Permalink
Cannot retrieve contributors at this time
13700 lines (11850 sloc)
384 KB
/********************************************************************** | |
gc.c - | |
$Author$ | |
created at: Tue Oct 5 09:44:46 JST 1993 | |
Copyright (C) 1993-2007 Yukihiro Matsumoto | |
Copyright (C) 2000 Network Applied Communication Laboratory, Inc. | |
Copyright (C) 2000 Information-technology Promotion Agency, Japan | |
**********************************************************************/ | |
#define rb_data_object_alloc rb_data_object_alloc | |
#define rb_data_typed_object_alloc rb_data_typed_object_alloc | |
#include "ruby/internal/config.h" | |
#ifdef _WIN32 | |
# include "ruby/ruby.h" | |
#endif | |
#include <signal.h> | |
#define sighandler_t ruby_sighandler_t | |
#ifndef _WIN32 | |
#include <unistd.h> | |
#include <sys/mman.h> | |
#endif | |
#include <setjmp.h> | |
#include <stdarg.h> | |
#include <stdio.h> | |
/* MALLOC_HEADERS_BEGIN */ | |
#ifndef HAVE_MALLOC_USABLE_SIZE | |
# ifdef _WIN32 | |
# define HAVE_MALLOC_USABLE_SIZE | |
# define malloc_usable_size(a) _msize(a) | |
# elif defined HAVE_MALLOC_SIZE | |
# define HAVE_MALLOC_USABLE_SIZE | |
# define malloc_usable_size(a) malloc_size(a) | |
# endif | |
#endif | |
#ifdef HAVE_MALLOC_USABLE_SIZE | |
# ifdef RUBY_ALTERNATIVE_MALLOC_HEADER | |
/* Alternative malloc header is included in ruby/missing.h */ | |
# elif defined(HAVE_MALLOC_H) | |
# include <malloc.h> | |
# elif defined(HAVE_MALLOC_NP_H) | |
# include <malloc_np.h> | |
# elif defined(HAVE_MALLOC_MALLOC_H) | |
# include <malloc/malloc.h> | |
# endif | |
#endif | |
#if !defined(PAGE_SIZE) && defined(HAVE_SYS_USER_H) | |
/* LIST_HEAD conflicts with sys/queue.h on macOS */ | |
# include <sys/user.h> | |
#endif | |
/* MALLOC_HEADERS_END */ | |
#ifdef HAVE_SYS_TIME_H | |
# include <sys/time.h> | |
#endif | |
#ifdef HAVE_SYS_RESOURCE_H | |
# include <sys/resource.h> | |
#endif | |
#if defined _WIN32 || defined __CYGWIN__ | |
# include <windows.h> | |
#elif defined(HAVE_POSIX_MEMALIGN) | |
#elif defined(HAVE_MEMALIGN) | |
# include <malloc.h> | |
#endif | |
#include <sys/types.h> | |
#ifdef __EMSCRIPTEN__ | |
#include <emscripten.h> | |
#endif | |
#undef LIST_HEAD /* ccan/list conflicts with BSD-origin sys/queue.h. */ | |
#include "constant.h" | |
#include "debug_counter.h" | |
#include "eval_intern.h" | |
#include "gc.h" | |
#include "id_table.h" | |
#include "internal.h" | |
#include "internal/class.h" | |
#include "internal/complex.h" | |
#include "internal/cont.h" | |
#include "internal/error.h" | |
#include "internal/eval.h" | |
#include "internal/gc.h" | |
#include "internal/hash.h" | |
#include "internal/imemo.h" | |
#include "internal/io.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/proc.h" | |
#include "internal/rational.h" | |
#include "internal/sanitizers.h" | |
#include "internal/struct.h" | |
#include "internal/symbol.h" | |
#include "internal/thread.h" | |
#include "internal/variable.h" | |
#include "internal/warnings.h" | |
#include "mjit.h" | |
#include "probes.h" | |
#include "regint.h" | |
#include "ruby/debug.h" | |
#include "ruby/io.h" | |
#include "ruby/re.h" | |
#include "ruby/st.h" | |
#include "ruby/thread.h" | |
#include "ruby/util.h" | |
#include "ruby_assert.h" | |
#include "ruby_atomic.h" | |
#include "symbol.h" | |
#include "transient_heap.h" | |
#include "vm_core.h" | |
#include "vm_sync.h" | |
#include "vm_callinfo.h" | |
#include "ractor_core.h" | |
#include "builtin.h" | |
#define rb_setjmp(env) RUBY_SETJMP(env) | |
#define rb_jmp_buf rb_jmpbuf_t | |
#undef rb_data_object_wrap | |
static inline struct rbimpl_size_mul_overflow_tag | |
size_add_overflow(size_t x, size_t y) | |
{ | |
size_t z; | |
bool p; | |
#if 0 | |
#elif __has_builtin(__builtin_add_overflow) | |
p = __builtin_add_overflow(x, y, &z); | |
#elif defined(DSIZE_T) | |
RB_GNUC_EXTENSION DSIZE_T dx = x; | |
RB_GNUC_EXTENSION DSIZE_T dy = y; | |
RB_GNUC_EXTENSION DSIZE_T dz = dx + dy; | |
p = dz > SIZE_MAX; | |
z = (size_t)dz; | |
#else | |
z = x + y; | |
p = z < y; | |
#endif | |
return (struct rbimpl_size_mul_overflow_tag) { p, z, }; | |
} | |
static inline struct rbimpl_size_mul_overflow_tag | |
size_mul_add_overflow(size_t x, size_t y, size_t z) /* x * y + z */ | |
{ | |
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); | |
struct rbimpl_size_mul_overflow_tag u = size_add_overflow(t.right, z); | |
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left, u.right }; | |
} | |
static inline struct rbimpl_size_mul_overflow_tag | |
size_mul_add_mul_overflow(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ | |
{ | |
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); | |
struct rbimpl_size_mul_overflow_tag u = rbimpl_size_mul_overflow(z, w); | |
struct rbimpl_size_mul_overflow_tag v = size_add_overflow(t.right, u.right); | |
return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left || v.left, v.right }; | |
} | |
PRINTF_ARGS(NORETURN(static void gc_raise(VALUE, const char*, ...)), 2, 3); | |
static inline size_t | |
size_mul_or_raise(size_t x, size_t y, VALUE exc) | |
{ | |
struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); | |
if (LIKELY(!t.left)) { | |
return t.right; | |
} | |
else if (rb_during_gc()) { | |
rb_memerror(); /* or...? */ | |
} | |
else { | |
gc_raise( | |
exc, | |
"integer overflow: %"PRIuSIZE | |
" * %"PRIuSIZE | |
" > %"PRIuSIZE, | |
x, y, (size_t)SIZE_MAX); | |
} | |
} | |
size_t | |
rb_size_mul_or_raise(size_t x, size_t y, VALUE exc) | |
{ | |
return size_mul_or_raise(x, y, exc); | |
} | |
static inline size_t | |
size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc) | |
{ | |
struct rbimpl_size_mul_overflow_tag t = size_mul_add_overflow(x, y, z); | |
if (LIKELY(!t.left)) { | |
return t.right; | |
} | |
else if (rb_during_gc()) { | |
rb_memerror(); /* or...? */ | |
} | |
else { | |
gc_raise( | |
exc, | |
"integer overflow: %"PRIuSIZE | |
" * %"PRIuSIZE | |
" + %"PRIuSIZE | |
" > %"PRIuSIZE, | |
x, y, z, (size_t)SIZE_MAX); | |
} | |
} | |
size_t | |
rb_size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc) | |
{ | |
return size_mul_add_or_raise(x, y, z, exc); | |
} | |
static inline size_t | |
size_mul_add_mul_or_raise(size_t x, size_t y, size_t z, size_t w, VALUE exc) | |
{ | |
struct rbimpl_size_mul_overflow_tag t = size_mul_add_mul_overflow(x, y, z, w); | |
if (LIKELY(!t.left)) { | |
return t.right; | |
} | |
else if (rb_during_gc()) { | |
rb_memerror(); /* or...? */ | |
} | |
else { | |
gc_raise( | |
exc, | |
"integer overflow: %"PRIdSIZE | |
" * %"PRIdSIZE | |
" + %"PRIdSIZE | |
" * %"PRIdSIZE | |
" > %"PRIdSIZE, | |
x, y, z, w, (size_t)SIZE_MAX); | |
} | |
} | |
#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL | |
/* trick the compiler into thinking a external signal handler uses this */ | |
volatile VALUE rb_gc_guarded_val; | |
volatile VALUE * | |
rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val) | |
{ | |
rb_gc_guarded_val = val; | |
return ptr; | |
} | |
#endif | |
#ifndef GC_HEAP_INIT_SLOTS | |
#define GC_HEAP_INIT_SLOTS 10000 | |
#endif | |
#ifndef GC_HEAP_FREE_SLOTS | |
#define GC_HEAP_FREE_SLOTS 4096 | |
#endif | |
#ifndef GC_HEAP_GROWTH_FACTOR | |
#define GC_HEAP_GROWTH_FACTOR 1.8 | |
#endif | |
#ifndef GC_HEAP_GROWTH_MAX_SLOTS | |
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */ | |
#endif | |
#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR | |
#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0 | |
#endif | |
#ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO | |
#define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.20 | |
#endif | |
#ifndef GC_HEAP_FREE_SLOTS_GOAL_RATIO | |
#define GC_HEAP_FREE_SLOTS_GOAL_RATIO 0.40 | |
#endif | |
#ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO | |
#define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.65 | |
#endif | |
#ifndef GC_MALLOC_LIMIT_MIN | |
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) | |
#endif | |
#ifndef GC_MALLOC_LIMIT_MAX | |
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */) | |
#endif | |
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR | |
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4 | |
#endif | |
#ifndef GC_OLDMALLOC_LIMIT_MIN | |
#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) | |
#endif | |
#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR | |
#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2 | |
#endif | |
#ifndef GC_OLDMALLOC_LIMIT_MAX | |
#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */) | |
#endif | |
#ifndef PRINT_MEASURE_LINE | |
#define PRINT_MEASURE_LINE 0 | |
#endif | |
#ifndef PRINT_ENTER_EXIT_TICK | |
#define PRINT_ENTER_EXIT_TICK 0 | |
#endif | |
#ifndef PRINT_ROOT_TICKS | |
#define PRINT_ROOT_TICKS 0 | |
#endif | |
#define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_MEASURE_LINE || PRINT_ROOT_TICKS) | |
#define TICK_TYPE 1 | |
typedef struct { | |
size_t heap_init_slots; | |
size_t heap_free_slots; | |
double growth_factor; | |
size_t growth_max_slots; | |
double heap_free_slots_min_ratio; | |
double heap_free_slots_goal_ratio; | |
double heap_free_slots_max_ratio; | |
double oldobject_limit_factor; | |
size_t malloc_limit_min; | |
size_t malloc_limit_max; | |
double malloc_limit_growth_factor; | |
size_t oldmalloc_limit_min; | |
size_t oldmalloc_limit_max; | |
double oldmalloc_limit_growth_factor; | |
VALUE gc_stress; | |
} ruby_gc_params_t; | |
static ruby_gc_params_t gc_params = { | |
GC_HEAP_INIT_SLOTS, | |
GC_HEAP_FREE_SLOTS, | |
GC_HEAP_GROWTH_FACTOR, | |
GC_HEAP_GROWTH_MAX_SLOTS, | |
GC_HEAP_FREE_SLOTS_MIN_RATIO, | |
GC_HEAP_FREE_SLOTS_GOAL_RATIO, | |
GC_HEAP_FREE_SLOTS_MAX_RATIO, | |
GC_HEAP_OLDOBJECT_LIMIT_FACTOR, | |
GC_MALLOC_LIMIT_MIN, | |
GC_MALLOC_LIMIT_MAX, | |
GC_MALLOC_LIMIT_GROWTH_FACTOR, | |
GC_OLDMALLOC_LIMIT_MIN, | |
GC_OLDMALLOC_LIMIT_MAX, | |
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR, | |
FALSE, | |
}; | |
/* GC_DEBUG: | |
* enable to embed GC debugging information. | |
*/ | |
#ifndef GC_DEBUG | |
#define GC_DEBUG 0 | |
#endif | |
/* RGENGC_DEBUG: | |
* 1: basic information | |
* 2: remember set operation | |
* 3: mark | |
* 4: | |
* 5: sweep | |
*/ | |
#ifndef RGENGC_DEBUG | |
#ifdef RUBY_DEVEL | |
#define RGENGC_DEBUG -1 | |
#else | |
#define RGENGC_DEBUG 0 | |
#endif | |
#endif | |
#if RGENGC_DEBUG < 0 && !defined(_MSC_VER) | |
# define RGENGC_DEBUG_ENABLED(level) (-(RGENGC_DEBUG) >= (level) && ruby_rgengc_debug >= (level)) | |
#elif defined(HAVE_VA_ARGS_MACRO) | |
# define RGENGC_DEBUG_ENABLED(level) ((RGENGC_DEBUG) >= (level)) | |
#else | |
# define RGENGC_DEBUG_ENABLED(level) 0 | |
#endif | |
int ruby_rgengc_debug; | |
/* RGENGC_CHECK_MODE | |
* 0: disable all assertions | |
* 1: enable assertions (to debug RGenGC) | |
* 2: enable internal consistency check at each GC (for debugging) | |
* 3: enable internal consistency check at each GC steps (for debugging) | |
* 4: enable liveness check | |
* 5: show all references | |
*/ | |
#ifndef RGENGC_CHECK_MODE | |
#define RGENGC_CHECK_MODE 0 | |
#endif | |
// Note: using RUBY_ASSERT_WHEN() extend a macro in expr (info by nobu). | |
#define GC_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(RGENGC_CHECK_MODE > 0, expr, #expr) | |
/* RGENGC_OLD_NEWOBJ_CHECK | |
* 0: disable all assertions | |
* >0: make a OLD object when new object creation. | |
* | |
* Make one OLD object per RGENGC_OLD_NEWOBJ_CHECK WB protected objects creation. | |
*/ | |
#ifndef RGENGC_OLD_NEWOBJ_CHECK | |
#define RGENGC_OLD_NEWOBJ_CHECK 0 | |
#endif | |
/* RGENGC_PROFILE | |
* 0: disable RGenGC profiling | |
* 1: enable profiling for basic information | |
* 2: enable profiling for each types | |
*/ | |
#ifndef RGENGC_PROFILE | |
#define RGENGC_PROFILE 0 | |
#endif | |
/* RGENGC_ESTIMATE_OLDMALLOC | |
* Enable/disable to estimate increase size of malloc'ed size by old objects. | |
* If estimation exceeds threshold, then will invoke full GC. | |
* 0: disable estimation. | |
* 1: enable estimation. | |
*/ | |
#ifndef RGENGC_ESTIMATE_OLDMALLOC | |
#define RGENGC_ESTIMATE_OLDMALLOC 1 | |
#endif | |
/* RGENGC_FORCE_MAJOR_GC | |
* Force major/full GC if this macro is not 0. | |
*/ | |
#ifndef RGENGC_FORCE_MAJOR_GC | |
#define RGENGC_FORCE_MAJOR_GC 0 | |
#endif | |
#ifndef GC_PROFILE_MORE_DETAIL | |
#define GC_PROFILE_MORE_DETAIL 0 | |
#endif | |
#ifndef GC_PROFILE_DETAIL_MEMORY | |
#define GC_PROFILE_DETAIL_MEMORY 0 | |
#endif | |
#ifndef GC_ENABLE_INCREMENTAL_MARK | |
#define GC_ENABLE_INCREMENTAL_MARK USE_RINCGC | |
#endif | |
#ifndef GC_ENABLE_LAZY_SWEEP | |
#define GC_ENABLE_LAZY_SWEEP 1 | |
#endif | |
#ifndef CALC_EXACT_MALLOC_SIZE | |
#define CALC_EXACT_MALLOC_SIZE USE_GC_MALLOC_OBJ_INFO_DETAILS | |
#endif | |
#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0 | |
#ifndef MALLOC_ALLOCATED_SIZE | |
#define MALLOC_ALLOCATED_SIZE 0 | |
#endif | |
#else | |
#define MALLOC_ALLOCATED_SIZE 0 | |
#endif | |
#ifndef MALLOC_ALLOCATED_SIZE_CHECK | |
#define MALLOC_ALLOCATED_SIZE_CHECK 0 | |
#endif | |
#ifndef GC_DEBUG_STRESS_TO_CLASS | |
#define GC_DEBUG_STRESS_TO_CLASS 0 | |
#endif | |
#ifndef RGENGC_OBJ_INFO | |
#define RGENGC_OBJ_INFO (RGENGC_DEBUG | RGENGC_CHECK_MODE) | |
#endif | |
typedef enum { | |
GPR_FLAG_NONE = 0x000, | |
/* major reason */ | |
GPR_FLAG_MAJOR_BY_NOFREE = 0x001, | |
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002, | |
GPR_FLAG_MAJOR_BY_SHADY = 0x004, | |
GPR_FLAG_MAJOR_BY_FORCE = 0x008, | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020, | |
#endif | |
GPR_FLAG_MAJOR_MASK = 0x0ff, | |
/* gc reason */ | |
GPR_FLAG_NEWOBJ = 0x100, | |
GPR_FLAG_MALLOC = 0x200, | |
GPR_FLAG_METHOD = 0x400, | |
GPR_FLAG_CAPI = 0x800, | |
GPR_FLAG_STRESS = 0x1000, | |
/* others */ | |
GPR_FLAG_IMMEDIATE_SWEEP = 0x2000, | |
GPR_FLAG_HAVE_FINALIZE = 0x4000, | |
GPR_FLAG_IMMEDIATE_MARK = 0x8000, | |
GPR_FLAG_FULL_MARK = 0x10000, | |
GPR_FLAG_COMPACT = 0x20000, | |
GPR_DEFAULT_REASON = | |
(GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK | | |
GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_CAPI), | |
} gc_profile_record_flag; | |
typedef struct gc_profile_record { | |
unsigned int flags; | |
double gc_time; | |
double gc_invoke_time; | |
size_t heap_total_objects; | |
size_t heap_use_size; | |
size_t heap_total_size; | |
size_t moved_objects; | |
#if GC_PROFILE_MORE_DETAIL | |
double gc_mark_time; | |
double gc_sweep_time; | |
size_t heap_use_pages; | |
size_t heap_live_objects; | |
size_t heap_free_objects; | |
size_t allocate_increase; | |
size_t allocate_limit; | |
double prepare_time; | |
size_t removing_objects; | |
size_t empty_objects; | |
#if GC_PROFILE_DETAIL_MEMORY | |
long maxrss; | |
long minflt; | |
long majflt; | |
#endif | |
#endif | |
#if MALLOC_ALLOCATED_SIZE | |
size_t allocated_size; | |
#endif | |
#if RGENGC_PROFILE > 0 | |
size_t old_objects; | |
size_t remembered_normal_objects; | |
size_t remembered_shady_objects; | |
#endif | |
} gc_profile_record; | |
#define FL_FROM_FREELIST FL_USER0 | |
struct RMoved { | |
VALUE flags; | |
VALUE dummy; | |
VALUE destination; | |
}; | |
#define RMOVED(obj) ((struct RMoved *)(obj)) | |
#if (SIZEOF_DOUBLE > SIZEOF_VALUE) && (defined(_MSC_VER) || defined(__CYGWIN__)) | |
#pragma pack(push, 4) /* == SIZEOF_VALUE: magic for reducing sizeof(RVALUE): 24 -> 20 */ | |
#endif | |
typedef struct RVALUE { | |
union { | |
struct { | |
VALUE flags; /* always 0 for freed obj */ | |
struct RVALUE *next; | |
} free; | |
struct RMoved moved; | |
struct RBasic basic; | |
struct RObject object; | |
struct RClass klass; | |
struct RFloat flonum; | |
struct RString string; | |
struct RArray array; | |
struct RRegexp regexp; | |
struct RHash hash; | |
struct RData data; | |
struct RTypedData typeddata; | |
struct RStruct rstruct; | |
struct RBignum bignum; | |
struct RFile file; | |
struct RMatch match; | |
struct RRational rational; | |
struct RComplex complex; | |
struct RSymbol symbol; | |
union { | |
rb_cref_t cref; | |
struct vm_svar svar; | |
struct vm_throw_data throw_data; | |
struct vm_ifunc ifunc; | |
struct MEMO memo; | |
struct rb_method_entry_struct ment; | |
const rb_iseq_t iseq; | |
rb_env_t env; | |
struct rb_imemo_tmpbuf_struct alloc; | |
rb_ast_t ast; | |
} imemo; | |
struct { | |
struct RBasic basic; | |
VALUE v1; | |
VALUE v2; | |
VALUE v3; | |
} values; | |
} as; | |
#if GC_DEBUG | |
const char *file; | |
int line; | |
#endif | |
} RVALUE; | |
#if (SIZEOF_DOUBLE > SIZEOF_VALUE) && (defined(_MSC_VER) || defined(__CYGWIN__)) | |
#pragma pack(pop) | |
#endif | |
typedef uintptr_t bits_t; | |
enum { | |
BITS_SIZE = sizeof(bits_t), | |
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT ) | |
}; | |
#define popcount_bits rb_popcount_intptr | |
struct heap_page_header { | |
struct heap_page *page; | |
}; | |
struct heap_page_body { | |
struct heap_page_header header; | |
/* char gap[]; */ | |
/* RVALUE values[]; */ | |
}; | |
struct gc_list { | |
VALUE *varptr; | |
struct gc_list *next; | |
}; | |
#define STACK_CHUNK_SIZE 500 | |
typedef struct stack_chunk { | |
VALUE data[STACK_CHUNK_SIZE]; | |
struct stack_chunk *next; | |
} stack_chunk_t; | |
typedef struct mark_stack { | |
stack_chunk_t *chunk; | |
stack_chunk_t *cache; | |
int index; | |
int limit; | |
size_t cache_size; | |
size_t unused_cache_size; | |
} mark_stack_t; | |
#if USE_RVARGC | |
#define SIZE_POOL_COUNT 4 | |
#else | |
#define SIZE_POOL_COUNT 1 | |
#endif | |
#define SIZE_POOL_EDEN_HEAP(size_pool) (&(size_pool)->eden_heap) | |
#define SIZE_POOL_TOMB_HEAP(size_pool) (&(size_pool)->tomb_heap) | |
typedef struct rb_heap_struct { | |
struct heap_page *free_pages; | |
struct list_head pages; | |
struct heap_page *sweeping_page; /* iterator for .pages */ | |
struct heap_page *compact_cursor; | |
RVALUE * compact_cursor_index; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
struct heap_page *pooled_pages; | |
#endif | |
size_t total_pages; /* total page count in a heap */ | |
