | |
/* | |
* Document-class: Numeric | |
* | |
* Numeric is the class from which all higher-level numeric classes should inherit. | |
* | |
* Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as | |
* Integer are implemented as immediates, which means that each Integer is a single immutable | |
* object which is always passed by value. | |
* | |
* a = 1 | |
* 1.object_id == a.object_id #=> true | |
* | |
* There can only ever be one instance of the integer +1+, for example. Ruby ensures this | |
* by preventing instantiation. If duplication is attempted, the same instance is returned. | |
* | |
* Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class | |
* 1.dup #=> 1 | |
* 1.object_id == 1.dup.object_id #=> true | |
* | |
* For this reason, Numeric should be used when defining other numeric classes. | |
* | |
* Classes which inherit from Numeric must implement +coerce+, which returns a two-member | |
* Array containing an object that has been coerced into an instance of the new class | |
* and +self+ (see #coerce). | |
* | |
* Inheriting classes should also implement arithmetic operator methods (<code>+</code>, | |
* <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see | |
* Comparable). These methods may rely on +coerce+ to ensure interoperability with | |
* instances of other numeric classes. | |
* | |
* class Tally < Numeric | |
* def initialize(string) | |
* @string = string | |
* end | |
* | |
* def to_s | |
* @string | |
* end | |
* | |
* def to_i | |
* @string.size | |
* end | |
* | |
* def coerce(other) | |
* [self.class.new('|' * other.to_i), self] | |
* end | |
* | |
* def <=>(other) | |
* to_i <=> other.to_i | |
* end | |
* | |
* def +(other) | |
* self.class.new('|' * (to_i + other.to_i)) | |
* end | |
* | |
* def -(other) | |
* self.class.new('|' * (to_i - other.to_i)) | |
* end | |
* | |
* def *(other) | |
* self.class.new('|' * (to_i * other.to_i)) | |
* end | |
* | |
* def /(other) | |
* self.class.new('|' * (to_i / other.to_i)) | |
* end | |
* end | |
* | |
* tally = Tally.new('||') | |
* puts tally * 2 #=> "||||" | |
* puts tally > 1 #=> true | |
* | |
* == What's Here | |
* | |
* First, what's elsewhere. \Class \Numeric: | |
* | |
* - Inherits from {class Object}[Object.html#class-Object-label-What-27s+Here]. | |
* - Includes {module Comparable}[Comparable.html#module-Comparable-label-What-27s+Here]. | |
* | |
* Here, class \Numeric provides methods for: | |
* | |
* - {Querying}[#class-Numeric-label-Querying] | |
* - {Comparing}[#class-Numeric-label-Comparing] | |
* - {Converting}[#class-Numeric-label-Converting] | |
* - {Other}[#class-Numeric-label-Other] | |
* | |
* === Querying | |
* | |
* - #finite?:: Returns true unless +self+ is infinite or not a number. | |
* - #infinite?:: Returns -1, +nil+ or +1, depending on whether +self+ | |
* is <tt>-Infinity<tt>, finite, or <tt>+Infinity</tt>. | |
* - #integer?:: Returns whether +self+ is an integer. | |
* - #negative?:: Returns whether +self+ is negative. | |
* - #nonzero?:: Returns whether +self+ is not zero. | |
* - #positive?:: Returns whether +self+ is positive. | |
* - #real?:: Returns whether +self+ is a real value. | |
* - #zero?:: Returns whether +self+ is zero. | |
* | |
* === Comparing | |
* | |
* - {<=>}[#method-i-3C-3D-3E]:: Returns: | |
* - -1 if +self+ is less than the given value. | |
* - 0 if +self+ is equal to the given value. | |
* - 1 if +self is greater than the given value. | |
* - +nil+ if +self+ and the given value are not comparable. | |
* - #eql?:: Returns whether +self+ and the given value have the same value and type. | |
* | |
* === Converting | |
* | |
* - #% (aliased as #modulo):: Returns the remainder of +self+ divided by the given value. | |
* - #-@:: Returns the value of +self+, negated. | |
* - #abs (aliased as #magnitude):: Returns the absolute value of +self+. | |
* - #abs2:: Returns the square of +self+. | |
* - #angle (aliased as #arg and #phase):: Returns 0 if +self+ is positive, | |
* Math::PI otherwise. | |