size_t total_slots; /* total slot count (about total_pages * HEAP_PAGE_OBJ_LIMIT) */ | |
} rb_heap_t; | |
typedef struct rb_size_pool_struct { | |
#if USE_RVARGC | |
RVALUE *freelist; | |
struct heap_page *using_page; | |
#endif | |
short slot_size; | |
size_t allocatable_pages; | |
#if USE_RVARGC | |
/* Sweeping statistics */ | |
size_t freed_slots; | |
size_t empty_slots; | |
/* Global statistics */ | |
size_t force_major_gc_count; | |
#endif | |
rb_heap_t eden_heap; | |
rb_heap_t tomb_heap; | |
} rb_size_pool_t; | |
enum gc_mode { | |
gc_mode_none, | |
gc_mode_marking, | |
gc_mode_sweeping | |
}; | |
typedef struct rb_objspace { | |
struct { | |
size_t limit; | |
size_t increase; | |
#if MALLOC_ALLOCATED_SIZE | |
size_t allocated_size; | |
size_t allocations; | |
#endif | |
} malloc_params; | |
struct { | |
unsigned int mode : 2; | |
unsigned int immediate_sweep : 1; | |
unsigned int dont_gc : 1; | |
unsigned int dont_incremental : 1; | |
unsigned int during_gc : 1; | |
unsigned int during_compacting : 1; | |
unsigned int gc_stressful: 1; | |
unsigned int has_hook: 1; | |
unsigned int during_minor_gc : 1; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
unsigned int during_incremental_marking : 1; | |
#endif | |
} flags; | |
rb_event_flag_t hook_events; | |
size_t total_allocated_objects; | |
VALUE next_object_id; | |
rb_size_pool_t size_pools[SIZE_POOL_COUNT]; | |
struct { | |
rb_atomic_t finalizing; | |
} atomic_flags; | |
mark_stack_t mark_stack; | |
size_t marked_slots; | |
struct { | |
struct heap_page **sorted; | |
size_t allocated_pages; | |
size_t allocatable_pages; | |
size_t sorted_length; | |
RVALUE *range[2]; | |
size_t freeable_pages; | |
/* final */ | |
size_t final_slots; | |
VALUE deferred_final; | |
} heap_pages; | |
st_table *finalizer_table; | |
struct { | |
int run; | |
unsigned int latest_gc_info; | |
gc_profile_record *records; | |
gc_profile_record *current_record; | |
size_t next_index; | |
size_t size; | |
#if GC_PROFILE_MORE_DETAIL | |
double prepare_time; | |
#endif | |
double invoke_time; | |
size_t minor_gc_count; | |
size_t major_gc_count; | |
size_t compact_count; | |
size_t read_barrier_faults; | |
#if RGENGC_PROFILE > 0 | |
size_t total_generated_normal_object_count; | |
size_t total_generated_shady_object_count; | |
size_t total_shade_operation_count; | |
size_t total_promoted_count; | |
size_t total_remembered_normal_object_count; | |
size_t total_remembered_shady_object_count; | |
#if RGENGC_PROFILE >= 2 | |
size_t generated_normal_object_count_types[RUBY_T_MASK]; | |
size_t generated_shady_object_count_types[RUBY_T_MASK]; | |
size_t shade_operation_count_types[RUBY_T_MASK]; | |
size_t promoted_types[RUBY_T_MASK]; | |
size_t remembered_normal_object_count_types[RUBY_T_MASK]; | |
size_t remembered_shady_object_count_types[RUBY_T_MASK]; | |
#endif | |
#endif /* RGENGC_PROFILE */ | |
/* temporary profiling space */ | |
double gc_sweep_start_time; | |
size_t total_allocated_objects_at_gc_start; | |
size_t heap_used_at_gc_start; | |
/* basic statistics */ | |
size_t count; | |
size_t total_freed_objects; | |
size_t total_allocated_pages; | |
size_t total_freed_pages; | |
} profile; | |
struct gc_list *global_list; | |
VALUE gc_stress_mode; | |
struct { | |
VALUE parent_object; | |
int need_major_gc; | |
size_t last_major_gc; | |
size_t uncollectible_wb_unprotected_objects; | |
size_t uncollectible_wb_unprotected_objects_limit; | |
size_t old_objects; | |
size_t old_objects_limit; | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
size_t oldmalloc_increase; | |
size_t oldmalloc_increase_limit; | |
#endif | |
#if RGENGC_CHECK_MODE >= 2 | |
struct st_table *allrefs_table; | |
size_t error_count; | |
#endif | |
} rgengc; | |
struct { | |
size_t considered_count_table[T_MASK]; | |
size_t moved_count_table[T_MASK]; | |
size_t total_moved; | |
} rcompactor; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
struct { | |
size_t pooled_slots; | |
size_t step_slots; | |
} rincgc; | |
#endif | |
st_table *id_to_obj_tbl; | |
st_table *obj_to_id_tbl; | |
#if GC_DEBUG_STRESS_TO_CLASS | |
VALUE stress_to_class; | |
#endif | |
} rb_objspace_t; | |
/* default tiny heap size: 16KB */ | |
#define HEAP_PAGE_ALIGN_LOG 14 | |
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod)) | |
enum { | |
HEAP_PAGE_ALIGN = (1UL << HEAP_PAGE_ALIGN_LOG), | |
HEAP_PAGE_ALIGN_MASK = (~(~0UL << HEAP_PAGE_ALIGN_LOG)), | |
HEAP_PAGE_SIZE = HEAP_PAGE_ALIGN, | |
HEAP_PAGE_OBJ_LIMIT = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header))/sizeof(struct RVALUE)), | |
HEAP_PAGE_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_PAGE_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH), | |
HEAP_PAGE_BITMAP_SIZE = (BITS_SIZE * HEAP_PAGE_BITMAP_LIMIT), | |
HEAP_PAGE_BITMAP_PLANES = 4 /* RGENGC: mark, unprotected, uncollectible, marking */ | |
}; | |
#define HEAP_PAGE_ALIGN (1 << HEAP_PAGE_ALIGN_LOG) | |
#define HEAP_PAGE_SIZE HEAP_PAGE_ALIGN | |
#ifdef HAVE_MMAP | |
# if HAVE_CONST_PAGE_SIZE | |
/* If we have the HEAP_PAGE and it is a constant, then we can directly use it. */ | |
static const bool USE_MMAP_ALIGNED_ALLOC = (PAGE_SIZE <= HEAP_PAGE_SIZE); | |
# elif defined(PAGE_MAX_SIZE) && (PAGE_MAX_SIZE <= HEAP_PAGE_SIZE) | |
/* PAGE_SIZE <= HEAP_PAGE_SIZE */ | |
static const bool USE_MMAP_ALIGNED_ALLOC = true; | |
# else | |
/* Otherwise, fall back to determining if we can use mmap during runtime. */ | |
# define USE_MMAP_ALIGNED_ALLOC (use_mmap_aligned_alloc != false) | |
static bool use_mmap_aligned_alloc; | |
# endif | |
#elif !defined(__MINGW32__) && !defined(_WIN32) | |
static const bool USE_MMAP_ALIGNED_ALLOC = false; | |
#endif | |
struct heap_page { | |
short total_slots; | |
short free_slots; | |
short pinned_slots; | |
short final_slots; | |
struct { | |
unsigned int before_sweep : 1; | |
unsigned int has_remembered_objects : 1; | |
unsigned int has_uncollectible_shady_objects : 1; | |
unsigned int in_tomb : 1; | |
} flags; | |
rb_size_pool_t *size_pool; | |
struct heap_page *free_next; | |
RVALUE *start; | |
RVALUE *freelist; | |
struct list_node page_node; | |
bits_t wb_unprotected_bits[HEAP_PAGE_BITMAP_LIMIT]; | |
/* the following three bitmaps are cleared at the beginning of full GC */ | |
bits_t mark_bits[HEAP_PAGE_BITMAP_LIMIT]; | |
bits_t uncollectible_bits[HEAP_PAGE_BITMAP_LIMIT]; | |
bits_t marking_bits[HEAP_PAGE_BITMAP_LIMIT]; | |
/* If set, the object is not movable */ | |
bits_t pinned_bits[HEAP_PAGE_BITMAP_LIMIT]; | |
}; | |
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_PAGE_ALIGN_MASK))) | |
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header) | |
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page) | |
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_PAGE_ALIGN_MASK)/sizeof(RVALUE)) | |
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH ) | |
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1)) | |
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p)) | |
/* Bitmap Operations */ | |
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p)) | |
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p)) | |
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p)) | |
/* getting bitmap */ | |
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0]) | |
#define GET_HEAP_PINNED_BITS(x) (&GET_HEAP_PAGE(x)->pinned_bits[0]) | |
#define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0]) | |
#define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0]) | |
#define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0]) | |
/* Aliases */ | |
#define rb_objspace (*rb_objspace_of(GET_VM())) | |
#define rb_objspace_of(vm) ((vm)->objspace) | |
#define ruby_initial_gc_stress gc_params.gc_stress | |
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress; | |
#define malloc_limit objspace->malloc_params.limit | |
#define malloc_increase objspace->malloc_params.increase | |
#define malloc_allocated_size objspace->malloc_params.allocated_size | |
#define heap_pages_sorted objspace->heap_pages.sorted | |
#define heap_allocated_pages objspace->heap_pages.allocated_pages | |
#define heap_pages_sorted_length objspace->heap_pages.sorted_length | |
#define heap_pages_lomem objspace->heap_pages.range[0] | |
#define heap_pages_himem objspace->heap_pages.range[1] | |
#define heap_pages_freeable_pages objspace->heap_pages.freeable_pages | |
#define heap_pages_final_slots objspace->heap_pages.final_slots | |
#define heap_pages_deferred_final objspace->heap_pages.deferred_final | |
#define size_pools objspace->size_pools | |
#define during_gc objspace->flags.during_gc | |
#define finalizing objspace->atomic_flags.finalizing | |
#define finalizer_table objspace->finalizer_table | |
#define global_list objspace->global_list | |
#define ruby_gc_stressful objspace->flags.gc_stressful | |
#define ruby_gc_stress_mode objspace->gc_stress_mode | |
#if GC_DEBUG_STRESS_TO_CLASS | |
#define stress_to_class objspace->stress_to_class | |
#else | |
#define stress_to_class 0 | |
#endif | |
#if 0 | |
#define dont_gc_on() (fprintf(stderr, "dont_gc_on@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 1) | |
#define dont_gc_off() (fprintf(stderr, "dont_gc_off@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 0) | |
#define dont_gc_set(b) (fprintf(stderr, "dont_gc_set(%d)@%s:%d\n", __FILE__, __LINE__), (int)b), objspace->flags.dont_gc = (b)) | |
#define dont_gc_val() (objspace->flags.dont_gc) | |
#else | |
#define dont_gc_on() (objspace->flags.dont_gc = 1) | |
#define dont_gc_off() (objspace->flags.dont_gc = 0) | |
#define dont_gc_set(b) (((int)b), objspace->flags.dont_gc = (b)) | |
#define dont_gc_val() (objspace->flags.dont_gc) | |
#endif | |
static inline enum gc_mode | |
gc_mode_verify(enum gc_mode mode) | |
{ | |
#if RGENGC_CHECK_MODE > 0 | |
switch (mode) { | |
case gc_mode_none: | |
case gc_mode_marking: | |
case gc_mode_sweeping: | |
break; | |
default: | |
rb_bug("gc_mode_verify: unreachable (%d)", (int)mode); | |
} | |
#endif | |
return mode; | |
} | |
static inline bool | |
has_sweeping_pages(rb_objspace_t *objspace) | |
{ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
if (size_pools[i].eden_heap.sweeping_page) { | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
static inline size_t | |
heap_eden_total_pages(rb_objspace_t *objspace) | |
{ | |
size_t count = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
count += size_pools[i].eden_heap.total_pages; | |
} | |
return count; | |
} | |
static inline size_t | |
heap_eden_total_slots(rb_objspace_t *objspace) | |
{ | |
size_t count = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
count += size_pools[i].eden_heap.total_slots; | |
} | |
return count; | |
} | |
static inline size_t | |
heap_tomb_total_pages(rb_objspace_t *objspace) | |
{ | |
size_t count = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
count += size_pools[i].tomb_heap.total_pages; | |
} | |
return count; | |
} | |
static inline size_t | |
heap_allocatable_pages(rb_objspace_t *objspace) | |
{ | |
size_t count = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
count += size_pools[i].allocatable_pages; | |
} | |
return count; | |
} | |
static inline size_t | |
heap_allocatable_slots(rb_objspace_t *objspace) | |
{ | |
size_t count = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
int slot_size_multiple = size_pool->slot_size / sizeof(RVALUE); | |
count += size_pool->allocatable_pages * HEAP_PAGE_OBJ_LIMIT / slot_size_multiple; | |
} | |
return count; | |
} | |
#define gc_mode(objspace) gc_mode_verify((enum gc_mode)(objspace)->flags.mode) | |
#define gc_mode_set(objspace, mode) ((objspace)->flags.mode = (unsigned int)gc_mode_verify(mode)) | |
#define is_marking(objspace) (gc_mode(objspace) == gc_mode_marking) | |
#define is_sweeping(objspace) (gc_mode(objspace) == gc_mode_sweeping) | |
#define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE) | |
#if GC_ENABLE_INCREMENTAL_MARK | |
#define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE) | |
#else | |
#define is_incremental_marking(objspace) FALSE | |
#endif | |
#if GC_ENABLE_INCREMENTAL_MARK | |
#define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE) | |
#else | |
#define will_be_incremental_marking(objspace) FALSE | |
#endif | |
#define is_lazy_sweeping(objspace) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(objspace)) | |
#if SIZEOF_LONG == SIZEOF_VOIDP | |
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG) | |
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */ | |
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP | |
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2) | |
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \ | |
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1)) | |
#else | |
# error not supported | |
#endif | |
#define RANY(o) ((RVALUE*)(o)) | |
struct RZombie { | |
struct RBasic basic; | |
VALUE next; | |
void (*dfree)(void *); | |
void *data; | |
}; | |
#define RZOMBIE(o) ((struct RZombie *)(o)) | |
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory] | |
#if RUBY_MARK_FREE_DEBUG | |
int ruby_gc_debug_indent = 0; | |
#endif | |
VALUE rb_mGC; | |
int ruby_disable_gc = 0; | |
int ruby_enable_autocompact = 0; | |
void rb_iseq_mark(const rb_iseq_t *iseq); | |
void rb_iseq_update_references(rb_iseq_t *iseq); | |
void rb_iseq_free(const rb_iseq_t *iseq); | |
size_t rb_iseq_memsize(const rb_iseq_t *iseq); | |
void rb_vm_update_references(void *ptr); | |
void rb_gcdebug_print_obj_condition(VALUE obj); | |
static VALUE define_final0(VALUE obj, VALUE block); | |
NORETURN(static void *gc_vraise(void *ptr)); | |
NORETURN(static void gc_raise(VALUE exc, const char *fmt, ...)); | |
NORETURN(static void negative_size_allocation_error(const char *)); | |
static void init_mark_stack(mark_stack_t *stack); | |
static int ready_to_gc(rb_objspace_t *objspace); | |
static int garbage_collect(rb_objspace_t *, unsigned int reason); | |
static int gc_start(rb_objspace_t *objspace, unsigned int reason); | |
static void gc_rest(rb_objspace_t *objspace); | |
enum gc_enter_event { | |
gc_enter_event_start, | |
gc_enter_event_mark_continue, | |
gc_enter_event_sweep_continue, | |
gc_enter_event_rest, | |
gc_enter_event_finalizer, | |
gc_enter_event_rb_memerror, | |
}; | |
static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev); | |
static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev); | |
static void gc_marks(rb_objspace_t *objspace, int full_mark); | |
static void gc_marks_start(rb_objspace_t *objspace, int full); | |
static int gc_marks_finish(rb_objspace_t *objspace); | |
static void gc_marks_rest(rb_objspace_t *objspace); | |
static void gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); | |
static void gc_sweep(rb_objspace_t *objspace); | |
static void gc_sweep_start(rb_objspace_t *objspace); | |
static void gc_sweep_finish(rb_objspace_t *objspace); | |
static int gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); | |
static void gc_sweep_rest(rb_objspace_t *objspace); | |
static void gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); | |
static inline void gc_mark(rb_objspace_t *objspace, VALUE ptr); | |
static inline void gc_pin(rb_objspace_t *objspace, VALUE ptr); | |
static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE ptr); | |
static void gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr); | |
NO_SANITIZE("memory", static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr)); | |
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr); | |
static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count); | |
static int gc_mark_stacked_objects_all(rb_objspace_t *); | |
static void gc_grey(rb_objspace_t *objspace, VALUE ptr); | |
static inline int gc_mark_set(rb_objspace_t *objspace, VALUE obj); | |
NO_SANITIZE("memory", static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)); | |
static void push_mark_stack(mark_stack_t *, VALUE); | |
static int pop_mark_stack(mark_stack_t *, VALUE *); | |
static size_t mark_stack_size(mark_stack_t *stack); | |
static void shrink_stack_chunk_cache(mark_stack_t *stack); | |
static size_t obj_memsize_of(VALUE obj, int use_all_types); | |
static void gc_verify_internal_consistency(rb_objspace_t *objspace); | |
static int gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj); | |
static int gc_verify_heap_pages(rb_objspace_t *objspace); | |
static void gc_stress_set(rb_objspace_t *objspace, VALUE flag); | |
static VALUE gc_disable_no_rest(rb_objspace_t *); | |
static double getrusage_time(void); | |
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason); | |
static inline void gc_prof_timer_start(rb_objspace_t *); | |
static inline void gc_prof_timer_stop(rb_objspace_t *); | |
static inline void gc_prof_mark_timer_start(rb_objspace_t *); | |
static inline void gc_prof_mark_timer_stop(rb_objspace_t *); | |
static inline void gc_prof_sweep_timer_start(rb_objspace_t *); | |
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *); | |
static inline void gc_prof_set_malloc_info(rb_objspace_t *); | |
static inline void gc_prof_set_heap_info(rb_objspace_t *); | |
#define TYPED_UPDATE_IF_MOVED(_objspace, _type, _thing) do { \ | |
if (gc_object_moved_p(_objspace, (VALUE)_thing)) { \ | |
*((_type *)(&_thing)) = (_type)RMOVED((_thing))->destination; \ | |
} \ | |
} while (0) | |
#define UPDATE_IF_MOVED(_objspace, _thing) TYPED_UPDATE_IF_MOVED(_objspace, VALUE, _thing) | |
#define gc_prof_record(objspace) (objspace)->profile.current_record | |
#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record) | |
#ifdef HAVE_VA_ARGS_MACRO | |
# define gc_report(level, objspace, ...) \ | |
if (!RGENGC_DEBUG_ENABLED(level)) {} else gc_report_body(level, objspace, __VA_ARGS__) | |
#else | |
# define gc_report if (!RGENGC_DEBUG_ENABLED(0)) {} else gc_report_body | |
#endif | |
PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4); | |
static const char *obj_info(VALUE obj); | |
static const char *obj_type_name(VALUE obj); | |
/* | |
* 1 - TSC (H/W Time Stamp Counter) | |
* 2 - getrusage | |
*/ | |
#ifndef TICK_TYPE | |
#define TICK_TYPE 1 | |
#endif | |
#if USE_TICK_T | |
#if TICK_TYPE == 1 | |
/* the following code is only for internal tuning. */ | |
/* Source code to use RDTSC is quoted and modified from | |
* http://www.mcs.anl.gov/~kazutomo/rdtsc.html | |
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov> | |
*/ | |
#if defined(__GNUC__) && defined(__i386__) | |
typedef unsigned long long tick_t; | |
#define PRItick "llu" | |
static inline tick_t | |
tick(void) | |
{ | |
unsigned long long int x; | |
__asm__ __volatile__ ("rdtsc" : "=A" (x)); | |
return x; | |
} | |
#elif defined(__GNUC__) && defined(__x86_64__) | |
typedef unsigned long long tick_t; | |
#define PRItick "llu" | |
static __inline__ tick_t | |
tick(void) | |
{ | |
unsigned long hi, lo; | |
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); | |
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32); | |
} | |
#elif defined(__powerpc64__) && GCC_VERSION_SINCE(4,8,0) | |
typedef unsigned long long tick_t; | |
#define PRItick "llu" | |
static __inline__ tick_t | |
tick(void) | |
{ | |
unsigned long long val = __builtin_ppc_get_timebase(); | |
return val; | |
} | |
#elif defined(__aarch64__) && defined(__GNUC__) | |
typedef unsigned long tick_t; | |
#define PRItick "lu" | |
static __inline__ tick_t | |
tick(void) | |
{ | |
unsigned long val; | |
__asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r" (val)); | |
return val; | |
} | |
#elif defined(_WIN32) && defined(_MSC_VER) | |
#include <intrin.h> | |
typedef unsigned __int64 tick_t; | |
#define PRItick "llu" | |
static inline tick_t | |
tick(void) | |
{ | |
return __rdtsc(); | |
} | |
#else /* use clock */ | |
typedef clock_t tick_t; | |
#define PRItick "llu" | |
static inline tick_t | |
tick(void) | |
{ | |
return clock(); | |
} | |
#endif /* TSC */ | |
#elif TICK_TYPE == 2 | |
typedef double tick_t; | |
#define PRItick "4.9f" | |
static inline tick_t | |
tick(void) | |
{ | |
return getrusage_time(); | |
} | |
#else /* TICK_TYPE */ | |
#error "choose tick type" | |
#endif /* TICK_TYPE */ | |
#define MEASURE_LINE(expr) do { \ | |
volatile tick_t start_time = tick(); \ | |
volatile tick_t end_time; \ | |
expr; \ | |
end_time = tick(); \ | |
fprintf(stderr, "0\t%"PRItick"\t%s\n", end_time - start_time, #expr); \ | |
} while (0) | |
#else /* USE_TICK_T */ | |
#define MEASURE_LINE(expr) expr | |
#endif /* USE_TICK_T */ | |
#define FL_CHECK2(name, x, pred) \ | |
((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? \ | |
(rb_bug(name": SPECIAL_CONST (%p)", (void *)(x)), 0) : (pred)) | |
#define FL_TEST2(x,f) FL_CHECK2("FL_TEST2", x, FL_TEST_RAW((x),(f)) != 0) | |
#define FL_SET2(x,f) FL_CHECK2("FL_SET2", x, RBASIC(x)->flags |= (f)) | |
#define FL_UNSET2(x,f) FL_CHECK2("FL_UNSET2", x, RBASIC(x)->flags &= ~(f)) | |
#define RVALUE_MARK_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj)) | |
#define RVALUE_PIN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), (obj)) | |
#define RVALUE_PAGE_MARKED(page, obj) MARKED_IN_BITMAP((page)->mark_bits, (obj)) | |
#define RVALUE_WB_UNPROTECTED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj)) | |
#define RVALUE_UNCOLLECTIBLE_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj)) | |
#define RVALUE_MARKING_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj)) | |
#define RVALUE_PAGE_WB_UNPROTECTED(page, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj)) | |
#define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj)) | |
#define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj)) | |
#define RVALUE_OLD_AGE 3 | |
#define RVALUE_AGE_SHIFT 5 /* FL_PROMOTED0 bit */ | |
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj); | |
static int rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj); | |
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj); | |
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap); | |
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap); | |
static inline int | |
RVALUE_FLAGS_AGE(VALUE flags) | |
{ | |
return (int)((flags & (FL_PROMOTED0 | FL_PROMOTED1)) >> RVALUE_AGE_SHIFT); | |
} | |
static int | |
check_rvalue_consistency_force(const VALUE obj, int terminate) | |
{ | |
int err = 0; | |
rb_objspace_t *objspace = &rb_objspace; | |
RB_VM_LOCK_ENTER_NO_BARRIER(); | |
{ | |
if (SPECIAL_CONST_P(obj)) { | |
fprintf(stderr, "check_rvalue_consistency: %p is a special const.\n", (void *)obj); | |
err++; | |
} | |
else if (!is_pointer_to_heap(objspace, (void *)obj)) { | |
/* check if it is in tomb_pages */ | |
struct heap_page *page = NULL; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
list_for_each(&size_pool->tomb_heap.pages, page, page_node) { | |
if (&page->start[0] <= (RVALUE *)obj && | |
(uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * size_pool->slot_size))) { | |
fprintf(stderr, "check_rvalue_consistency: %p is in a tomb_heap (%p).\n", | |
(void *)obj, (void *)page); | |
err++; | |
goto skip; | |
} | |
} | |
} | |
bp(); | |
fprintf(stderr, "check_rvalue_consistency: %p is not a Ruby object.\n", (void *)obj); | |
err++; | |
skip: | |
; | |
} | |
else { | |
const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0; | |
const int uncollectible_bit = RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0; | |
const int mark_bit = RVALUE_MARK_BITMAP(obj) != 0; | |
const int marking_bit = RVALUE_MARKING_BITMAP(obj) != 0, remembered_bit = marking_bit; | |
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags); | |
if (GET_HEAP_PAGE(obj)->flags.in_tomb) { | |
fprintf(stderr, "check_rvalue_consistency: %s is in tomb page.\n", obj_info(obj)); | |
err++; | |
} | |
if (BUILTIN_TYPE(obj) == T_NONE) { | |
fprintf(stderr, "check_rvalue_consistency: %s is T_NONE.\n", obj_info(obj)); | |
err++; | |
} | |
if (BUILTIN_TYPE(obj) == T_ZOMBIE) { | |
fprintf(stderr, "check_rvalue_consistency: %s is T_ZOMBIE.\n", obj_info(obj)); | |
err++; | |
} | |
obj_memsize_of((VALUE)obj, FALSE); | |
/* check generation | |
* | |
* OLD == age == 3 && old-bitmap && mark-bit (except incremental marking) | |
*/ | |
if (age > 0 && wb_unprotected_bit) { | |
fprintf(stderr, "check_rvalue_consistency: %s is not WB protected, but age is %d > 0.\n", obj_info(obj), age); | |
err++; | |
} | |
if (!is_marking(objspace) && uncollectible_bit && !mark_bit) { | |
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.\n", obj_info(obj)); | |
err++; | |
} | |
if (!is_full_marking(objspace)) { | |
if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) { | |
fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.\n", | |
obj_info(obj), age); | |
err++; | |
} | |
if (remembered_bit && age != RVALUE_OLD_AGE) { | |
fprintf(stderr, "check_rvalue_consistency: %s is remembered, but not old (age: %d).\n", | |
obj_info(obj), age); | |
err++; | |
} | |
} | |
/* | |
* check coloring | |
* | |
* marking:false marking:true | |
* marked:false white *invalid* | |
* marked:true black grey | |
*/ | |
if (is_incremental_marking(objspace) && marking_bit) { | |
if (!is_marking(objspace) && !mark_bit) { | |
fprintf(stderr, "check_rvalue_consistency: %s is marking, but not marked.\n", obj_info(obj)); | |
err++; | |
} | |
} | |
} | |
} | |
RB_VM_LOCK_LEAVE_NO_BARRIER(); | |
if (err > 0 && terminate) { | |
rb_bug("check_rvalue_consistency_force: there is %d errors.", err); | |
} | |
return err; | |
} | |
#if RGENGC_CHECK_MODE == 0 | |
static inline VALUE | |
check_rvalue_consistency(const VALUE obj) | |
{ | |
return obj; | |
} | |
#else | |
static VALUE | |
check_rvalue_consistency(const VALUE obj) | |
{ | |
check_rvalue_consistency_force(obj, TRUE); | |
return obj; | |
} | |
#endif | |
static inline int | |
gc_object_moved_p(rb_objspace_t * objspace, VALUE obj) | |
{ | |
if (RB_SPECIAL_CONST_P(obj)) { | |
return FALSE; | |
} | |
else { | |
void *poisoned = asan_poisoned_object_p(obj); | |
asan_unpoison_object(obj, false); | |
int ret = BUILTIN_TYPE(obj) == T_MOVED; | |
/* Re-poison slot if it's not the one we want */ | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); | |
asan_poison_object(obj); | |
} | |
return ret; | |
} | |
} | |
static inline int | |
RVALUE_MARKED(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_MARK_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_PINNED(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_PIN_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_WB_UNPROTECTED(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_MARKING(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_MARKING_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_REMEMBERED(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_MARKING_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_UNCOLLECTIBLE(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0; | |
} | |
static inline int | |
RVALUE_OLD_P_RAW(VALUE obj) | |
{ | |
const VALUE promoted = FL_PROMOTED0 | FL_PROMOTED1; | |
return (RBASIC(obj)->flags & promoted) == promoted; | |
} | |
static inline int | |
RVALUE_OLD_P(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_OLD_P_RAW(obj); | |
} | |
#if RGENGC_CHECK_MODE || GC_DEBUG | |
static inline int | |
RVALUE_AGE(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
return RVALUE_FLAGS_AGE(RBASIC(obj)->flags); | |
} | |
#endif | |
static inline void | |
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) | |
{ | |
MARK_IN_BITMAP(&page->uncollectible_bits[0], obj); | |
objspace->rgengc.old_objects++; | |
rb_transient_heap_promote(obj); | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.total_promoted_count++; | |
objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++; | |
#endif | |
} | |
static inline void | |
RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj) | |
{ | |
RB_DEBUG_COUNTER_INC(obj_promote); | |
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj); | |
} | |
static inline VALUE | |
RVALUE_FLAGS_AGE_SET(VALUE flags, int age) | |
{ | |
flags &= ~(FL_PROMOTED0 | FL_PROMOTED1); | |
flags |= (age << RVALUE_AGE_SHIFT); | |
return flags; | |
} | |
/* set age to age+1 */ | |
static inline void | |
RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj) | |
{ | |
VALUE flags = RBASIC(obj)->flags; | |
int age = RVALUE_FLAGS_AGE(flags); | |
if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) { | |
rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", obj_info(obj)); | |
} | |
age++; | |
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(flags, age); | |
if (age == RVALUE_OLD_AGE) { | |
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj); | |
} | |
check_rvalue_consistency(obj); | |
} | |
/* set age to RVALUE_OLD_AGE */ | |
static inline void | |
RVALUE_AGE_SET_OLD(rb_objspace_t *objspace, VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
GC_ASSERT(!RVALUE_OLD_P(obj)); | |
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE); | |
RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj); | |
check_rvalue_consistency(obj); | |
} | |
/* set age to RVALUE_OLD_AGE - 1 */ | |
static inline void | |
RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
GC_ASSERT(!RVALUE_OLD_P(obj)); | |
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE - 1); | |
check_rvalue_consistency(obj); | |
} | |
static inline void | |
RVALUE_DEMOTE_RAW(rb_objspace_t *objspace, VALUE obj) | |
{ | |
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0); | |
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj); | |
} | |
static inline void | |
RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
GC_ASSERT(RVALUE_OLD_P(obj)); | |
if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(obj)) { | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); | |
} | |
RVALUE_DEMOTE_RAW(objspace, obj); | |
if (RVALUE_MARKED(obj)) { | |
objspace->rgengc.old_objects--; | |
} | |
check_rvalue_consistency(obj); | |
} | |
static inline void | |
RVALUE_AGE_RESET_RAW(VALUE obj) | |
{ | |
RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0); | |
} | |
static inline void | |
RVALUE_AGE_RESET(VALUE obj) | |
{ | |
check_rvalue_consistency(obj); | |
GC_ASSERT(!RVALUE_OLD_P(obj)); | |
RVALUE_AGE_RESET_RAW(obj); | |
check_rvalue_consistency(obj); | |
} | |
static inline int | |
RVALUE_BLACK_P(VALUE obj) | |
{ | |
return RVALUE_MARKED(obj) && !RVALUE_MARKING(obj); | |
} | |
#if 0 | |
static inline int | |
RVALUE_GREY_P(VALUE obj) | |
{ | |
return RVALUE_MARKED(obj) && RVALUE_MARKING(obj); | |
} | |
#endif | |
static inline int | |
RVALUE_WHITE_P(VALUE obj) | |
{ | |
return RVALUE_MARKED(obj) == FALSE; | |
} | |
/* | |
--------------------------- ObjectSpace ----------------------------- | |
*/ | |
static inline void * | |
calloc1(size_t n) | |
{ | |
return calloc(1, n); | |
} | |
rb_objspace_t * | |
rb_objspace_alloc(void) | |
{ | |
rb_objspace_t *objspace = calloc1(sizeof(rb_objspace_t)); | |
malloc_limit = gc_params.malloc_limit_min; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
size_pool->slot_size = sizeof(RVALUE) * (1 << i); | |
list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages); | |
list_head_init(&SIZE_POOL_TOMB_HEAP(size_pool)->pages); | |
} | |
dont_gc_on(); | |
return objspace; | |
} | |
static void free_stack_chunks(mark_stack_t *); | |
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page); | |
void | |
rb_objspace_free(rb_objspace_t *objspace) | |
{ | |
if (is_lazy_sweeping(objspace)) | |
rb_bug("lazy sweeping underway when freeing object space"); | |
if (objspace->profile.records) { | |
free(objspace->profile.records); | |
objspace->profile.records = 0; | |
} | |
if (global_list) { | |
struct gc_list *list, *next; | |
for (list = global_list; list; list = next) { | |
next = list->next; | |
xfree(list); | |
} | |
} | |
if (heap_pages_sorted) { | |
size_t i; | |
for (i = 0; i < heap_allocated_pages; ++i) { | |
heap_page_free(objspace, heap_pages_sorted[i]); | |
} | |
free(heap_pages_sorted); | |
heap_allocated_pages = 0; | |
heap_pages_sorted_length = 0; | |
heap_pages_lomem = 0; | |
heap_pages_himem = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
SIZE_POOL_EDEN_HEAP(size_pool)->total_pages = 0; | |
SIZE_POOL_EDEN_HEAP(size_pool)->total_slots = 0; | |
} | |
} | |
st_free_table(objspace->id_to_obj_tbl); | |
st_free_table(objspace->obj_to_id_tbl); | |
free_stack_chunks(&objspace->mark_stack); | |
free(objspace); | |
} | |
static void | |
heap_pages_expand_sorted_to(rb_objspace_t *objspace, size_t next_length) | |
{ | |
struct heap_page **sorted; | |
size_t size = size_mul_or_raise(next_length, sizeof(struct heap_page *), rb_eRuntimeError); | |
gc_report(3, objspace, "heap_pages_expand_sorted: next_length: %"PRIdSIZE", size: %"PRIdSIZE"\n", | |
next_length, size); | |
if (heap_pages_sorted_length > 0) { | |
sorted = (struct heap_page **)realloc(heap_pages_sorted, size); | |
if (sorted) heap_pages_sorted = sorted; | |
} | |
else { | |
sorted = heap_pages_sorted = (struct heap_page **)malloc(size); | |
} | |
if (sorted == 0) { | |
rb_memerror(); | |
} | |
heap_pages_sorted_length = next_length; | |
} | |
static void | |
heap_pages_expand_sorted(rb_objspace_t *objspace) | |
{ | |
/* usually heap_allocatable_pages + heap_eden->total_pages == heap_pages_sorted_length | |
* because heap_allocatable_pages contains heap_tomb->total_pages (recycle heap_tomb pages). | |
* however, if there are pages which do not have empty slots, then try to create new pages | |
* so that the additional allocatable_pages counts (heap_tomb->total_pages) are added. | |
*/ | |
size_t next_length = heap_allocatable_pages(objspace); | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
next_length += SIZE_POOL_EDEN_HEAP(size_pool)->total_pages; | |
next_length += SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; | |
} | |
if (next_length > heap_pages_sorted_length) { | |
heap_pages_expand_sorted_to(objspace, next_length); | |
} | |
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length); | |
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); | |
} | |
static void | |
size_pool_allocatable_pages_set(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t s) | |
{ | |
size_pool->allocatable_pages = s; | |
heap_pages_expand_sorted(objspace); | |
} | |
static inline void | |
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) | |
{ | |
ASSERT_vm_locking(); | |
RVALUE *p = (RVALUE *)obj; | |
asan_unpoison_object(obj, false); | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
p->as.free.flags = 0; | |
p->as.free.next = page->freelist; | |
page->freelist = p; | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
if (RGENGC_CHECK_MODE && | |
/* obj should belong to page */ | |
!(&page->start[0] <= (RVALUE *)obj && | |
(uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * page->size_pool->slot_size)) && | |
obj % sizeof(RVALUE) == 0)) { | |
rb_bug("heap_page_add_freeobj: %p is not rvalue.", (void *)p); | |
} | |
asan_poison_object(obj); | |
gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj); | |
} | |
static inline void | |
heap_add_freepage(rb_heap_t *heap, struct heap_page *page) | |
{ | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
GC_ASSERT(page->free_slots != 0); | |
GC_ASSERT(page->freelist != NULL); | |
page->free_next = heap->free_pages; | |
heap->free_pages = page; | |
RUBY_DEBUG_LOG("page:%p freelist:%p", (void *)page, (void *)page->freelist); | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
static inline void | |
heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) | |
{ | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
GC_ASSERT(page->free_slots != 0); | |
GC_ASSERT(page->freelist != NULL); | |
page->free_next = heap->pooled_pages; | |
heap->pooled_pages = page; | |
objspace->rincgc.pooled_slots += page->free_slots; | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
} | |
#endif | |
static void | |
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) | |