* - #ceil:: Returns the smallest number greater than or equal to +self+, | |
* to a given precision. | |
* - #coerce:: Returns array <tt>[coerced_self, coerced_other]</tt> | |
* for the given other value. | |
* - #conj (aliased as #conjugate):: Returns the complex conjugate of +self+. | |
* - #denominator:: Returns the denominator (always positive) | |
* of the Rational representation of +self+. | |
* - #div:: Returns the value of +self+ divided by the given value | |
* and converted to an integer. | |
* - #divmod:: Returns array <tt>[quotient, modulus]</tt> resulting | |
* from dividing +self+ the given divisor. | |
* - #fdiv:: Returns the Float result of dividing +self+ by the given divisor. | |
* - #floor:: Returns the largest number less than or equal to +self+, | |
* to a given precision. | |
* - #i:: Returns the Complex object <tt>Complex(0, self)</tt>. | |
* the given value. | |
* - #imaginary (aliased as #imag):: Returns the imaginary part of the +self+. | |
* - #numerator:: Returns the numerator of the Rational representation of +self+; | |
* has the same sign as +self+. | |
* - #polar:: Returns the array <tt>[self.abs, self.arg]</tt>. | |
* - #quo:: Returns the value of +self+ divided by the given value. | |
* - #real:: Returns the real part of +self+. | |
* - #rect (aliased as #rectangular):: Returns the array <tt>[self, 0]</tt>. | |
* - #remainder:: Returns <tt>self-arg*(self/arg).truncate</tt> for the given +arg+. | |
* - #round:: Returns the value of +self+ rounded to the nearest value | |
* for the given a precision. | |
* - #to_c:: Returns the Complex representation of +self+. | |
* - #to_int:: Returns the Integer representation of +self+, truncating if necessary. | |
* - #truncate:: Returns +self+ truncated (toward zero) to a given precision. | |
* | |
* === Other | |
* | |
* - #clone:: Returns +self+; does not allow freezing. | |
* - #dup (aliased as #+@):: Returns +self+. | |
* - #step:: Invokes the given block with the sequence of specified numbers. | |
* | |
*/ | |
void | |
Init_Numeric(void) | |
{ | |
#ifdef _UNICOSMP | |
/* Turn off floating point exceptions for divide by zero, etc. */ | |
_set_Creg(0, 0); | |
#endif | |
id_coerce = rb_intern_const("coerce"); | |
id_to = rb_intern_const("to"); | |
id_by = rb_intern_const("by"); | |
rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError); | |
rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError); | |
rb_cNumeric = rb_define_class("Numeric", rb_cObject); | |
rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1); | |
rb_include_module(rb_cNumeric, rb_mComparable); | |
rb_define_method(rb_cNumeric, "coerce", num_coerce, 1); | |
rb_define_method(rb_cNumeric, "clone", num_clone, -1); | |
rb_define_method(rb_cNumeric, "dup", num_dup, 0); | |
rb_define_method(rb_cNumeric, "i", num_imaginary, 0); | |
rb_define_method(rb_cNumeric, "+@", num_uplus, 0); | |
rb_define_method(rb_cNumeric, "-@", num_uminus, 0); | |
rb_define_method(rb_cNumeric, "<=>", num_cmp, 1); | |
rb_define_method(rb_cNumeric, "eql?", num_eql, 1); | |
rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1); | |
rb_define_method(rb_cNumeric, "div", num_div, 1); | |
rb_define_method(rb_cNumeric, "divmod", num_divmod, 1); | |
rb_define_method(rb_cNumeric, "%", num_modulo, 1); | |
rb_define_method(rb_cNumeric, "modulo", num_modulo, 1); | |
rb_define_method(rb_cNumeric, "remainder", num_remainder, 1); | |
rb_define_method(rb_cNumeric, "abs", num_abs, 0); | |
rb_define_method(rb_cNumeric, "magnitude", num_abs, 0); | |
rb_define_method(rb_cNumeric, "to_int", num_to_int, 0); | |
rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0); | |
rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0); | |
rb_define_method(rb_cNumeric, "floor", num_floor, -1); | |
rb_define_method(rb_cNumeric, "ceil", num_ceil, -1); | |
rb_define_method(rb_cNumeric, "round", num_round, -1); | |
rb_define_method(rb_cNumeric, "truncate", num_truncate, -1); | |
rb_define_method(rb_cNumeric, "step", num_step, -1); | |
rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0); | |
rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0); | |
rb_cInteger = rb_define_class("Integer", rb_cNumeric); | |
rb_undef_alloc_func(rb_cInteger); | |
rb_undef_method(CLASS_OF(rb_cInteger), "new"); | |
rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1); | |
rb_define_singleton_method(rb_cInteger, "try_convert", int_s_try_convert, 1); | |
rb_define_method(rb_cInteger, "to_s", int_to_s, -1); | |
rb_define_alias(rb_cInteger, "inspect", "to_s"); | |
rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1); | |
rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1); | |
rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1); | |
rb_define_method(rb_cInteger, "upto", int_upto, 1); | |
rb_define_method(rb_cInteger, "downto", int_downto, 1); | |
rb_define_method(rb_cInteger, "times", int_dotimes, 0); | |
rb_define_method(rb_cInteger, "succ", int_succ, 0); | |
rb_define_method(rb_cInteger, "next", int_succ, 0); | |
rb_define_method(rb_cInteger, "pred", int_pred, 0); | |
rb_define_method(rb_cInteger, "chr", int_chr, -1); | |
rb_define_method(rb_cInteger, "to_f", int_to_f, 0); | |
rb_define_method(rb_cInteger, "floor", int_floor, -1); | |
rb_define_method(rb_cInteger, "ceil", int_ceil, -1); | |
rb_define_method(rb_cInteger, "truncate", int_truncate, -1); | |
rb_define_method(rb_cInteger, "round", int_round, -1); | |
rb_define_method(rb_cInteger, "<=>", rb_int_cmp, 1); | |
rb_define_method(rb_cInteger, "+", rb_int_plus, 1); | |
rb_define_method(rb_cInteger, "-", rb_int_minus, 1); | |
rb_define_method(rb_cInteger, "*", rb_int_mul, 1); | |
rb_define_method(rb_cInteger, "/", rb_int_div, 1); | |
rb_define_method(rb_cInteger, "div", rb_int_idiv, 1); | |
rb_define_method(rb_cInteger, "%", rb_int_modulo, 1); | |
rb_define_method(rb_cInteger, "modulo", rb_int_modulo, 1); | |
rb_define_method(rb_cInteger, "remainder", int_remainder, 1); | |
rb_define_method(rb_cInteger, "divmod", rb_int_divmod, 1); | |
rb_define_method(rb_cInteger, "fdiv", rb_int_fdiv, 1); | |
rb_define_method(rb_cInteger, "**", rb_int_pow, 1); | |
rb_define_method(rb_cInteger, "pow", rb_int_powm, -1); /* in bignum.c */ | |
rb_define_method(rb_cInteger, "===", rb_int_equal, 1); | |
rb_define_method(rb_cInteger, "==", rb_int_equal, 1); | |
rb_define_method(rb_cInteger, ">", rb_int_gt, 1); | |
rb_define_method(rb_cInteger, ">=", rb_int_ge, 1); | |
rb_define_method(rb_cInteger, "<", int_lt, 1); | |
rb_define_method(rb_cInteger, "<=", int_le, 1); | |
rb_define_method(rb_cInteger, "&", rb_int_and, 1); | |
rb_define_method(rb_cInteger, "|", int_or, 1); | |
rb_define_method(rb_cInteger, "^", int_xor, 1); | |
rb_define_method(rb_cInteger, "[]", int_aref, -1); | |
rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1); | |
rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1); | |
rb_define_method(rb_cInteger, "digits", rb_int_digits, -1); | |
/* An obsolete class, use Integer */ | |
rb_define_const(rb_cObject, "Fixnum", rb_cInteger); | |
rb_deprecate_constant(rb_cObject, "Fixnum"); | |
rb_cFloat = rb_define_class("Float", rb_cNumeric); | |
rb_undef_alloc_func(rb_cFloat); | |
rb_undef_method(CLASS_OF(rb_cFloat), "new"); | |
/* | |
* The base of the floating point, or number of unique digits used to | |
* represent the number. | |
* | |
* Usually defaults to 2 on most systems, which would represent a base-10 decimal. | |
*/ | |
rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX)); | |
/* | |
* The number of base digits for the +double+ data type. | |
* | |
* Usually defaults to 53. | |
*/ | |
rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG)); | |
/* | |
* The minimum number of significant decimal digits in a double-precision | |
* floating point. | |
* | |
* Usually defaults to 15. | |
*/ | |
rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG)); | |
/* | |
* The smallest possible exponent value in a double-precision floating | |
* point. | |
* | |
* Usually defaults to -1021. | |
*/ | |
rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP)); | |
/* | |
* The largest possible exponent value in a double-precision floating | |
* point. | |
* | |
* Usually defaults to 1024. | |
*/ | |
rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP)); | |
/* | |
* The smallest negative exponent in a double-precision floating point | |
* where 10 raised to this power minus 1. | |
* | |
* Usually defaults to -307. | |
*/ | |
rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP)); | |
/* | |
* The largest positive exponent in a double-precision floating point where | |
* 10 raised to this power minus 1. | |
* | |
* Usually defaults to 308. | |
*/ | |
rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP)); | |
/* | |
* The smallest positive normalized number in a double-precision floating point. | |
* | |
* Usually defaults to 2.2250738585072014e-308. | |
* | |
* If the platform supports denormalized numbers, | |
* there are numbers between zero and Float::MIN. | |
* 0.0.next_float returns the smallest positive floating point number | |
* including denormalized numbers. | |
*/ | |
rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN)); | |
/* | |
* The largest possible integer in a double-precision floating point number. | |
* | |
* Usually defaults to 1.7976931348623157e+308. | |
*/ | |
rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX)); | |
/* | |
* The difference between 1 and the smallest double-precision floating | |
* point number greater than 1. | |
* | |
* Usually defaults to 2.2204460492503131e-16. | |
*/ | |
rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON)); | |
/* | |
* An expression representing positive infinity. | |
*/ | |
rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(HUGE_VAL)); | |
/* | |
* An expression representing a value which is "not a number". | |
*/ | |
rb_define_const(rb_cFloat, "NAN", DBL2NUM(nan(""))); | |
rb_define_method(rb_cFloat, "to_s", flo_to_s, 0); | |
rb_define_alias(rb_cFloat, "inspect", "to_s"); | |
rb_define_method(rb_cFloat, "coerce", flo_coerce, 1); | |
rb_define_method(rb_cFloat, "+", rb_float_plus, 1); | |
rb_define_method(rb_cFloat, "-", rb_float_minus, 1); | |
rb_define_method(rb_cFloat, "*", rb_float_mul, 1); | |
rb_define_method(rb_cFloat, "/", rb_float_div, 1); | |
rb_define_method(rb_cFloat, "quo", flo_quo, 1); | |
rb_define_method(rb_cFloat, "fdiv", flo_quo, 1); | |
rb_define_method(rb_cFloat, "%", flo_mod, 1); | |
rb_define_method(rb_cFloat, "modulo", flo_mod, 1); | |
rb_define_method(rb_cFloat, "divmod", flo_divmod, 1); | |
rb_define_method(rb_cFloat, "**", rb_float_pow, 1); | |
rb_define_method(rb_cFloat, "==", flo_eq, 1); | |
rb_define_method(rb_cFloat, "===", flo_eq, 1); | |
rb_define_method(rb_cFloat, "<=>", flo_cmp, 1); | |
rb_define_method(rb_cFloat, ">", rb_float_gt, 1); | |
rb_define_method(rb_cFloat, ">=", flo_ge, 1); | |
rb_define_method(rb_cFloat, "<", flo_lt, 1); | |
rb_define_method(rb_cFloat, "<=", flo_le, 1); | |
rb_define_method(rb_cFloat, "eql?", flo_eql, 1); | |
rb_define_method(rb_cFloat, "hash", flo_hash, 0); | |
rb_define_method(rb_cFloat, "to_i", flo_to_i, 0); | |
rb_define_method(rb_cFloat, "to_int", flo_to_i, 0); | |
rb_define_method(rb_cFloat, "floor", flo_floor, -1); | |
rb_define_method(rb_cFloat, "ceil", flo_ceil, -1); | |
rb_define_method(rb_cFloat, "round", flo_round, -1); | |
rb_define_method(rb_cFloat, "truncate", flo_truncate, -1); | |
rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0); | |
rb_define_method(rb_cFloat, "infinite?", rb_flo_is_infinite_p, 0); | |
rb_define_method(rb_cFloat, "finite?", rb_flo_is_finite_p, 0); | |
rb_define_method(rb_cFloat, "next_float", flo_next_float, 0); | |
rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0); | |
} | |
#undef rb_float_value | |
double | |
rb_float_value(VALUE v) | |
{ | |
return rb_float_value_inline(v); | |
} | |
#undef rb_float_new | |
VALUE | |
rb_float_new(double d) | |
{ | |
return rb_float_new_inline(d); | |
} | |
#include "numeric.rbinc" |