{ | |
list_del(&page->page_node); | |
heap->total_pages--; | |
heap->total_slots -= page->total_slots; | |
} | |
static void rb_aligned_free(void *ptr, size_t size); | |
static void | |
heap_page_free(rb_objspace_t *objspace, struct heap_page *page) | |
{ | |
heap_allocated_pages--; | |
objspace->profile.total_freed_pages++; | |
rb_aligned_free(GET_PAGE_BODY(page->start), HEAP_PAGE_SIZE); | |
free(page); | |
} | |
static void | |
heap_pages_free_unused_pages(rb_objspace_t *objspace) | |
{ | |
size_t i, j; | |
bool has_pages_in_tomb_heap = FALSE; | |
for (i = 0; i < SIZE_POOL_COUNT; i++) { | |
if (!list_empty(&size_pools[i].tomb_heap.pages)) { | |
has_pages_in_tomb_heap = TRUE; | |
break; | |
} | |
} | |
if (has_pages_in_tomb_heap) { | |
for (i = j = 1; j < heap_allocated_pages; i++) { | |
struct heap_page *page = heap_pages_sorted[i]; | |
if (page->flags.in_tomb && page->free_slots == page->total_slots) { | |
heap_unlink_page(objspace, SIZE_POOL_TOMB_HEAP(page->size_pool), page); | |
heap_page_free(objspace, page); | |
} | |
else { | |
if (i != j) { | |
heap_pages_sorted[j] = page; | |
} | |
j++; | |
} | |
} | |
struct heap_page *hipage = heap_pages_sorted[heap_allocated_pages - 1]; | |
uintptr_t himem = (uintptr_t)hipage->start + (hipage->total_slots * hipage->size_pool->slot_size); | |
GC_ASSERT(himem <= (uintptr_t)heap_pages_himem); | |
heap_pages_himem = (RVALUE *)himem; | |
GC_ASSERT(j == heap_allocated_pages); | |
} | |
} | |
static struct heap_page * | |
heap_page_allocate(rb_objspace_t *objspace, rb_size_pool_t *size_pool) | |
{ | |
uintptr_t start, end, p; | |
struct heap_page *page; | |
struct heap_page_body *page_body = 0; | |
uintptr_t hi, lo, mid; | |
size_t stride = size_pool->slot_size; | |
unsigned int limit = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)))/(int)stride; | |
/* assign heap_page body (contains heap_page_header and RVALUEs) */ | |
page_body = (struct heap_page_body *)rb_aligned_malloc(HEAP_PAGE_ALIGN, HEAP_PAGE_SIZE); | |
if (page_body == 0) { | |
rb_memerror(); | |
} | |
/* assign heap_page entry */ | |
page = calloc1(sizeof(struct heap_page)); | |
if (page == 0) { | |
rb_aligned_free(page_body, HEAP_PAGE_SIZE); | |
rb_memerror(); | |
} | |
/* adjust obj_limit (object number available in this page) */ | |
start = (uintptr_t)((VALUE)page_body + sizeof(struct heap_page_header)); | |
if ((VALUE)start % sizeof(RVALUE) != 0) { | |
int delta = (int)sizeof(RVALUE) - (start % (int)sizeof(RVALUE)); | |
start = start + delta; | |
GC_ASSERT(NUM_IN_PAGE(start) == 0 || NUM_IN_PAGE(start) == 1); | |
/* Find a num in page that is evenly divisible by `stride`. | |
* This is to ensure that objects are aligned with bit planes. | |
* In other words, ensure there are an even number of objects | |
* per bit plane. */ | |
if (NUM_IN_PAGE(start) == 1) { | |
start += stride - sizeof(RVALUE); | |
} | |
GC_ASSERT(NUM_IN_PAGE(start) * sizeof(RVALUE) % stride == 0); | |
limit = (HEAP_PAGE_SIZE - (int)(start - (uintptr_t)page_body))/(int)stride; | |
} | |
end = start + (limit * (int)stride); | |
/* setup heap_pages_sorted */ | |
lo = 0; | |
hi = (uintptr_t)heap_allocated_pages; | |
while (lo < hi) { | |
struct heap_page *mid_page; | |
mid = (lo + hi) / 2; | |
mid_page = heap_pages_sorted[mid]; | |
if ((uintptr_t)mid_page->start < start) { | |
lo = mid + 1; | |
} | |
else if ((uintptr_t)mid_page->start > start) { | |
hi = mid; | |
} | |
else { | |
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid); | |
} | |
} | |
if (hi < (uintptr_t)heap_allocated_pages) { | |
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_allocated_pages - hi); | |
} | |
heap_pages_sorted[hi] = page; | |
heap_allocated_pages++; | |
GC_ASSERT(heap_eden_total_pages(objspace) + heap_allocatable_pages(objspace) <= heap_pages_sorted_length); | |
GC_ASSERT(heap_eden_total_pages(objspace) + heap_tomb_total_pages(objspace) == heap_allocated_pages - 1); | |
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); | |
objspace->profile.total_allocated_pages++; | |
if (heap_allocated_pages > heap_pages_sorted_length) { | |
rb_bug("heap_page_allocate: allocated(%"PRIdSIZE") > sorted(%"PRIdSIZE")", | |
heap_allocated_pages, heap_pages_sorted_length); | |
} | |
if (heap_pages_lomem == 0 || (uintptr_t)heap_pages_lomem > start) heap_pages_lomem = (RVALUE *)start; | |
if ((uintptr_t)heap_pages_himem < end) heap_pages_himem = (RVALUE *)end; | |
page->start = (RVALUE *)start; | |
page->total_slots = limit; | |
page->size_pool = size_pool; | |
page_body->header.page = page; | |
for (p = start; p != end; p += stride) { | |
gc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", (void *)p); | |
heap_page_add_freeobj(objspace, page, (VALUE)p); | |
} | |
page->free_slots = limit; | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
return page; | |
} | |
static struct heap_page * | |
heap_page_resurrect(rb_objspace_t *objspace, rb_size_pool_t *size_pool) | |
{ | |
struct heap_page *page = 0, *next; | |
list_for_each_safe(&SIZE_POOL_TOMB_HEAP(size_pool)->pages, page, next, page_node) { | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
if (page->freelist != NULL) { | |
heap_unlink_page(objspace, &size_pool->tomb_heap, page); | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
return page; | |
} | |
} | |
return NULL; | |
} | |
static struct heap_page * | |
heap_page_create(rb_objspace_t *objspace, rb_size_pool_t *size_pool) | |
{ | |
struct heap_page *page; | |
const char *method = "recycle"; | |
size_pool->allocatable_pages--; | |
page = heap_page_resurrect(objspace, size_pool); | |
if (page == NULL) { | |
page = heap_page_allocate(objspace, size_pool); | |
method = "allocate"; | |
} | |
if (0) fprintf(stderr, "heap_page_create: %s - %p, " | |
"heap_allocated_pages: %"PRIdSIZE", " | |
"heap_allocated_pages: %"PRIdSIZE", " | |
"tomb->total_pages: %"PRIdSIZE"\n", | |
method, (void *)page, heap_pages_sorted_length, heap_allocated_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages); | |
return page; | |
} | |
static void | |
heap_add_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page) | |
{ | |
/* Adding to eden heap during incremental sweeping is forbidden */ | |
GC_ASSERT(!(heap == SIZE_POOL_EDEN_HEAP(size_pool) && heap->sweeping_page)); | |
GC_ASSERT(page->size_pool == size_pool); | |
page->flags.in_tomb = (heap == SIZE_POOL_TOMB_HEAP(size_pool)); | |
list_add_tail(&heap->pages, &page->page_node); | |
heap->total_pages++; | |
heap->total_slots += page->total_slots; | |
} | |
static void | |
heap_assign_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
struct heap_page *page = heap_page_create(objspace, size_pool); | |
heap_add_page(objspace, size_pool, heap, page); | |
heap_add_freepage(heap, page); | |
} | |
static void | |
heap_add_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, size_t add) | |
{ | |
size_t i; | |
size_pool_allocatable_pages_set(objspace, size_pool, add); | |
for (i = 0; i < add; i++) { | |
heap_assign_page(objspace, size_pool, heap); | |
} | |
GC_ASSERT(size_pool->allocatable_pages == 0); | |
} | |
static size_t | |
heap_extend_pages(rb_objspace_t *objspace, size_t free_slots, size_t total_slots, size_t used) | |
{ | |
double goal_ratio = gc_params.heap_free_slots_goal_ratio; | |
size_t next_used; | |
if (goal_ratio == 0.0) { | |
next_used = (size_t)(used * gc_params.growth_factor); | |
} | |
else { | |
/* Find `f' where free_slots = f * total_slots * goal_ratio | |
* => f = (total_slots - free_slots) / ((1 - goal_ratio) * total_slots) | |
*/ | |
double f = (double)(total_slots - free_slots) / ((1 - goal_ratio) * total_slots); | |
if (f > gc_params.growth_factor) f = gc_params.growth_factor; | |
if (f < 1.0) f = 1.1; | |
next_used = (size_t)(f * used); | |
if (0) { | |
fprintf(stderr, | |
"free_slots(%8"PRIuSIZE")/total_slots(%8"PRIuSIZE")=%1.2f," | |
" G(%1.2f), f(%1.2f)," | |
" used(%8"PRIuSIZE") => next_used(%8"PRIuSIZE")\n", | |
free_slots, total_slots, free_slots/(double)total_slots, | |
goal_ratio, f, used, next_used); | |
} | |
} | |
if (gc_params.growth_max_slots > 0) { | |
size_t max_used = (size_t)(used + gc_params.growth_max_slots/HEAP_PAGE_OBJ_LIMIT); | |
if (next_used > max_used) next_used = max_used; | |
} | |
size_t extend_page_count = next_used - used; | |
/* Extend by at least 1 page. */ | |
if (extend_page_count == 0) extend_page_count = 1; | |
return extend_page_count; | |
} | |
static int | |
heap_increment(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
if (size_pool->allocatable_pages > 0) { | |
gc_report(1, objspace, "heap_increment: heap_pages_sorted_length: %"PRIdSIZE", " | |
"heap_pages_inc: %"PRIdSIZE", heap->total_pages: %"PRIdSIZE"\n", | |
heap_pages_sorted_length, size_pool->allocatable_pages, heap->total_pages); | |
GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length); | |
GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); | |
heap_assign_page(objspace, size_pool, heap); | |
return TRUE; | |
} | |
return FALSE; | |
} | |
static void | |
heap_prepare(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
GC_ASSERT(heap->free_pages == NULL); | |
if (is_lazy_sweeping(objspace)) { | |
gc_sweep_continue(objspace, size_pool, heap); | |
} | |
else if (is_incremental_marking(objspace)) { | |
gc_marks_continue(objspace, size_pool, heap); | |
} | |
if (heap->free_pages == NULL && | |
(will_be_incremental_marking(objspace) || heap_increment(objspace, size_pool, heap) == FALSE) && | |
gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) { | |
rb_memerror(); | |
} | |
} | |
void | |
rb_objspace_set_event_hook(const rb_event_flag_t event) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK; | |
objspace->flags.has_hook = (objspace->hook_events != 0); | |
} | |
static void | |
gc_event_hook_body(rb_execution_context_t *ec, rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data) | |
{ | |
const VALUE *pc = ec->cfp->pc; | |
if (pc && VM_FRAME_RUBYFRAME_P(ec->cfp)) { | |
/* increment PC because source line is calculated with PC-1 */ | |
ec->cfp->pc++; | |
} | |
EXEC_EVENT_HOOK(ec, event, ec->cfp->self, 0, 0, 0, data); | |
ec->cfp->pc = pc; | |
} | |
#define gc_event_hook_available_p(objspace) ((objspace)->flags.has_hook) | |
#define gc_event_hook_needed_p(objspace, event) ((objspace)->hook_events & (event)) | |
#define gc_event_hook_prep(objspace, event, data, prep) do { \ | |
if (UNLIKELY(gc_event_hook_needed_p(objspace, event))) { \ | |
prep; \ | |
gc_event_hook_body(GET_EC(), (objspace), (event), (data)); \ | |
} \ | |
} while (0) | |
#define gc_event_hook(objspace, event, data) gc_event_hook_prep(objspace, event, data, (void)0) | |
static inline VALUE | |
newobj_init(VALUE klass, VALUE flags, int wb_protected, rb_objspace_t *objspace, VALUE obj) | |
{ | |
#if !__has_feature(memory_sanitizer) | |
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); | |
GC_ASSERT((flags & FL_WB_PROTECTED) == 0); | |
#endif | |
RVALUE *p = RANY(obj); | |
p->as.basic.flags = flags; | |
*((VALUE *)&p->as.basic.klass) = klass; | |
#if RACTOR_CHECK_MODE | |
rb_ractor_setup_belonging(obj); | |
#endif | |
#if RGENGC_CHECK_MODE | |
p->as.values.v1 = p->as.values.v2 = p->as.values.v3 = 0; | |
RB_VM_LOCK_ENTER_NO_BARRIER(); | |
{ | |
check_rvalue_consistency(obj); | |
GC_ASSERT(RVALUE_MARKED(obj) == FALSE); | |
GC_ASSERT(RVALUE_MARKING(obj) == FALSE); | |
GC_ASSERT(RVALUE_OLD_P(obj) == FALSE); | |
GC_ASSERT(RVALUE_WB_UNPROTECTED(obj) == FALSE); | |
if (flags & FL_PROMOTED1) { | |
if (RVALUE_AGE(obj) != 2) rb_bug("newobj: %s of age (%d) != 2.", obj_info(obj), RVALUE_AGE(obj)); | |
} | |
else { | |
if (RVALUE_AGE(obj) > 0) rb_bug("newobj: %s of age (%d) > 0.", obj_info(obj), RVALUE_AGE(obj)); | |
} | |
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %s is remembered.", obj_info(obj)); | |
} | |
RB_VM_LOCK_LEAVE_NO_BARRIER(); | |
#endif | |
if (UNLIKELY(wb_protected == FALSE)) { | |
ASSERT_vm_locking(); | |
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); | |
} | |
// TODO: make it atomic, or ractor local | |
objspace->total_allocated_objects++; | |
#if RGENGC_PROFILE | |
if (wb_protected) { | |
objspace->profile.total_generated_normal_object_count++; | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++; | |
#endif | |
} | |
else { | |
objspace->profile.total_generated_shady_object_count++; | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++; | |
#endif | |
} | |
#endif | |
#if GC_DEBUG | |
RANY(obj)->file = rb_source_location_cstr(&RANY(obj)->line); | |
GC_ASSERT(!SPECIAL_CONST_P(obj)); /* check alignment */ | |
#endif | |
gc_report(5, objspace, "newobj: %s\n", obj_info(obj)); | |
#if RGENGC_OLD_NEWOBJ_CHECK > 0 | |
{ | |
static int newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK; | |
if (!is_incremental_marking(objspace) && | |
flags & FL_WB_PROTECTED && /* do not promote WB unprotected objects */ | |
! RB_TYPE_P(obj, T_ARRAY)) { /* array.c assumes that allocated objects are new */ | |
if (--newobj_cnt == 0) { | |
newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK; | |
gc_mark_set(objspace, obj); | |
RVALUE_AGE_SET_OLD(objspace, obj); | |
rb_gc_writebarrier_remember(obj); | |
} | |
} | |
} | |
#endif | |
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj)); | |
return obj; | |
} | |
static inline void heap_add_freepage(rb_heap_t *heap, struct heap_page *page); | |
static struct heap_page *heap_next_freepage(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); | |
static inline void ractor_set_cache(rb_ractor_t *cr, struct heap_page *page); | |
#if USE_RVARGC | |
void * | |
rb_gc_rvargc_object_data(VALUE obj) | |
{ | |
return (void *)(obj + sizeof(RVALUE)); | |
} | |
#endif | |
static inline VALUE | |
ractor_cached_free_region(rb_objspace_t *objspace, rb_ractor_t *cr, size_t size) | |
{ | |
if (size != sizeof(RVALUE)) { | |
return Qfalse; | |
} | |
RVALUE *p = cr->newobj_cache.freelist; | |
if (p) { | |
VALUE obj = (VALUE)p; | |
cr->newobj_cache.freelist = p->as.free.next; | |
asan_unpoison_object(obj, true); | |
return obj; | |
} | |
else { | |
return Qfalse; | |
} | |
} | |
static struct heap_page * | |
heap_next_freepage(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
ASSERT_vm_locking(); | |
struct heap_page *page; | |
while (heap->free_pages == NULL) { | |
heap_prepare(objspace, size_pool, heap); | |
} | |
page = heap->free_pages; | |
heap->free_pages = page->free_next; | |
GC_ASSERT(page->free_slots != 0); | |
RUBY_DEBUG_LOG("page:%p freelist:%p cnt:%d", (void *)page, (void *)page->freelist, page->free_slots); | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
return page; | |
} | |
static inline void | |
ractor_set_cache(rb_ractor_t *cr, struct heap_page *page) | |
{ | |
gc_report(3, &rb_objspace, "ractor_set_cache: Using page %p\n", (void *)GET_PAGE_BODY(page->start)); | |
cr->newobj_cache.using_page = page; | |
cr->newobj_cache.freelist = page->freelist; | |
page->free_slots = 0; | |
page->freelist = NULL; | |
asan_unpoison_object((VALUE)cr->newobj_cache.freelist, false); | |
GC_ASSERT(RB_TYPE_P((VALUE)cr->newobj_cache.freelist, T_NONE)); | |
asan_poison_object((VALUE)cr->newobj_cache.freelist); | |
} | |
static inline void | |
ractor_cache_slots(rb_objspace_t *objspace, rb_ractor_t *cr) | |
{ | |
ASSERT_vm_locking(); | |
rb_size_pool_t *size_pool = &size_pools[0]; | |
struct heap_page *page = heap_next_freepage(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
ractor_set_cache(cr, page); | |
} | |
static inline VALUE | |
newobj_fill(VALUE obj, VALUE v1, VALUE v2, VALUE v3) | |
{ | |
RVALUE *p = (RVALUE *)obj; | |
p->as.values.v1 = v1; | |
p->as.values.v2 = v2; | |
p->as.values.v3 = v3; | |
return obj; | |
} | |
#if USE_RVARGC | |
static inline VALUE | |
heap_get_freeobj(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
RVALUE *p = size_pool->freelist; | |
if (UNLIKELY(p == NULL)) { | |
struct heap_page *page = heap_next_freepage(objspace, size_pool, heap); | |
size_pool->using_page = page; | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
p = page->freelist; | |
page->freelist = NULL; | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
page->free_slots = 0; | |
} | |
asan_unpoison_object((VALUE)p, true); | |
size_pool->freelist = p->as.free.next; | |
return (VALUE)p; | |
} | |
static inline rb_size_pool_t * | |
size_pool_for_size(rb_objspace_t *objspace, size_t size) | |
{ | |
size_t slot_count = CEILDIV(size, sizeof(RVALUE)); | |
/* size_pool_idx is ceil(log2(slot_count)) */ | |
size_t size_pool_idx = 64 - nlz_int64(slot_count - 1); | |
GC_ASSERT(size_pool_idx > 0); | |
if (size_pool_idx >= SIZE_POOL_COUNT) { | |
rb_bug("size_pool_for_size: allocation size too large"); | |
} | |
rb_size_pool_t *size_pool = &size_pools[size_pool_idx]; | |
GC_ASSERT(size_pool->slot_size >= (short)size); | |
GC_ASSERT(size_pools[size_pool_idx - 1].slot_size < (short)size); | |
return size_pool; | |
} | |
#endif | |
ALWAYS_INLINE(static VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t alloc_size)); | |
static inline VALUE | |
newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t alloc_size) | |
{ | |
VALUE obj; | |
unsigned int lev; | |
RB_VM_LOCK_ENTER_CR_LEV(cr, &lev); | |
{ | |
if (UNLIKELY(during_gc || ruby_gc_stressful)) { | |
if (during_gc) { | |
dont_gc_on(); | |
during_gc = 0; | |
rb_bug("object allocation during garbage collection phase"); | |
} | |
if (ruby_gc_stressful) { | |
if (!garbage_collect(objspace, GPR_FLAG_NEWOBJ)) { | |
rb_memerror(); | |
} | |
} | |
} | |
if (alloc_size <= sizeof(RVALUE)) { | |
// allocate new slot | |
while ((obj = ractor_cached_free_region(objspace, cr, alloc_size)) == Qfalse) { | |
ractor_cache_slots(objspace, cr); | |
} | |
} | |
else { | |
#if USE_RVARGC | |
rb_size_pool_t *size_pool = size_pool_for_size(objspace, alloc_size); | |
obj = heap_get_freeobj(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
memset((void *)obj, 0, size_pool->slot_size); | |
#else | |
rb_bug("unreachable when not using rvargc"); | |
#endif | |
} | |
GC_ASSERT(obj != 0); | |
newobj_init(klass, flags, wb_protected, objspace, obj); | |
gc_event_hook_prep(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj, newobj_fill(obj, 0, 0, 0)); | |
} | |
RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev); | |
return obj; | |
} | |
NOINLINE(static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags, | |
rb_objspace_t *objspace, rb_ractor_t *cr, size_t alloc_size)); | |
NOINLINE(static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, | |
rb_objspace_t *objspace, rb_ractor_t *cr, size_t alloc_size)); | |
static VALUE | |
newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t alloc_size) | |
{ | |
return newobj_slowpath(klass, flags, objspace, cr, TRUE, alloc_size); | |
} | |
static VALUE | |
newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t alloc_size) | |
{ | |
return newobj_slowpath(klass, flags, objspace, cr, FALSE, alloc_size); | |
} | |
static inline VALUE | |
newobj_of0(VALUE klass, VALUE flags, int wb_protected, rb_ractor_t *cr, size_t alloc_size) | |
{ | |
VALUE obj; | |
rb_objspace_t *objspace = &rb_objspace; | |
RB_DEBUG_COUNTER_INC(obj_newobj); | |
(void)RB_DEBUG_COUNTER_INC_IF(obj_newobj_wb_unprotected, !wb_protected); | |
#if GC_DEBUG_STRESS_TO_CLASS | |
if (UNLIKELY(stress_to_class)) { | |
long i, cnt = RARRAY_LEN(stress_to_class); | |
for (i = 0; i < cnt; ++i) { | |
if (klass == RARRAY_AREF(stress_to_class, i)) rb_memerror(); | |
} | |
} | |
#endif | |
if ((!UNLIKELY(during_gc || | |
ruby_gc_stressful || | |
gc_event_hook_available_p(objspace)) && | |
wb_protected && | |
(obj = ractor_cached_free_region(objspace, cr, alloc_size)) != Qfalse)) { | |
newobj_init(klass, flags, wb_protected, objspace, obj); | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_newobj_slowpath); | |
obj = wb_protected ? | |
newobj_slowpath_wb_protected(klass, flags, objspace, cr, alloc_size) : | |
newobj_slowpath_wb_unprotected(klass, flags, objspace, cr, alloc_size); | |
} | |
return obj; | |
} | |
static inline VALUE | |
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size) | |
{ | |
VALUE obj = newobj_of0(klass, flags, wb_protected, GET_RACTOR(), alloc_size); | |
return newobj_fill(obj, v1, v2, v3); | |
} | |
static inline VALUE | |
newobj_of_cr(rb_ractor_t *cr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size) | |
{ | |
VALUE obj = newobj_of0(klass, flags, wb_protected, cr, alloc_size); | |
return newobj_fill(obj, v1, v2, v3); | |
} | |
VALUE | |
rb_wb_unprotected_newobj_of(VALUE klass, VALUE flags, size_t size) | |
{ | |
GC_ASSERT((flags & FL_WB_PROTECTED) == 0); | |
size = size + sizeof(RVALUE); | |
return newobj_of(klass, flags, 0, 0, 0, FALSE, size); | |
} | |
VALUE | |
rb_wb_protected_newobj_of(VALUE klass, VALUE flags, size_t size) | |
{ | |
GC_ASSERT((flags & FL_WB_PROTECTED) == 0); | |
size = size + sizeof(RVALUE); | |
return newobj_of(klass, flags, 0, 0, 0, TRUE, size); | |
} | |
VALUE | |
rb_ec_wb_protected_newobj_of(rb_execution_context_t *ec, VALUE klass, VALUE flags, size_t size) | |
{ | |
GC_ASSERT((flags & FL_WB_PROTECTED) == 0); | |
size = size + sizeof(RVALUE); | |
return newobj_of_cr(rb_ec_ractor_ptr(ec), klass, flags, 0, 0, 0, TRUE, size); | |
} | |
/* for compatibility */ | |
VALUE | |
rb_newobj(void) | |
{ | |
return newobj_of(0, T_NONE, 0, 0, 0, FALSE, sizeof(RVALUE)); | |
} | |
VALUE | |
rb_newobj_of(VALUE klass, VALUE flags) | |
{ | |
if ((flags & RUBY_T_MASK) == T_OBJECT) { | |
st_table *index_tbl = RCLASS_IV_INDEX_TBL(klass); | |
VALUE obj = newobj_of(klass, (flags | ROBJECT_EMBED) & ~FL_WB_PROTECTED , Qundef, Qundef, Qundef, flags & FL_WB_PROTECTED, sizeof(RVALUE)); | |
if (index_tbl && index_tbl->num_entries > ROBJECT_EMBED_LEN_MAX) { | |
rb_init_iv_list(obj); | |
} | |
return obj; | |
} | |
else { | |
return newobj_of(klass, flags & ~FL_WB_PROTECTED, 0, 0, 0, flags & FL_WB_PROTECTED, sizeof(RVALUE)); | |
} | |
} | |
#define UNEXPECTED_NODE(func) \ | |
rb_bug(#func"(): GC does not handle T_NODE 0x%x(%p) 0x%"PRIxVALUE, \ | |
BUILTIN_TYPE(obj), (void*)(obj), RBASIC(obj)->flags) | |
const char * | |
rb_imemo_name(enum imemo_type type) | |
{ | |
// put no default case to get a warning if an imemo type is missing | |
switch (type) { | |
#define IMEMO_NAME(x) case imemo_##x: return #x; | |
IMEMO_NAME(env); | |
IMEMO_NAME(cref); | |
IMEMO_NAME(svar); | |
IMEMO_NAME(throw_data); | |
IMEMO_NAME(ifunc); | |
IMEMO_NAME(memo); | |
IMEMO_NAME(ment); | |
IMEMO_NAME(iseq); | |
IMEMO_NAME(tmpbuf); | |
IMEMO_NAME(ast); | |
IMEMO_NAME(parser_strterm); | |
IMEMO_NAME(callinfo); | |
IMEMO_NAME(callcache); | |
IMEMO_NAME(constcache); | |
#undef IMEMO_NAME | |
} | |
return "unknown"; | |
} | |
#undef rb_imemo_new | |
VALUE | |
rb_imemo_new(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0) | |
{ | |
size_t size = sizeof(RVALUE); | |
VALUE flags = T_IMEMO | (type << FL_USHIFT); | |
return newobj_of(v0, flags, v1, v2, v3, TRUE, size); | |
} | |
static VALUE | |
rb_imemo_tmpbuf_new(VALUE v1, VALUE v2, VALUE v3, VALUE v0) | |
{ | |
size_t size = sizeof(RVALUE); | |
VALUE flags = T_IMEMO | (imemo_tmpbuf << FL_USHIFT); | |
return newobj_of(v0, flags, v1, v2, v3, FALSE, size); | |
} | |
static VALUE | |
rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(void *buf, size_t cnt) | |
{ | |
return rb_imemo_tmpbuf_new((VALUE)buf, 0, (VALUE)cnt, 0); | |
} | |
rb_imemo_tmpbuf_t * | |
rb_imemo_tmpbuf_parser_heap(void *buf, rb_imemo_tmpbuf_t *old_heap, size_t cnt) | |
{ | |
return (rb_imemo_tmpbuf_t *)rb_imemo_tmpbuf_new((VALUE)buf, (VALUE)old_heap, (VALUE)cnt, 0); | |
} | |
static size_t | |
imemo_memsize(VALUE obj) | |
{ | |
size_t size = 0; | |
switch (imemo_type(obj)) { | |
case imemo_ment: | |
size += sizeof(RANY(obj)->as.imemo.ment.def); | |
break; | |
case imemo_iseq: | |
size += rb_iseq_memsize((rb_iseq_t *)obj); | |
break; | |
case imemo_env: | |
size += RANY(obj)->as.imemo.env.env_size * sizeof(VALUE); | |
break; | |
case imemo_tmpbuf: | |
size += RANY(obj)->as.imemo.alloc.cnt * sizeof(VALUE); | |
break; | |
case imemo_ast: | |
size += rb_ast_memsize(&RANY(obj)->as.imemo.ast); | |
break; | |
case imemo_cref: | |
case imemo_svar: | |
case imemo_throw_data: | |
case imemo_ifunc: | |
case imemo_memo: | |
case imemo_parser_strterm: | |
break; | |
default: | |
/* unreachable */ | |
break; | |
} | |
return size; | |
} | |
#if IMEMO_DEBUG | |
VALUE | |
rb_imemo_new_debug(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0, const char *file, int line) | |
{ | |
VALUE memo = rb_imemo_new(type, v1, v2, v3, v0); | |
fprintf(stderr, "memo %p (type: %d) @ %s:%d\n", (void *)memo, imemo_type(memo), file, line); | |
return memo; | |
} | |
#endif | |
VALUE | |
rb_class_allocate_instance(VALUE klass) | |
{ | |
st_table *index_tbl = RCLASS_IV_INDEX_TBL(klass); | |
VALUE flags = T_OBJECT | ROBJECT_EMBED; | |
VALUE obj = newobj_of(klass, flags, Qundef, Qundef, Qundef, RGENGC_WB_PROTECTED_OBJECT, sizeof(RVALUE)); | |
if (index_tbl && index_tbl->num_entries > ROBJECT_EMBED_LEN_MAX) { | |
rb_init_iv_list(obj); | |
} | |
return obj; | |
} | |
static inline void | |
rb_data_object_check(VALUE klass) | |
{ | |
if (klass != rb_cObject && (rb_get_alloc_func(klass) == rb_class_allocate_instance)) { | |
rb_undef_alloc_func(klass); | |
#if RUBY_VERSION_SINCE(3, 2) | |
RBIMPL_TODO("enable the warning at this release"); | |
rb_warn("undefining the allocator of T_DATA class %"PRIsVALUE, klass); | |
#endif | |
} | |
} | |
VALUE | |
rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) | |
{ | |
RUBY_ASSERT_ALWAYS(dfree != (RUBY_DATA_FUNC)1); | |
if (klass) rb_data_object_check(klass); | |
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap, FALSE, sizeof(RVALUE)); | |
} | |
VALUE | |
rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) | |
{ | |
VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree); | |
DATA_PTR(obj) = xcalloc(1, size); | |
return obj; | |
} | |
VALUE | |
rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type) | |
{ | |
RBIMPL_NONNULL_ARG(type); | |
if (klass) rb_data_object_check(klass); | |
return newobj_of(klass, T_DATA, (VALUE)type, (VALUE)1, (VALUE)datap, type->flags & RUBY_FL_WB_PROTECTED, sizeof(RVALUE)); | |
} | |
VALUE | |
rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type) | |
{ | |
VALUE obj = rb_data_typed_object_wrap(klass, 0, type); | |
DATA_PTR(obj) = xcalloc(1, size); | |
return obj; | |
} | |
size_t | |
rb_objspace_data_type_memsize(VALUE obj) | |
{ | |
if (RTYPEDDATA_P(obj)) { | |
const rb_data_type_t *type = RTYPEDDATA_TYPE(obj); | |
const void *ptr = RTYPEDDATA_DATA(obj); | |
if (ptr && type->function.dsize) { | |
return type->function.dsize(ptr); | |
} | |
} | |
return 0; | |
} | |
const char * | |
rb_objspace_data_type_name(VALUE obj) | |
{ | |
if (RTYPEDDATA_P(obj)) { | |
return RTYPEDDATA_TYPE(obj)->wrap_struct_name; | |
} | |
else { | |
return 0; | |
} | |
} | |
PUREFUNC(static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);) | |
static inline int | |
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr) | |
{ | |
register RVALUE *p = RANY(ptr); | |
register struct heap_page *page; | |
register size_t hi, lo, mid; | |
RB_DEBUG_COUNTER_INC(gc_isptr_trial); | |
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE; | |
RB_DEBUG_COUNTER_INC(gc_isptr_range); | |
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE; | |
RB_DEBUG_COUNTER_INC(gc_isptr_align); | |
/* check if p looks like a pointer using bsearch*/ | |
lo = 0; | |
hi = heap_allocated_pages; | |
while (lo < hi) { | |
mid = (lo + hi) / 2; | |
page = heap_pages_sorted[mid]; | |
if (page->start <= p) { | |
if ((uintptr_t)p < ((uintptr_t)page->start + (page->total_slots * page->size_pool->slot_size))) { | |
RB_DEBUG_COUNTER_INC(gc_isptr_maybe); | |
if (page->flags.in_tomb) { | |
return FALSE; | |
} | |
else { | |
if ((NUM_IN_PAGE(p) * sizeof(RVALUE)) % page->size_pool->slot_size != 0) return FALSE; | |
return TRUE; | |
} | |
} | |
lo = mid + 1; | |
} | |
else { | |
hi = mid; | |
} | |
} | |
return FALSE; | |
} | |
static enum rb_id_table_iterator_result | |
free_const_entry_i(VALUE value, void *data) | |
{ | |
rb_const_entry_t *ce = (rb_const_entry_t *)value; | |
xfree(ce); | |
return ID_TABLE_CONTINUE; | |
} | |
void | |
rb_free_const_table(struct rb_id_table *tbl) | |
{ | |
rb_id_table_foreach_values(tbl, free_const_entry_i, 0); | |
rb_id_table_free(tbl); | |
} | |
static int | |
free_iv_index_tbl_free_i(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
xfree((void *)value); | |
return ST_CONTINUE; | |
} | |
static void | |
iv_index_tbl_free(struct st_table *tbl) | |
{ | |
st_foreach(tbl, free_iv_index_tbl_free_i, 0); | |
st_free_table(tbl); | |
} | |
// alive: if false, target pointers can be freed already. | |
// To check it, we need objspace parameter. | |
static void | |
vm_ccs_free(struct rb_class_cc_entries *ccs, int alive, rb_objspace_t *objspace, VALUE klass) | |
{ | |
if (ccs->entries) { | |
for (int i=0; i<ccs->len; i++) { | |
const struct rb_callcache *cc = ccs->entries[i].cc; | |
if (!alive) { | |
void *ptr = asan_poisoned_object_p((VALUE)cc); | |
asan_unpoison_object((VALUE)cc, false); | |
// ccs can be free'ed. | |
if (is_pointer_to_heap(objspace, (void *)cc) && | |
IMEMO_TYPE_P(cc, imemo_callcache) && | |
cc->klass == klass) { | |
// OK. maybe target cc. | |
} | |
else { | |
if (ptr) { | |
asan_poison_object((VALUE)cc); | |
} | |
continue; | |
} | |
if (ptr) { | |
asan_poison_object((VALUE)cc); | |
} | |
} | |
vm_cc_invalidate(cc); | |
} | |
ruby_xfree(ccs->entries); | |
} | |
ruby_xfree(ccs); | |
} | |
void | |
rb_vm_ccs_free(struct rb_class_cc_entries *ccs) | |
{ | |
RB_DEBUG_COUNTER_INC(ccs_free); | |
vm_ccs_free(ccs, TRUE, NULL, Qundef); | |
} | |
struct cc_tbl_i_data { | |
rb_objspace_t *objspace; | |
VALUE klass; | |
bool alive; | |
}; | |
static enum rb_id_table_iterator_result | |
cc_table_mark_i(ID id, VALUE ccs_ptr, void *data_ptr) | |
{ | |
struct cc_tbl_i_data *data = data_ptr; | |
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; | |
VM_ASSERT(vm_ccs_p(ccs)); | |
VM_ASSERT(id == ccs->cme->called_id); | |
if (METHOD_ENTRY_INVALIDATED(ccs->cme)) { | |
rb_vm_ccs_free(ccs); | |
return ID_TABLE_DELETE; | |
} | |
else { | |
gc_mark(data->objspace, (VALUE)ccs->cme); | |
for (int i=0; i<ccs->len; i++) { | |
VM_ASSERT(data->klass == ccs->entries[i].cc->klass); | |
VM_ASSERT(ccs->cme == vm_cc_cme(ccs->entries[i].cc)); | |
gc_mark(data->objspace, (VALUE)ccs->entries[i].ci); | |
gc_mark(data->objspace, (VALUE)ccs->entries[i].cc); | |
} | |
return ID_TABLE_CONTINUE; | |
} | |
} | |
static void | |
cc_table_mark(rb_objspace_t *objspace, VALUE klass) | |
{ | |
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass); | |
if (cc_tbl) { | |
struct cc_tbl_i_data data = { | |
.objspace = objspace, | |
.klass = klass, | |
}; | |
rb_id_table_foreach(cc_tbl, cc_table_mark_i, &data); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
cc_table_free_i(VALUE ccs_ptr, void *data_ptr) | |
{ | |
struct cc_tbl_i_data *data = data_ptr; | |
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; | |
VM_ASSERT(vm_ccs_p(ccs)); | |
vm_ccs_free(ccs, data->alive, data->objspace, data->klass); | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
cc_table_free(rb_objspace_t *objspace, VALUE klass, bool alive) | |
{ | |
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass); | |
if (cc_tbl) { | |
struct cc_tbl_i_data data = { | |
.objspace = objspace, | |
.klass = klass, | |
.alive = alive, | |
}; | |
rb_id_table_foreach_values(cc_tbl, cc_table_free_i, &data); | |
rb_id_table_free(cc_tbl); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
cvar_table_free_i(VALUE value, void * ctx) | |
{ | |
xfree((void *) value); | |
return ID_TABLE_CONTINUE; | |
} | |
void | |
rb_cc_table_free(VALUE klass) | |
{ | |
cc_table_free(&rb_objspace, klass, TRUE); | |
} | |
static inline void | |
make_zombie(rb_objspace_t *objspace, VALUE obj, void (*dfree)(void *), void *data) | |
{ | |
struct RZombie *zombie = RZOMBIE(obj); | |
zombie->basic.flags = T_ZOMBIE | (zombie->basic.flags & FL_SEEN_OBJ_ID); | |
zombie->dfree = dfree; | |
zombie->data = data; | |
zombie->next = heap_pages_deferred_final; | |
heap_pages_deferred_final = (VALUE)zombie; | |
struct heap_page *page = GET_HEAP_PAGE(obj); | |
page->final_slots++; | |
heap_pages_final_slots++; | |
} | |
static inline void | |
make_io_zombie(rb_objspace_t *objspace, VALUE obj) | |
{ | |
rb_io_t *fptr = RANY(obj)->as.file.fptr; | |
make_zombie(objspace, obj, rb_io_fptr_finalize_internal, fptr); | |
} | |
static void | |
obj_free_object_id(rb_objspace_t *objspace, VALUE obj) | |
{ | |
ASSERT_vm_locking(); | |
st_data_t o = (st_data_t)obj, id; | |
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID)); | |
FL_UNSET(obj, FL_SEEN_OBJ_ID); | |
if (st_delete(objspace->obj_to_id_tbl, &o, &id)) { | |
GC_ASSERT(id); | |
st_delete(objspace->id_to_obj_tbl, &id, NULL); | |
} | |
else { | |
rb_bug("Object ID seen, but not in mapping table: %s\n", obj_info(obj)); | |
} | |
} | |
static int | |
obj_free(rb_objspace_t *objspace, VALUE obj) | |
{ | |
RB_DEBUG_COUNTER_INC(obj_free); | |
// RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj)); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj); | |
switch (BUILTIN_TYPE(obj)) { | |
case T_NIL: | |
case T_FIXNUM: | |
case T_TRUE: | |
case T_FALSE: | |
rb_bug("obj_free() called for broken object"); | |
break; | |
default: | |
break; | |
} | |
if (FL_TEST(obj, FL_EXIVAR)) { | |
rb_free_generic_ivar((VALUE)obj); | |
FL_UNSET(obj, FL_EXIVAR); | |
} | |
if (FL_TEST(obj, FL_SEEN_OBJ_ID) && !FL_TEST(obj, FL_FINALIZE)) { | |
obj_free_object_id(objspace, obj); | |
} | |
if (RVALUE_WB_UNPROTECTED(obj)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); | |
#if RGENGC_CHECK_MODE | |
#define CHECK(x) if (x(obj) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", obj_info(obj)) | |
CHECK(RVALUE_WB_UNPROTECTED); | |
CHECK(RVALUE_MARKED); | |
CHECK(RVALUE_MARKING); | |
CHECK(RVALUE_UNCOLLECTIBLE); | |
#undef CHECK | |
#endif | |
switch (BUILTIN_TYPE(obj)) { | |
case T_OBJECT: | |
if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) { | |
RB_DEBUG_COUNTER_INC(obj_obj_embed); | |
} | |
else if (ROBJ_TRANSIENT_P(obj)) { | |
RB_DEBUG_COUNTER_INC(obj_obj_transient); | |
} | |
else { | |
xfree(RANY(obj)->as.object.as.heap.ivptr); | |
RB_DEBUG_COUNTER_INC(obj_obj_ptr); | |
} | |
break; | |
case T_MODULE: | |
case T_CLASS: | |
rb_id_table_free(RCLASS_M_TBL(obj)); | |
cc_table_free(objspace, obj, FALSE); | |
if (RCLASS_IV_TBL(obj)) { | |
st_free_table(RCLASS_IV_TBL(obj)); | |
} | |
if (RCLASS_CONST_TBL(obj)) { | |
rb_free_const_table(RCLASS_CONST_TBL(obj)); | |
} | |
if (RCLASS_IV_INDEX_TBL(obj)) { | |
iv_index_tbl_free(RCLASS_IV_INDEX_TBL(obj)); | |
} | |
if (RCLASS_CVC_TBL(obj)) { | |
rb_id_table_foreach_values(RCLASS_CVC_TBL(obj), cvar_table_free_i, NULL); | |
rb_id_table_free(RCLASS_CVC_TBL(obj)); | |
} | |
if (RCLASS_SUBCLASSES(obj)) { | |
if (BUILTIN_TYPE(obj) == T_MODULE) { | |
rb_class_detach_module_subclasses(obj); | |
} | |
else { | |
rb_class_detach_subclasses(obj); | |
} | |
RCLASS_SUBCLASSES(obj) = NULL; | |
} | |
rb_class_remove_from_module_subclasses(obj); | |
rb_class_remove_from_super_subclasses(obj); | |
if (RCLASS_EXT(obj)) | |
RCLASS_EXT(obj) = NULL; | |
(void)RB_DEBUG_COUNTER_INC_IF(obj_module_ptr, BUILTIN_TYPE(obj) == T_MODULE); | |
(void)RB_DEBUG_COUNTER_INC_IF(obj_class_ptr, BUILTIN_TYPE(obj) == T_CLASS); | |
break; | |
case T_STRING: | |
rb_str_free(obj); | |
break; | |
case T_ARRAY: | |
rb_ary_free(obj); | |
break; | |
case T_HASH: | |
#if USE_DEBUG_COUNTER | |
switch (RHASH_SIZE(obj)) { | |
case 0: | |
RB_DEBUG_COUNTER_INC(obj_hash_empty); | |
break; | |
case 1: | |
RB_DEBUG_COUNTER_INC(obj_hash_1); | |
break; | |
case 2: | |
RB_DEBUG_COUNTER_INC(obj_hash_2); | |
break; | |
case 3: | |
RB_DEBUG_COUNTER_INC(obj_hash_3); | |
break; | |
case 4: | |
RB_DEBUG_COUNTER_INC(obj_hash_4); | |
break; | |
case 5: | |
case 6: | |
case 7: | |
case 8: | |
RB_DEBUG_COUNTER_INC(obj_hash_5_8); | |
break; | |
default: | |
GC_ASSERT(RHASH_SIZE(obj) > 8); | |
RB_DEBUG_COUNTER_INC(obj_hash_g8); | |
} | |
if (RHASH_AR_TABLE_P(obj)) { | |
if (RHASH_AR_TABLE(obj) == NULL) { | |
RB_DEBUG_COUNTER_INC(obj_hash_null); | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_hash_ar); | |
} | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_hash_st); | |
} | |
#endif | |
if (/* RHASH_AR_TABLE_P(obj) */ !FL_TEST_RAW(obj, RHASH_ST_TABLE_FLAG)) { | |
struct ar_table_struct *tab = RHASH(obj)->as.ar; | |
if (tab) { | |
if (RHASH_TRANSIENT_P(obj)) { | |
RB_DEBUG_COUNTER_INC(obj_hash_transient); | |
} | |
else { | |
ruby_xfree(tab); | |
} | |
} | |
} | |
else { | |
GC_ASSERT(RHASH_ST_TABLE_P(obj)); | |
st_free_table(RHASH(obj)->as.st); | |
} | |
break; | |
case T_REGEXP: | |
if (RANY(obj)->as.regexp.ptr) { | |
onig_free(RANY(obj)->as.regexp.ptr); | |
RB_DEBUG_COUNTER_INC(obj_regexp_ptr); | |
} | |
break; | |
case T_DATA: | |
if (DATA_PTR(obj)) { | |
int free_immediately = FALSE; | |
void (*dfree)(void *); | |
void *data = DATA_PTR(obj); | |
if (RTYPEDDATA_P(obj)) { | |
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0; | |
dfree = RANY(obj)->as.typeddata.type->function.dfree; | |
if (0 && free_immediately == 0) { | |
/* to expose non-free-immediate T_DATA */ | |
fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name); | |
} | |
} | |
else { | |
dfree = RANY(obj)->as.data.dfree; | |
} | |
if (dfree) { | |
if (dfree == RUBY_DEFAULT_FREE) { | |
xfree(data); | |
RB_DEBUG_COUNTER_INC(obj_data_xfree); | |
} | |
else if (free_immediately) { | |
(*dfree)(data); | |
RB_DEBUG_COUNTER_INC(obj_data_imm_free); | |
} | |
else { | |
make_zombie(objspace, obj, dfree, data); | |
RB_DEBUG_COUNTER_INC(obj_data_zombie); | |
return 1; | |
} | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_data_empty); | |
} | |
} | |
break; | |
case T_MATCH: | |
if (RANY(obj)->as.match.rmatch) { | |
struct rmatch *rm = RANY(obj)->as.match.rmatch; | |
#if USE_DEBUG_COUNTER | |
if (rm->regs.num_regs >= 8) { | |
RB_DEBUG_COUNTER_INC(obj_match_ge8); | |
} | |
else if (rm->regs.num_regs >= 4) { | |
RB_DEBUG_COUNTER_INC(obj_match_ge4); | |
} | |
else if (rm->regs.num_regs >= 1) { | |
RB_DEBUG_COUNTER_INC(obj_match_under4); | |
} | |
#endif | |
onig_region_free(&rm->regs, 0); | |
if (rm->char_offset) | |
xfree(rm->char_offset); | |
xfree(rm); | |
RB_DEBUG_COUNTER_INC(obj_match_ptr); | |
} | |
break; | |
case T_FILE: | |
if (RANY(obj)->as.file.fptr) { | |
make_io_zombie(objspace, obj); | |
RB_DEBUG_COUNTER_INC(obj_file_ptr); | |
return 1; | |
} | |
break; | |
case T_RATIONAL: | |
RB_DEBUG_COUNTER_INC(obj_rational); | |
break; | |
case T_COMPLEX: | |
RB_DEBUG_COUNTER_INC(obj_complex); | |
break; | |
case T_MOVED: | |
break; | |
case T_ICLASS: | |
/* Basically , T_ICLASS shares table with the module */ | |
if (RICLASS_OWNS_M_TBL_P(obj)) { | |
/* Method table is not shared for origin iclasses of classes */ | |
rb_id_table_free(RCLASS_M_TBL(obj)); | |
} | |
if (RCLASS_CALLABLE_M_TBL(obj) != NULL) { | |
rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj)); | |
} | |
if (RCLASS_SUBCLASSES(obj)) { | |
rb_class_detach_subclasses(obj); | |
RCLASS_SUBCLASSES(obj) = NULL; | |
} | |
cc_table_free(objspace, obj, FALSE); | |
rb_class_remove_from_module_subclasses(obj); | |
rb_class_remove_from_super_subclasses(obj); | |
RCLASS_EXT(obj) = NULL; | |
RB_DEBUG_COUNTER_INC(obj_iclass_ptr); | |
break; | |
case T_FLOAT: | |
RB_DEBUG_COUNTER_INC(obj_float); | |
break; | |
case T_BIGNUM: | |
if (!BIGNUM_EMBED_P(obj) && BIGNUM_DIGITS(obj)) { | |
xfree(BIGNUM_DIGITS(obj)); | |
RB_DEBUG_COUNTER_INC(obj_bignum_ptr); | |
} | |
else { | |
RB_DEBUG_COUNTER_INC(obj_bignum_embed); | |
} | |
break; | |
case T_NODE: | |
UNEXPECTED_NODE(obj_free); | |
break; | |
case T_STRUCT: | |
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) || | |
RANY(obj)->as.rstruct.as.heap.ptr == NULL) { | |
RB_DEBUG_COUNTER_INC(obj_struct_embed); | |
} | |
else if (RSTRUCT_TRANSIENT_P(obj)) { | |
RB_DEBUG_COUNTER_INC(obj_struct_transient); | |
} | |
else { | |
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr); | |
RB_DEBUG_COUNTER_INC(obj_struct_ptr); | |
} | |
break; | |
case T_SYMBOL: | |
{ | |
rb_gc_free_dsymbol(obj); | |
RB_DEBUG_COUNTER_INC(obj_symbol); | |
} | |
break; | |
case T_IMEMO: | |
switch (imemo_type(obj)) { | |
case imemo_ment: | |
rb_free_method_entry(&RANY(obj)->as.imemo.ment); | |
RB_DEBUG_COUNTER_INC(obj_imemo_ment); | |
break; | |
case imemo_iseq: | |
rb_iseq_free(&RANY(obj)->as.imemo.iseq); | |
RB_DEBUG_COUNTER_INC(obj_imemo_iseq); | |
break; | |
case imemo_env: | |
GC_ASSERT(VM_ENV_ESCAPED_P(RANY(obj)->as.imemo.env.ep)); | |
xfree((VALUE *)RANY(obj)->as.imemo.env.env); | |
RB_DEBUG_COUNTER_INC(obj_imemo_env); | |
break; | |
case imemo_tmpbuf: | |
xfree(RANY(obj)->as.imemo.alloc.ptr); | |
RB_DEBUG_COUNTER_INC(obj_imemo_tmpbuf); | |
break; | |
case imemo_ast: | |
rb_ast_free(&RANY(obj)->as.imemo.ast); | |
RB_DEBUG_COUNTER_INC(obj_imemo_ast); | |
break; | |
case imemo_cref: | |
RB_DEBUG_COUNTER_INC(obj_imemo_cref); | |
break; | |
case imemo_svar: | |
RB_DEBUG_COUNTER_INC(obj_imemo_svar); | |
break; | |
case imemo_throw_data: | |
RB_DEBUG_COUNTER_INC(obj_imemo_throw_data); | |
break; | |
case imemo_ifunc: | |
RB_DEBUG_COUNTER_INC(obj_imemo_ifunc); | |
break; | |
case imemo_memo: | |
RB_DEBUG_COUNTER_INC(obj_imemo_memo); | |
break; | |
case imemo_parser_strterm: | |
RB_DEBUG_COUNTER_INC(obj_imemo_parser_strterm); | |
break; | |
case imemo_callinfo: | |
RB_DEBUG_COUNTER_INC(obj_imemo_callinfo); | |
break; | |
case imemo_callcache: | |
RB_DEBUG_COUNTER_INC(obj_imemo_callcache); | |
break; | |
case imemo_constcache: | |
RB_DEBUG_COUNTER_INC(obj_imemo_constcache); | |
break; | |
} | |
return 0; | |
default: | |
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE, | |
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags); | |
} | |
if (FL_TEST(obj, FL_FINALIZE)) { | |
make_zombie(objspace, obj, 0, 0); | |
return 1; | |
} | |
else { | |
return 0; | |
} | |
} | |
#define OBJ_ID_INCREMENT (sizeof(RVALUE) / 2) | |
#define OBJ_ID_INITIAL (OBJ_ID_INCREMENT * 2) | |
static int | |
object_id_cmp(st_data_t x, st_data_t y) | |
{ | |
if (RB_BIGNUM_TYPE_P(x)) { | |
return !rb_big_eql(x, y); | |
} | |
else { | |
return x != y; | |
} | |
} | |
static st_index_t | |
object_id_hash(st_data_t n) | |
{ | |
if (RB_BIGNUM_TYPE_P(n)) { | |
return FIX2LONG(rb_big_hash(n)); | |
} | |
else { | |
return st_numhash(n); | |
} | |
} | |
static const struct st_hash_type object_id_hash_type = { | |
object_id_cmp, | |
object_id_hash, | |
}; | |
void | |
Init_heap(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
#if defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE) | |
/* If Ruby's heap pages are not a multiple of the system page size, we | |
* cannot use mprotect for the read barrier, so we must disable automatic | |
* compaction. */ | |
int pagesize; | |
pagesize = (int)sysconf(_SC_PAGE_SIZE); | |
if ((HEAP_PAGE_SIZE % pagesize) != 0) { | |
ruby_enable_autocompact = 0; | |
} | |
#endif | |
#if defined(HAVE_MMAP) && !HAVE_CONST_PAGE_SIZE && !defined(PAGE_MAX_SIZE) | |
/* Need to determine if we can use mmap at runtime. */ | |
# ifdef PAGE_SIZE | |
/* If the PAGE_SIZE macro can be used. */ | |
use_mmap_aligned_alloc = PAGE_SIZE <= HEAP_PAGE_SIZE; | |
# elif defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE) | |
/* If we can use sysconf to determine the page size. */ | |
use_mmap_aligned_alloc = pagesize <= HEAP_PAGE_SIZE; | |
# else | |
/* Otherwise we can't determine the system page size, so don't use mmap. */ | |
use_mmap_aligned_alloc = FALSE; | |
# endif | |
#endif | |
objspace->next_object_id = INT2FIX(OBJ_ID_INITIAL); | |
objspace->id_to_obj_tbl = st_init_table(&object_id_hash_type); | |
objspace->obj_to_id_tbl = st_init_numtable(); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; | |
#endif | |
heap_add_pages(objspace, &size_pools[0], &size_pools[0].eden_heap, gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT); | |
/* Give other size pools allocatable pages. */ | |
for (int i = 1; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
int multiple = size_pool->slot_size / sizeof(RVALUE); | |
size_pool->allocatable_pages = gc_params.heap_init_slots * multiple / HEAP_PAGE_OBJ_LIMIT; | |
} | |
heap_pages_expand_sorted(objspace); | |
init_mark_stack(&objspace->mark_stack); | |
objspace->profile.invoke_time = getrusage_time(); | |
finalizer_table = st_init_numtable(); | |
} | |
void | |
Init_gc_stress(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_stress_set(objspace, ruby_initial_gc_stress); | |
} | |
typedef int each_obj_callback(void *, void *, size_t, void *); | |
static void objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected); | |
static void objspace_reachable_objects_from_root(rb_objspace_t *, void (func)(const char *, VALUE, void *), void *); | |
struct each_obj_data { | |
rb_objspace_t *objspace; | |
bool reenable_incremental; | |
each_obj_callback *callback; | |
void *data; | |
struct heap_page **pages[SIZE_POOL_COUNT]; | |
size_t pages_counts[SIZE_POOL_COUNT]; | |
}; | |
static VALUE | |
objspace_each_objects_ensure(VALUE arg) | |
{ | |
struct each_obj_data *data = (struct each_obj_data *)arg; | |
rb_objspace_t *objspace = data->objspace; | |
/* Reenable incremental GC */ | |
if (data->reenable_incremental) { | |
objspace->flags.dont_incremental = FALSE; | |
} | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
struct heap_page **pages = data->pages[i]; | |
/* pages could be NULL if an error was raised during setup (e.g. | |
* malloc failed due to out of memory). */ | |
if (pages) { | |
free(pages); | |
} | |
} | |
return Qnil; | |
} | |
static VALUE | |
objspace_each_objects_try(VALUE arg) | |
{ | |
struct each_obj_data *data = (struct each_obj_data *)arg; | |
rb_objspace_t *objspace = data->objspace; | |
/* Copy pages from all size_pools to their respective buffers. */ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
size_t size = size_mul_or_raise(SIZE_POOL_EDEN_HEAP(size_pool)->total_pages, sizeof(struct heap_page *), rb_eRuntimeError); | |
struct heap_page **pages = malloc(size); | |
if (!pages) rb_memerror(); | |
/* Set up pages buffer by iterating over all pages in the current eden | |
* heap. This will be a snapshot of the state of the heap before we | |
* call the callback over each page that exists in this buffer. Thus it | |
* is safe for the callback to allocate objects without possibly entering | |
* an infinite loop. */ | |
struct heap_page *page = 0; | |
size_t pages_count = 0; | |
list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) { | |
pages[pages_count] = page; | |
pages_count++; | |
} | |
data->pages[i] = pages; | |
data->pages_counts[i] = pages_count; | |
GC_ASSERT(pages_count == SIZE_POOL_EDEN_HEAP(size_pool)->total_pages); | |
} | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
size_t pages_count = data->pages_counts[i]; | |
struct heap_page **pages = data->pages[i]; | |
struct heap_page *page = list_top(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, struct heap_page, page_node); | |
for (size_t i = 0; i < pages_count; i++) { | |
/* If we have reached the end of the linked list then there are no | |
* more pages, so break. */ | |
if (page == NULL) break; | |
/* If this page does not match the one in the buffer, then move to | |
* the next page in the buffer. */ | |
if (pages[i] != page) continue; | |
uintptr_t pstart = (uintptr_t)page->start; | |
uintptr_t pend = pstart + (page->total_slots * size_pool->slot_size); | |
if ((*data->callback)((void *)pstart, (void *)pend, size_pool->slot_size, data->data)) { | |
break; | |
} | |
page = list_next(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node); | |
} | |
} | |
return Qnil; | |
} | |
/* | |
* rb_objspace_each_objects() is special C API to walk through | |
* Ruby object space. This C API is too difficult to use it. | |
* To be frank, you should not use it. Or you need to read the | |
* source code of this function and understand what this function does. | |
* | |
* 'callback' will be called several times (the number of heap page, | |
* at current implementation) with: | |
* vstart: a pointer to the first living object of the heap_page. | |
* vend: a pointer to next to the valid heap_page area. | |
* stride: a distance to next VALUE. | |
* | |
* If callback() returns non-zero, the iteration will be stopped. | |
* | |
* This is a sample callback code to iterate liveness objects: | |
* | |
* int | |
* sample_callback(void *vstart, void *vend, int stride, void *data) { | |
* VALUE v = (VALUE)vstart; | |
* for (; v != (VALUE)vend; v += stride) { | |
* if (RBASIC(v)->flags) { // liveness check | |
* // do something with live object 'v' | |
* } | |
* return 0; // continue to iteration | |
* } | |
* | |
* Note: 'vstart' is not a top of heap_page. This point the first | |
* living object to grasp at least one object to avoid GC issue. | |
* This means that you can not walk through all Ruby object page | |
* including freed object page. | |
* | |
* Note: On this implementation, 'stride' is the same as sizeof(RVALUE). | |
* However, there are possibilities to pass variable values with | |
* 'stride' with some reasons. You must use stride instead of | |
* use some constant value in the iteration. | |
*/ | |
void | |
rb_objspace_each_objects(each_obj_callback *callback, void *data) | |
{ | |
objspace_each_objects(&rb_objspace, callback, data, TRUE); | |
} | |
static void | |
objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected) | |
{ | |
/* Disable incremental GC */ | |
bool reenable_incremental = FALSE; | |
if (protected) { | |
reenable_incremental = !objspace->flags.dont_incremental; | |
gc_rest(objspace); | |
objspace->flags.dont_incremental = TRUE; | |
} | |
struct each_obj_data each_obj_data = { | |
.objspace = objspace, | |
.reenable_incremental = reenable_incremental, | |
.callback = callback, | |
.data = data, | |
.pages = {NULL}, | |
.pages_counts = {0}, | |
}; | |
rb_ensure(objspace_each_objects_try, (VALUE)&each_obj_data, | |
objspace_each_objects_ensure, (VALUE)&each_obj_data); | |
} | |
void | |
rb_objspace_each_objects_without_setup(each_obj_callback *callback, void *data) | |
{ | |
objspace_each_objects(&rb_objspace, callback, data, FALSE); | |
} | |
struct os_each_struct { | |
size_t num; | |
VALUE of; | |
}; | |
static int | |
internal_object_p(VALUE obj) | |
{ | |
RVALUE *p = (RVALUE *)obj; | |
void *ptr = __asan_region_is_poisoned(p, SIZEOF_VALUE); | |
asan_unpoison_object(obj, false); | |
bool used_p = p->as.basic.flags; | |
if (used_p) { | |
switch (BUILTIN_TYPE(obj)) { | |
case T_NODE: | |
UNEXPECTED_NODE(internal_object_p); | |
break; | |
case T_NONE: | |
case T_MOVED: | |
case T_IMEMO: | |
case T_ICLASS: | |
case T_ZOMBIE: | |
break; | |
case T_CLASS: | |
if (!p->as.basic.klass) break; | |
if (FL_TEST(obj, FL_SINGLETON)) { | |
return rb_singleton_class_internal_p(obj); | |
} | |
return 0; | |
default: | |
if (!p->as.basic.klass) break; | |
return 0; | |
} | |
} | |
if (ptr || ! used_p) { | |
asan_poison_object(obj); | |
} | |
return 1; | |
} | |
int | |
rb_objspace_internal_object_p(VALUE obj) | |
{ | |
return internal_object_p(obj); | |
} | |
static int | |
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data) | |
{ | |
struct os_each_struct *oes = (struct os_each_struct *)data; | |
VALUE v = (VALUE)vstart; | |
for (; v != (VALUE)vend; v += stride) { | |
if (!internal_object_p(v)) { | |
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) { | |
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(v)) { | |
rb_yield(v); | |
oes->num++; | |
} | |
} | |
} | |
} | |
return 0; | |
} | |
static VALUE | |
os_obj_of(VALUE of) | |
{ | |
struct os_each_struct oes; | |
oes.num = 0; | |
oes.of = of; | |
rb_objspace_each_objects(os_obj_of_i, &oes); | |
return SIZET2NUM(oes.num); | |
} | |
/* | |
* call-seq: | |
* ObjectSpace.each_object([module]) {|obj| ... } -> integer | |
* ObjectSpace.each_object([module]) -> an_enumerator | |
* | |
* Calls the block once for each living, nonimmediate object in this | |
* Ruby process. If <i>module</i> is specified, calls the block | |
* for only those classes or modules that match (or are a subclass of) | |
* <i>module</i>. Returns the number of objects found. Immediate | |
* objects (<code>Fixnum</code>s, <code>Symbol</code>s | |
* <code>true</code>, <code>false</code>, and <code>nil</code>) are | |
* never returned. In the example below, #each_object returns both | |
* the numbers we defined and several constants defined in the Math | |
* module. | |
* | |
* If no block is given, an enumerator is returned instead. | |
* | |
* a = 102.7 | |
* b = 95 # Won't be returned | |
* c = 12345678987654321 | |
* count = ObjectSpace.each_object(Numeric) {|x| p x } | |
* puts "Total count: #{count}" | |
* | |
* <em>produces:</em> | |
* | |
* 12345678987654321 | |
* 102.7 | |
* 2.71828182845905 | |
* 3.14159265358979 | |
* 2.22044604925031e-16 | |
* 1.7976931348623157e+308 | |
* 2.2250738585072e-308 | |
* Total count: 7 | |
* | |
*/ | |
static VALUE | |
os_each_obj(int argc, VALUE *argv, VALUE os) | |
{ | |
VALUE of; | |
of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]); | |
RETURN_ENUMERATOR(os, 1, &of); | |
return os_obj_of(of); | |
} | |
/* | |
* call-seq: | |
* ObjectSpace.undefine_finalizer(obj) | |
* | |
* Removes all finalizers for <i>obj</i>. | |
* | |
*/ | |
static VALUE | |
undefine_final(VALUE os, VALUE obj) | |
{ | |
return rb_undefine_finalizer(obj); | |
} | |
VALUE | |
rb_undefine_finalizer(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
st_data_t data = obj; | |
rb_check_frozen(obj); | |
st_delete(finalizer_table, &data, 0); | |
FL_UNSET(obj, FL_FINALIZE); | |
return obj; | |
} | |
static void | |
should_be_callable(VALUE block) | |
{ | |
if (!rb_obj_respond_to(block, idCall, TRUE)) { | |
rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)", | |
rb_obj_class(block)); | |
} | |
} | |
static void | |
should_be_finalizable(VALUE obj) | |
{ | |
if (!FL_ABLE(obj)) { | |
rb_raise(rb_eArgError, "cannot define finalizer for %s", | |
rb_obj_classname(obj)); | |
} | |
rb_check_frozen(obj); | |
} | |
/* | |
* call-seq: | |
* ObjectSpace.define_finalizer(obj, aProc=proc()) | |
* | |
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i> | |
* was destroyed. The object ID of the <i>obj</i> will be passed | |
* as an argument to <i>aProc</i>. If <i>aProc</i> is a lambda or | |
* method, make sure it can be called with a single argument. | |
* | |
* The return value is an array <code>[0, aProc]</code>. | |
* | |
* The two recommended patterns are to either create the finaliser proc | |
* in a non-instance method where it can safely capture the needed state, | |
* or to use a custom callable object that stores the needed state | |
* explicitly as instance variables. | |
* | |
* class Foo | |
* def initialize(data_needed_for_finalization) | |
* ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization)) | |
* end | |
* | |
* def self.create_finalizer(data_needed_for_finalization) | |
* proc { | |
* puts "finalizing #{data_needed_for_finalization}" | |
* } | |
* end | |
* end | |
* | |
* class Bar | |
* class Remover | |
* def initialize(data_needed_for_finalization) | |
* @data_needed_for_finalization = data_needed_for_finalization | |
* end | |
* | |
* def call(id) | |
* puts "finalizing #{@data_needed_for_finalization}" | |
* end | |
* end | |
* | |
* def initialize(data_needed_for_finalization) | |
* ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization)) | |
* end | |
* end | |
* | |
* Note that if your finalizer references the object to be | |
* finalized it will never be run on GC, although it will still be | |
* run at exit. You will get a warning if you capture the object | |
* to be finalized as the receiver of the finalizer. | |
* | |
* class CapturesSelf | |
* def initialize(name) | |
* ObjectSpace.define_finalizer(self, proc { | |
* # this finalizer will only be run on exit | |
* puts "finalizing #{name}" | |
* }) | |
* end | |
* end | |
* | |
* Also note that finalization can be unpredictable and is never guaranteed | |
* to be run except on exit. | |
*/ | |
static VALUE | |
define_final(int argc, VALUE *argv, VALUE os) | |
{ | |
VALUE obj, block; | |
rb_scan_args(argc, argv, "11", &obj, &block); | |
should_be_finalizable(obj); | |
if (argc == 1) { | |
block = rb_block_proc(); | |
} | |
else { | |
should_be_callable(block); | |
} | |
if (rb_callable_receiver(block) == obj) { | |
rb_warn("finalizer references object to be finalized"); | |
} | |
return define_final0(obj, block); | |
} | |
static VALUE | |
define_final0(VALUE obj, VALUE block) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE table; | |
st_data_t data; | |
RBASIC(obj)->flags |= FL_FINALIZE; | |
if (st_lookup(finalizer_table, obj, &data)) { | |
table = (VALUE)data; | |
/* avoid duplicate block, table is usually small */ | |
{ | |
long len = RARRAY_LEN(table); | |
long i; | |
for (i = 0; i < len; i++) { | |
VALUE recv = RARRAY_AREF(table, i); | |
if (rb_equal(recv, block)) { | |
block = recv; | |
goto end; | |
} | |
} | |
} | |
rb_ary_push(table, block); | |
} | |
else { | |
table = rb_ary_new3(1, block); | |
RBASIC_CLEAR_CLASS(table); | |
st_add_direct(finalizer_table, obj, table); | |
} | |
end: | |
block = rb_ary_new3(2, INT2FIX(0), block); | |
OBJ_FREEZE(block); | |
return block; | |
} | |
VALUE | |
rb_define_finalizer(VALUE obj, VALUE block) | |
{ | |
should_be_finalizable(obj); | |
should_be_callable(block); | |
return define_final0(obj, block); | |
} | |
void | |
rb_gc_copy_finalizer(VALUE dest, VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE table; | |
st_data_t data; | |
if (!FL_TEST(obj, FL_FINALIZE)) return; | |
if (st_lookup(finalizer_table, obj, &data)) { | |
table = (VALUE)data; | |
st_insert(finalizer_table, dest, table); | |
} | |
FL_SET(dest, FL_FINALIZE); | |
} | |
static VALUE | |
run_single_final(VALUE cmd, VALUE objid) | |
{ | |
return rb_check_funcall(cmd, idCall, 1, &objid); | |
} | |
static void | |
warn_exception_in_finalizer(rb_execution_context_t *ec, VALUE final) | |
{ | |
if (final != Qundef && !NIL_P(ruby_verbose)) { | |
VALUE errinfo = ec->errinfo; | |
rb_warn("Exception in finalizer %+"PRIsVALUE, final); | |
rb_ec_error_print(ec, errinfo); | |
} | |
} | |
static void | |
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table) | |
{ | |
long i; | |
enum ruby_tag_type state; | |
volatile struct { | |
VALUE errinfo; | |
VALUE objid; | |
VALUE final; | |
rb_control_frame_t *cfp; | |
long finished; | |
} saved; | |
rb_execution_context_t * volatile ec = GET_EC(); | |
#define RESTORE_FINALIZER() (\ | |
ec->cfp = saved.cfp, \ | |
ec->errinfo = saved.errinfo) | |
saved.errinfo = ec->errinfo; | |
saved.objid = rb_obj_id(obj); | |
saved.cfp = ec->cfp; | |
saved.finished = 0; | |
saved.final = Qundef; | |
EC_PUSH_TAG(ec); | |
state = EC_EXEC_TAG(); | |
if (state != TAG_NONE) { | |
++saved.finished; /* skip failed finalizer */ | |
warn_exception_in_finalizer(ec, ATOMIC_VALUE_EXCHANGE(saved.final, Qundef)); | |
} | |
for (i = saved.finished; | |
RESTORE_FINALIZER(), i<RARRAY_LEN(table); | |
saved.finished = ++i) { | |
run_single_final(saved.final = RARRAY_AREF(table, i), saved.objid); | |
} | |
EC_POP_TAG(); | |
#undef RESTORE_FINALIZER | |
} | |
static void | |
run_final(rb_objspace_t *objspace, VALUE zombie) | |
{ | |
st_data_t key, table; | |
if (RZOMBIE(zombie)->dfree) { | |
RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data); | |
} | |
key = (st_data_t)zombie; | |
if (st_delete(finalizer_table, &key, &table)) { | |
run_finalizer(objspace, zombie, (VALUE)table); | |
} | |
} | |
static void | |
finalize_list(rb_objspace_t *objspace, VALUE zombie) | |
{ | |
while (zombie) { | |
VALUE next_zombie; | |
struct heap_page *page; | |
asan_unpoison_object(zombie, false); | |
next_zombie = RZOMBIE(zombie)->next; | |
page = GET_HEAP_PAGE(zombie); | |
run_final(objspace, zombie); | |
RB_VM_LOCK_ENTER(); | |
{ | |
GC_ASSERT(BUILTIN_TYPE(zombie) == T_ZOMBIE); | |
if (FL_TEST(zombie, FL_SEEN_OBJ_ID)) { | |
obj_free_object_id(objspace, zombie); | |
} | |
GC_ASSERT(heap_pages_final_slots > 0); | |
GC_ASSERT(page->final_slots > 0); | |
heap_pages_final_slots--; | |
page->final_slots--; | |
page->free_slots++; | |
heap_page_add_freeobj(objspace, page, zombie); | |
objspace->profile.total_freed_objects++; | |
} | |
RB_VM_LOCK_LEAVE(); | |
zombie = next_zombie; | |
} | |
} | |
static void | |
finalize_deferred(rb_objspace_t *objspace) | |
{ | |
VALUE zombie; | |
rb_execution_context_t *ec = GET_EC(); | |
ec->interrupt_mask |= PENDING_INTERRUPT_MASK; | |
while ((zombie = ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) { | |
finalize_list(objspace, zombie); | |
} | |
ec->interrupt_mask &= ~PENDING_INTERRUPT_MASK; | |
} | |
static void | |
gc_finalize_deferred(void *dmy) | |
{ | |
rb_objspace_t *objspace = dmy; | |
if (ATOMIC_EXCHANGE(finalizing, 1)) return; | |
RB_VM_LOCK_ENTER(); | |
{ | |
finalize_deferred(objspace); | |
ATOMIC_SET(finalizing, 0); | |
} | |
RB_VM_LOCK_LEAVE(); | |
} | |
static void | |
gc_finalize_deferred_register(rb_objspace_t *objspace) | |
{ | |
if (rb_postponed_job_register_one(0, gc_finalize_deferred, objspace) == 0) { | |
rb_bug("gc_finalize_deferred_register: can't register finalizer."); | |
} | |
} | |
struct force_finalize_list { | |
VALUE obj; | |
VALUE table; | |
struct force_finalize_list *next; | |
}; | |
static int | |
force_chain_object(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
struct force_finalize_list **prev = (struct force_finalize_list **)arg; | |
struct force_finalize_list *curr = ALLOC(struct force_finalize_list); | |
curr->obj = key; | |
curr->table = val; | |
curr->next = *prev; | |
*prev = curr; | |
return ST_CONTINUE; | |
} | |
bool rb_obj_is_main_ractor(VALUE gv); | |
void | |
rb_objspace_call_finalizer(rb_objspace_t *objspace) | |
{ | |
size_t i; | |
#if RGENGC_CHECK_MODE >= 2 | |
gc_verify_internal_consistency(objspace); | |
#endif | |
gc_rest(objspace); | |
if (ATOMIC_EXCHANGE(finalizing, 1)) return; | |
/* run finalizers */ | |
finalize_deferred(objspace); | |
GC_ASSERT(heap_pages_deferred_final == 0); | |
gc_rest(objspace); | |
/* prohibit incremental GC */ | |
objspace->flags.dont_incremental = 1; | |
/* force to run finalizer */ | |
while (finalizer_table->num_entries) { | |
struct force_finalize_list *list = 0; | |
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list); | |
while (list) { | |
struct force_finalize_list *curr = list; | |
st_data_t obj = (st_data_t)curr->obj; | |
run_finalizer(objspace, curr->obj, curr->table); | |
st_delete(finalizer_table, &obj, 0); | |
list = curr->next; | |
xfree(curr); | |
} | |
} | |
/* prohibit GC because force T_DATA finalizers can break an object graph consistency */ | |
dont_gc_on(); | |
/* running data/file finalizers are part of garbage collection */ | |
unsigned int lock_lev; | |
gc_enter(objspace, gc_enter_event_finalizer, &lock_lev); | |
/* run data/file object's finalizers */ | |
for (i = 0; i < heap_allocated_pages; i++) { | |
struct heap_page *page = heap_pages_sorted[i]; | |
short stride = page->size_pool->slot_size; | |
uintptr_t p = (uintptr_t)page->start; | |
uintptr_t pend = p + page->total_slots * stride; | |
for (; p < pend; p += stride) { | |
VALUE vp = (VALUE)p; | |
void *poisoned = asan_poisoned_object_p(vp); | |
asan_unpoison_object(vp, false); | |
switch (BUILTIN_TYPE(vp)) { | |
case T_DATA: | |
if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break; | |
if (rb_obj_is_thread(vp)) break; | |
if (rb_obj_is_mutex(vp)) break; | |
if (rb_obj_is_fiber(vp)) break; | |
if (rb_obj_is_main_ractor(vp)) break; | |
if (RTYPEDDATA_P(vp)) { | |
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree; | |
} | |
RANY(p)->as.free.flags = 0; | |
if (RANY(p)->as.data.dfree == RUBY_DEFAULT_FREE) { | |
xfree(DATA_PTR(p)); | |
} | |
else if (RANY(p)->as.data.dfree) { | |
make_zombie(objspace, vp, RANY(p)->as.data.dfree, RANY(p)->as.data.data); | |
} | |
break; | |
case T_FILE: | |
if (RANY(p)->as.file.fptr) { | |
make_io_zombie(objspace, vp); | |
} | |
break; | |
default: | |
break; | |
} | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE); | |
asan_poison_object(vp); | |
} | |
} | |
} | |
gc_exit(objspace, gc_enter_event_finalizer, &lock_lev); | |
if (heap_pages_deferred_final) { | |
finalize_list(objspace, heap_pages_deferred_final); | |
} | |
st_free_table(finalizer_table); | |
finalizer_table = 0; | |
ATOMIC_SET(finalizing, 0); | |
} | |
PUREFUNC(static inline int is_id_value(rb_objspace_t *objspace, VALUE ptr)); | |
static inline int | |
is_id_value(rb_objspace_t *objspace, VALUE ptr) | |
{ | |
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE; | |
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE; | |
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE; | |
return TRUE; | |
} | |
static inline int | |
is_swept_object(rb_objspace_t *objspace, VALUE ptr) | |
{ | |
struct heap_page *page = GET_HEAP_PAGE(ptr); | |
return page->flags.before_sweep ? FALSE : TRUE; | |
} | |
/* garbage objects will be collected soon. */ | |
static inline int | |
is_garbage_object(rb_objspace_t *objspace, VALUE ptr) | |
{ | |
if (!is_lazy_sweeping(objspace) || | |
is_swept_object(objspace, ptr) || | |
MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) { | |
return FALSE; | |
} | |
else { | |
return TRUE; | |
} | |
} | |
static inline int | |
is_live_object(rb_objspace_t *objspace, VALUE ptr) | |
{ | |
switch (BUILTIN_TYPE(ptr)) { | |
case T_NONE: | |
case T_MOVED: | |
case T_ZOMBIE: | |
return FALSE; | |
default: | |
break; | |
} | |
if (!is_garbage_object(objspace, ptr)) { | |
return TRUE; | |
} | |
else { | |
return FALSE; | |
} | |
} | |
static inline int | |
is_markable_object(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (rb_special_const_p(obj)) return FALSE; /* special const is not markable */ | |
check_rvalue_consistency(obj); | |
return TRUE; | |
} | |
int | |
rb_objspace_markable_object_p(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return is_markable_object(objspace, obj) && is_live_object(objspace, obj); | |
} | |
int | |
rb_objspace_garbage_object_p(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return is_garbage_object(objspace, obj); | |
} | |
static VALUE | |
id2ref_obj_tbl(rb_objspace_t *objspace, VALUE objid) | |
{ | |
VALUE orig; | |
if (st_lookup(objspace->id_to_obj_tbl, objid, &orig)) { | |
return orig; | |
} | |
else { | |
return Qundef; | |
} | |
} | |
/* | |
* call-seq: | |
* ObjectSpace._id2ref(object_id) -> an_object | |
* | |
* Converts an object id to a reference to the object. May not be | |
* called on an object id passed as a parameter to a finalizer. | |
* | |
* s = "I am a string" #=> "I am a string" | |
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" | |
* r == s #=> true | |
* | |
* On multi-ractor mode, if the object is not shareable, it raises | |
* RangeError. | |
*/ | |
static VALUE | |
id2ref(VALUE objid) | |
{ | |
#if SIZEOF_LONG == SIZEOF_VOIDP | |
#define NUM2PTR(x) NUM2ULONG(x) | |
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP | |
#define NUM2PTR(x) NUM2ULL(x) | |
#endif | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE ptr; | |
VALUE orig; | |
void *p0; | |
objid = rb_to_int(objid); | |
if (FIXNUM_P(objid) || rb_big_size(objid) <= SIZEOF_VOIDP) { | |
ptr = NUM2PTR(objid); | |
if (ptr == Qtrue) return Qtrue; | |
if (ptr == Qfalse) return Qfalse; | |
if (NIL_P(ptr)) return Qnil; | |
if (FIXNUM_P(ptr)) return (VALUE)ptr; | |
if (FLONUM_P(ptr)) return (VALUE)ptr; | |
ptr = obj_id_to_ref(objid); | |
if ((ptr % sizeof(RVALUE)) == (4 << 2)) { | |
ID symid = ptr / sizeof(RVALUE); | |
p0 = (void *)ptr; | |
if (rb_id2str(symid) == 0) | |
rb_raise(rb_eRangeError, "%p is not symbol id value", p0); | |
return ID2SYM(symid); | |
} | |
} | |
if ((orig = id2ref_obj_tbl(objspace, objid)) != Qundef && | |
is_live_object(objspace, orig)) { | |
if (!rb_multi_ractor_p() || rb_ractor_shareable_p(orig)) { | |
return orig; | |
} | |
else { | |
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is id of the unshareable object on multi-ractor", rb_int2str(objid, 10)); | |
} | |
} | |
if (rb_int_ge(objid, objspace->next_object_id)) { | |
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10)); | |
} | |
else { | |
rb_raise(rb_eRangeError, "%+"PRIsVALUE" is recycled object", rb_int2str(objid, 10)); | |
} | |
} | |
static VALUE | |
os_id2ref(VALUE os, VALUE objid) | |
{ | |
return id2ref(objid); | |
} | |
static VALUE | |
rb_find_object_id(VALUE obj, VALUE (*get_heap_object_id)(VALUE)) | |
{ | |
if (STATIC_SYM_P(obj)) { | |
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; | |
} | |
else if (FLONUM_P(obj)) { | |
#if SIZEOF_LONG == SIZEOF_VOIDP | |
return LONG2NUM((SIGNED_VALUE)obj); | |
#else | |
return LL2NUM((SIGNED_VALUE)obj); | |
#endif | |
} | |
else if (SPECIAL_CONST_P(obj)) { | |
return LONG2NUM((SIGNED_VALUE)obj); | |
} | |
return get_heap_object_id(obj); | |
} | |
static VALUE | |
cached_object_id(VALUE obj) | |
{ | |
VALUE id; | |
rb_objspace_t *objspace = &rb_objspace; | |
RB_VM_LOCK_ENTER(); | |
if (st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, &id)) { | |
GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID)); | |
} | |
else { | |
GC_ASSERT(!FL_TEST(obj, FL_SEEN_OBJ_ID)); | |
id = objspace->next_object_id; | |
objspace->next_object_id = rb_int_plus(id, INT2FIX(OBJ_ID_INCREMENT)); | |
VALUE already_disabled = rb_gc_disable_no_rest(); | |
st_insert(objspace->obj_to_id_tbl, (st_data_t)obj, (st_data_t)id); | |
st_insert(objspace->id_to_obj_tbl, (st_data_t)id, (st_data_t)obj); | |
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); | |
FL_SET(obj, FL_SEEN_OBJ_ID); | |
} | |
RB_VM_LOCK_LEAVE(); | |
return id; | |
} | |
static VALUE | |
nonspecial_obj_id_(VALUE obj) | |
{ | |
return nonspecial_obj_id(obj); | |
} | |
VALUE | |
rb_memory_id(VALUE obj) | |
{ | |
return rb_find_object_id(obj, nonspecial_obj_id_); | |
} | |
/* | |
* Document-method: __id__ | |
* Document-method: object_id | |
* | |
* call-seq: | |
* obj.__id__ -> integer | |
* obj.object_id -> integer | |
* | |
* Returns an integer identifier for +obj+. | |
* | |
* The same number will be returned on all calls to +object_id+ for a given | |
* object, and no two active objects will share an id. | |
* | |
* Note: that some objects of builtin classes are reused for optimization. | |
* This is the case for immediate values and frozen string literals. | |
* | |
* BasicObject implements +__id__+, Kernel implements +object_id+. | |
* | |
* Immediate values are not passed by reference but are passed by value: | |
* +nil+, +true+, +false+, Fixnums, Symbols, and some Floats. | |
* | |
* Object.new.object_id == Object.new.object_id # => false | |
* (21 * 2).object_id == (21 * 2).object_id # => true | |
* "hello".object_id == "hello".object_id # => false | |
* "hi".freeze.object_id == "hi".freeze.object_id # => true | |
*/ | |
VALUE | |
rb_obj_id(VALUE obj) | |
{ | |
/* | |
* 32-bit VALUE space | |
* MSB ------------------------ LSB | |
* false 00000000000000000000000000000000 | |
* true 00000000000000000000000000000010 | |
* nil 00000000000000000000000000000100 | |
* undef 00000000000000000000000000000110 | |
* symbol ssssssssssssssssssssssss00001110 | |
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) | |
* fixnum fffffffffffffffffffffffffffffff1 | |
* | |
* object_id space | |
* LSB | |
* false 00000000000000000000000000000000 | |
* true 00000000000000000000000000000010 | |
* nil 00000000000000000000000000000100 | |
* undef 00000000000000000000000000000110 | |
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) | |
* object oooooooooooooooooooooooooooooo0 o...o % A = 0 | |
* fixnum fffffffffffffffffffffffffffffff1 bignum if required | |
* | |
* where A = sizeof(RVALUE)/4 | |
* | |
* sizeof(RVALUE) is | |
* 20 if 32-bit, double is 4-byte aligned | |
* 24 if 32-bit, double is 8-byte aligned | |
* 40 if 64-bit | |
*/ | |
return rb_find_object_id(obj, cached_object_id); | |
} | |
static enum rb_id_table_iterator_result | |
cc_table_memsize_i(VALUE ccs_ptr, void *data_ptr) | |
{ | |
size_t *total_size = data_ptr; | |
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; | |
*total_size += sizeof(*ccs); | |
*total_size += sizeof(ccs->entries[0]) * ccs->capa; | |
return ID_TABLE_CONTINUE; | |
} | |
static size_t | |
cc_table_memsize(struct rb_id_table *cc_table) | |
{ | |
size_t total = rb_id_table_memsize(cc_table); | |
rb_id_table_foreach_values(cc_table, cc_table_memsize_i, &total); | |
return total; | |
} | |
static size_t | |
obj_memsize_of(VALUE obj, int use_all_types) | |
{ | |
size_t size = 0; | |
if (SPECIAL_CONST_P(obj)) { | |
return 0; | |
} | |
if (FL_TEST(obj, FL_EXIVAR)) { | |
size += rb_generic_ivar_memsize(obj); | |
} | |
switch (BUILTIN_TYPE(obj)) { | |
case T_OBJECT: | |
if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) { | |
size += ROBJECT_NUMIV(obj) * sizeof(VALUE); | |
} | |
break; | |
case T_MODULE: | |
case T_CLASS: | |
if (RCLASS_EXT(obj)) { | |
if (RCLASS_M_TBL(obj)) { | |
size += rb_id_table_memsize(RCLASS_M_TBL(obj)); | |
} | |
if (RCLASS_IV_TBL(obj)) { | |
size += st_memsize(RCLASS_IV_TBL(obj)); | |
} | |
if (RCLASS_CVC_TBL(obj)) { | |
size += rb_id_table_memsize(RCLASS_CVC_TBL(obj)); | |
} | |
if (RCLASS_IV_INDEX_TBL(obj)) { | |
// TODO: more correct value | |
size += st_memsize(RCLASS_IV_INDEX_TBL(obj)); | |
} | |
if (RCLASS(obj)->ptr->iv_tbl) { | |
size += st_memsize(RCLASS(obj)->ptr->iv_tbl); | |
} | |
if (RCLASS(obj)->ptr->const_tbl) { | |
size += rb_id_table_memsize(RCLASS(obj)->ptr->const_tbl); | |
} | |
if (RCLASS_CC_TBL(obj)) { | |
size += cc_table_memsize(RCLASS_CC_TBL(obj)); | |
} | |
size += sizeof(rb_classext_t); | |
} | |
break; | |
case T_ICLASS: | |
if (RICLASS_OWNS_M_TBL_P(obj)) { | |
if (RCLASS_M_TBL(obj)) { | |
size += rb_id_table_memsize(RCLASS_M_TBL(obj)); | |
} | |
} | |
if (RCLASS_EXT(obj) && RCLASS_CC_TBL(obj)) { | |
size += cc_table_memsize(RCLASS_CC_TBL(obj)); | |
} | |
break; | |
case T_STRING: | |
size += rb_str_memsize(obj); | |
break; | |
case T_ARRAY: | |
size += rb_ary_memsize(obj); | |
break; | |
case T_HASH: | |
if (RHASH_AR_TABLE_P(obj)) { | |
if (RHASH_AR_TABLE(obj) != NULL) { | |
size_t rb_hash_ar_table_size(void); | |
size += rb_hash_ar_table_size(); | |
} | |
} | |
else { | |
VM_ASSERT(RHASH_ST_TABLE(obj) != NULL); | |
size += st_memsize(RHASH_ST_TABLE(obj)); | |
} | |
break; | |
case T_REGEXP: | |
if (RREGEXP_PTR(obj)) { | |
size += onig_memsize(RREGEXP_PTR(obj)); | |
} | |
break; | |
case T_DATA: | |
if (use_all_types) size += rb_objspace_data_type_memsize(obj); | |
break; | |
case T_MATCH: | |
if (RMATCH(obj)->rmatch) { | |
struct rmatch *rm = RMATCH(obj)->rmatch; | |
size += onig_region_memsize(&rm->regs); | |
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated; | |
size += sizeof(struct rmatch); | |
} | |
break; | |
case T_FILE: | |
if (RFILE(obj)->fptr) { | |
size += rb_io_memsize(RFILE(obj)->fptr); | |
} | |
break; | |
case T_RATIONAL: | |
case T_COMPLEX: | |
break; | |
case T_IMEMO: | |
size += imemo_memsize(obj); | |
break; | |
case T_FLOAT: | |
case T_SYMBOL: | |
break; | |
case T_BIGNUM: | |
if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) { | |
size += BIGNUM_LEN(obj) * sizeof(BDIGIT); | |
} | |
break; | |
case T_NODE: | |
UNEXPECTED_NODE(obj_memsize_of); | |
break; | |
case T_STRUCT: | |
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && | |
RSTRUCT(obj)->as.heap.ptr) { | |
size += sizeof(VALUE) * RSTRUCT_LEN(obj); | |
} | |
break; | |
case T_ZOMBIE: | |
case T_MOVED: | |
break; | |
default: | |
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)", | |
BUILTIN_TYPE(obj), (void*)obj); | |
} | |
return size + sizeof(RVALUE); | |
} | |
size_t | |
rb_obj_memsize_of(VALUE obj) | |
{ | |
return obj_memsize_of(obj, TRUE); | |
} | |
static int | |
set_zero(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
VALUE k = (VALUE)key; | |
VALUE hash = (VALUE)arg; | |
rb_hash_aset(hash, k, INT2FIX(0)); | |
return ST_CONTINUE; | |
} | |
static VALUE | |
type_sym(size_t type) | |
{ | |
switch (type) { | |
#define COUNT_TYPE(t) case (t): return ID2SYM(rb_intern(#t)); break; | |
COUNT_TYPE(T_NONE); | |
COUNT_TYPE(T_OBJECT); | |
COUNT_TYPE(T_CLASS); | |
COUNT_TYPE(T_MODULE); | |
COUNT_TYPE(T_FLOAT); | |
COUNT_TYPE(T_STRING); | |
COUNT_TYPE(T_REGEXP); | |
COUNT_TYPE(T_ARRAY); | |
COUNT_TYPE(T_HASH); | |
COUNT_TYPE(T_STRUCT); | |
COUNT_TYPE(T_BIGNUM); | |
COUNT_TYPE(T_FILE); | |
COUNT_TYPE(T_DATA); | |
COUNT_TYPE(T_MATCH); | |
COUNT_TYPE(T_COMPLEX); | |
COUNT_TYPE(T_RATIONAL); | |
COUNT_TYPE(T_NIL); | |
COUNT_TYPE(T_TRUE); | |
COUNT_TYPE(T_FALSE); | |
COUNT_TYPE(T_SYMBOL); | |
COUNT_TYPE(T_FIXNUM); | |
COUNT_TYPE(T_IMEMO); | |
COUNT_TYPE(T_UNDEF); | |
COUNT_TYPE(T_NODE); | |
COUNT_TYPE(T_ICLASS); | |
COUNT_TYPE(T_ZOMBIE); | |
COUNT_TYPE(T_MOVED); | |
#undef COUNT_TYPE | |
default: return SIZET2NUM(type); break; | |
} | |
} | |
/* | |
* call-seq: | |
* ObjectSpace.count_objects([result_hash]) -> hash | |
* | |
* Counts all objects grouped by type. | |
* | |
* It returns a hash, such as: | |
* { | |
* :TOTAL=>10000, | |
* :FREE=>3011, | |
* :T_OBJECT=>6, | |
* :T_CLASS=>404, | |
* # ... | |
* } | |
* | |
* The contents of the returned hash are implementation specific. | |
* It may be changed in future. | |
* | |
* The keys starting with +:T_+ means live objects. | |
* For example, +:T_ARRAY+ is the number of arrays. | |
* +:FREE+ means object slots which is not used now. | |
* +:TOTAL+ means sum of above. | |
* | |
* If the optional argument +result_hash+ is given, | |
* it is overwritten and returned. This is intended to avoid probe effect. | |
* | |
* h = {} | |
* ObjectSpace.count_objects(h) | |
* puts h | |
* # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 } | |
* | |
* This method is only expected to work on C Ruby. | |
* | |
*/ | |
static VALUE | |
count_objects(int argc, VALUE *argv, VALUE os) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
size_t counts[T_MASK+1]; | |
size_t freed = 0; | |
size_t total = 0; | |
size_t i; | |
VALUE hash = Qnil; | |
if (rb_check_arity(argc, 0, 1) == 1) { | |
hash = argv[0]; | |
if (!RB_TYPE_P(hash, T_HASH)) | |
rb_raise(rb_eTypeError, "non-hash given"); | |
} | |
for (i = 0; i <= T_MASK; i++) { | |
counts[i] = 0; | |
} | |
for (i = 0; i < heap_allocated_pages; i++) { | |
struct heap_page *page = heap_pages_sorted[i]; | |
short stride = page->size_pool->slot_size; | |
uintptr_t p = (uintptr_t)page->start; | |
uintptr_t pend = p + page->total_slots * stride; | |
for (;p < pend; p += stride) { | |
VALUE vp = (VALUE)p; | |
GC_ASSERT((NUM_IN_PAGE(vp) * sizeof(RVALUE)) % page->size_pool->slot_size == 0); | |
void *poisoned = asan_poisoned_object_p(vp); | |
asan_unpoison_object(vp, false); | |
if (RANY(p)->as.basic.flags) { | |
counts[BUILTIN_TYPE(vp)]++; | |
} | |
else { | |
freed++; | |
} | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE); | |
asan_poison_object(vp); | |
} | |
} | |
total += page->total_slots; | |
} | |
if (NIL_P(hash)) { | |
hash = rb_hash_new(); | |
} | |
else if (!RHASH_EMPTY_P(hash)) { | |
rb_hash_stlike_foreach(hash, set_zero, hash); | |
} | |
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); | |
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); | |
for (i = 0; i <= T_MASK; i++) { | |
VALUE type = type_sym(i); | |
if (counts[i]) | |
rb_hash_aset(hash, type, SIZET2NUM(counts[i])); | |
} | |
return hash; | |
} | |
/* | |
------------------------ Garbage Collection ------------------------ | |
*/ | |
/* Sweeping */ | |
static size_t | |
objspace_available_slots(rb_objspace_t *objspace) | |
{ | |
size_t total_slots = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
total_slots += SIZE_POOL_EDEN_HEAP(size_pool)->total_slots; | |
total_slots += SIZE_POOL_TOMB_HEAP(size_pool)->total_slots; | |
} | |
return total_slots; | |
} | |
static size_t | |
objspace_live_slots(rb_objspace_t *objspace) | |
{ | |
return (objspace->total_allocated_objects - objspace->profile.total_freed_objects) - heap_pages_final_slots; | |
} | |
static size_t | |
objspace_free_slots(rb_objspace_t *objspace) | |
{ | |
return objspace_available_slots(objspace) - objspace_live_slots(objspace) - heap_pages_final_slots; | |
} | |
static void | |
gc_setup_mark_bits(struct heap_page *page) | |
{ | |
/* copy oldgen bitmap to mark bitmap */ | |
memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_PAGE_BITMAP_SIZE); | |
} | |
static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj); | |
static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t slot_size); | |
static void | |
lock_page_body(rb_objspace_t *objspace, struct heap_page_body *body) | |
{ | |
#if defined(_WIN32) | |
DWORD old_protect; | |
if (!VirtualProtect(body, HEAP_PAGE_SIZE, PAGE_NOACCESS, &old_protect)) { | |
#else | |
if (mprotect(body, HEAP_PAGE_SIZE, PROT_NONE)) { | |
#endif | |
rb_bug("Couldn't protect page %p, errno: %s", (void *)body, strerror(errno)); | |
} | |
else { | |
gc_report(5, objspace, "Protecting page in move %p\n", (void *)body); | |
} | |
} | |
static void | |
unlock_page_body(rb_objspace_t *objspace, struct heap_page_body *body) | |
{ | |
#if defined(_WIN32) | |
DWORD old_protect; | |
if (!VirtualProtect(body, HEAP_PAGE_SIZE, PAGE_READWRITE, &old_protect)) { | |
#else | |
if (mprotect(body, HEAP_PAGE_SIZE, PROT_READ | PROT_WRITE)) { | |
#endif | |
rb_bug("Couldn't unprotect page %p, errno: %s", (void *)body, strerror(errno)); | |
} | |
else { | |
gc_report(5, objspace, "Unprotecting page in move %p\n", (void *)body); | |
} | |
} | |
static inline bool | |
try_move_in_plane(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page, uintptr_t p, bits_t bits, VALUE dest) | |
{ | |
if (bits) { | |
do { | |
if (bits & 1) { | |
/* We're trying to move "p" */ | |
objspace->rcompactor.considered_count_table[BUILTIN_TYPE((VALUE)p)]++; | |
if (gc_is_moveable_obj(objspace, (VALUE)p)) { | |
/* We were able to move "p" */ | |
objspace->rcompactor.moved_count_table[BUILTIN_TYPE((VALUE)p)]++; | |
objspace->rcompactor.total_moved++; | |
bool from_freelist = false; | |
if (BUILTIN_TYPE(dest) == T_NONE) { | |
from_freelist = true; | |
} | |
gc_move(objspace, (VALUE)p, dest, page->size_pool->slot_size); | |
gc_pin(objspace, (VALUE)p); | |
heap->compact_cursor_index = (RVALUE *)p; | |
if (from_freelist) { | |
FL_SET((VALUE)p, FL_FROM_FREELIST); | |
} | |
return true; | |
} | |
} | |
p += sizeof(RVALUE); | |
bits >>= 1; | |
} while (bits); | |
} | |
return false; | |
} | |
static short | |
try_move(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page, VALUE dest) | |
{ | |
struct heap_page * cursor = heap->compact_cursor; | |
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(dest), dest)); | |
/* T_NONE objects came from the free list. If the object is *not* a | |
* T_NONE, it is an object that just got freed but hasn't been | |
* added to the freelist yet */ | |
while (1) { | |
size_t index; | |
bits_t *mark_bits = cursor->mark_bits; | |
bits_t *pin_bits = cursor->pinned_bits; | |
RVALUE * p; | |
if (heap->compact_cursor_index) { | |
index = BITMAP_INDEX(heap->compact_cursor_index); | |
p = heap->compact_cursor_index; | |
GC_ASSERT(cursor == GET_HEAP_PAGE(p)); | |
} | |
else { | |
index = 0; | |
p = cursor->start; | |
} | |
bits_t bits = mark_bits[index] & ~pin_bits[index]; | |
bits >>= NUM_IN_PAGE(p); | |
if (try_move_in_plane(objspace, heap, sweep_page, (uintptr_t)p, bits, dest)) return 1; | |
if (index == 0) { | |
p = cursor->start + (BITS_BITLENGTH - NUM_IN_PAGE(cursor->start)); | |
} | |
else { | |
p = cursor->start + (BITS_BITLENGTH - NUM_IN_PAGE(cursor->start)) + (BITS_BITLENGTH * index); | |
} | |
/* Find an object to move and move it. Movable objects must be | |
* marked, so we iterate using the marking bitmap */ | |
for (size_t i = index + 1; i < HEAP_PAGE_BITMAP_LIMIT; i++) { | |
bits_t bits = mark_bits[i] & ~pin_bits[i]; | |
if (try_move_in_plane(objspace, heap, sweep_page, (uintptr_t)p, bits, dest)) return 1; | |
p += BITS_BITLENGTH; | |
} | |
/* We couldn't find a movable object on the compact cursor, so lets | |
* move to the next page (previous page since we are traveling in the | |
* opposite direction of the sweep cursor) and look there. */ | |
struct heap_page * next; | |
next = list_prev(&heap->pages, cursor, page_node); | |
/* Protect the current cursor since it probably has T_MOVED slots. */ | |
lock_page_body(objspace, GET_PAGE_BODY(cursor->start)); | |
heap->compact_cursor = next; | |
heap->compact_cursor_index = 0; | |
cursor = next; | |
// Cursors have met, lets quit. We set `heap->compact_cursor` equal | |
// to `heap->sweeping_page` so we know how far to iterate through | |
// the heap when unprotecting pages. | |
if (next == sweep_page) { | |
break; | |
} | |
} | |
return 0; | |
} | |
static void | |
gc_unprotect_pages(rb_objspace_t *objspace, rb_heap_t *heap) | |
{ | |
struct heap_page *cursor = heap->compact_cursor; | |
while (cursor) { | |
unlock_page_body(objspace, GET_PAGE_BODY(cursor->start)); | |
cursor = list_next(&heap->pages, cursor, page_node); | |
} | |
} | |
static void gc_update_references(rb_objspace_t * objspace); | |
static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page); | |
static void | |
read_barrier_handler(uintptr_t address) | |
{ | |
VALUE obj; | |
rb_objspace_t * objspace = &rb_objspace; | |
address -= address % sizeof(RVALUE); | |
obj = (VALUE)address; | |
RB_VM_LOCK_ENTER(); | |
{ | |
unlock_page_body(objspace, GET_PAGE_BODY(obj)); | |
objspace->profile.read_barrier_faults++; | |
invalidate_moved_page(objspace, GET_HEAP_PAGE(obj)); | |
} | |
RB_VM_LOCK_LEAVE(); | |
} | |
#if defined(_WIN32) | |
static LPTOP_LEVEL_EXCEPTION_FILTER old_handler; | |
typedef void (*signal_handler)(int); | |
static signal_handler old_sigsegv_handler; | |
static LONG WINAPI | |
read_barrier_signal(EXCEPTION_POINTERS * info) | |
{ | |
/* EXCEPTION_ACCESS_VIOLATION is what's raised by access to protected pages */ | |
if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) { | |
/* > The second array element specifies the virtual address of the inaccessible data. | |
* https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record | |
* | |
* Use this address to invalidate the page */ | |
read_barrier_handler((uintptr_t)info->ExceptionRecord->ExceptionInformation[1]); | |
return EXCEPTION_CONTINUE_EXECUTION; | |
} | |
else { | |
return EXCEPTION_CONTINUE_SEARCH; | |
} | |
} | |
static void | |
uninstall_handlers(void) | |
{ | |
signal(SIGSEGV, old_sigsegv_handler); | |
SetUnhandledExceptionFilter(old_handler); | |
} | |
static void | |
install_handlers(void) | |
{ | |
/* Remove SEGV handler so that the Unhandled Exception Filter handles it */ | |
old_sigsegv_handler = signal(SIGSEGV, NULL); | |
/* Unhandled Exception Filter has access to the violation address similar | |
* to si_addr from sigaction */ | |
old_handler = SetUnhandledExceptionFilter(read_barrier_signal); | |
} | |
#else | |
static struct sigaction old_sigbus_handler; | |
static struct sigaction old_sigsegv_handler; | |
static void | |
read_barrier_signal(int sig, siginfo_t * info, void * data) | |
{ | |
// setup SEGV/BUS handlers for errors | |
struct sigaction prev_sigbus, prev_sigsegv; | |
sigaction(SIGBUS, &old_sigbus_handler, &prev_sigbus); | |
sigaction(SIGSEGV, &old_sigsegv_handler, &prev_sigsegv); | |
// enable SIGBUS/SEGV | |
sigset_t set, prev_set; | |
sigemptyset(&set); | |
sigaddset(&set, SIGBUS); | |
sigaddset(&set, SIGSEGV); | |
sigprocmask(SIG_UNBLOCK, &set, &prev_set); | |
// run handler | |
read_barrier_handler((uintptr_t)info->si_addr); | |
// reset SEGV/BUS handlers | |
sigaction(SIGBUS, &prev_sigbus, NULL); | |
sigaction(SIGSEGV, &prev_sigsegv, NULL); | |
sigprocmask(SIG_SETMASK, &prev_set, NULL); | |
} | |
static void | |
uninstall_handlers(void) | |
{ | |
sigaction(SIGBUS, &old_sigbus_handler, NULL); | |
sigaction(SIGSEGV, &old_sigsegv_handler, NULL); | |
} | |
static void | |
install_handlers(void) | |
{ | |
struct sigaction action; | |
memset(&action, 0, sizeof(struct sigaction)); | |
sigemptyset(&action.sa_mask); | |
action.sa_sigaction = read_barrier_signal; | |
action.sa_flags = SA_SIGINFO | SA_ONSTACK; | |
sigaction(SIGBUS, &action, &old_sigbus_handler); | |
sigaction(SIGSEGV, &action, &old_sigsegv_handler); | |
} | |
#endif | |
static void | |
revert_stack_objects(VALUE stack_obj, void *ctx) | |
{ | |
rb_objspace_t * objspace = (rb_objspace_t*)ctx; | |
if (BUILTIN_TYPE(stack_obj) == T_MOVED) { | |
/* For now we'll revert the whole page if the object made it to the | |
* stack. I think we can change this to move just the one object | |
* back though */ | |
invalidate_moved_page(objspace, GET_HEAP_PAGE(stack_obj)); | |
} | |
} | |
static void | |
revert_machine_stack_references(rb_objspace_t *objspace, VALUE v) | |
{ | |
if (is_pointer_to_heap(objspace, (void *)v)) { | |
if (BUILTIN_TYPE(v) == T_MOVED) { | |
/* For now we'll revert the whole page if the object made it to the | |
* stack. I think we can change this to move just the one object | |
* back though */ | |
invalidate_moved_page(objspace, GET_HEAP_PAGE(v)); | |
} | |
} | |
} | |
static void each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE)); | |
static void | |
check_stack_for_moved(rb_objspace_t *objspace) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
rb_vm_t *vm = rb_ec_vm_ptr(ec); | |
rb_vm_each_stack_value(vm, revert_stack_objects, (void*)objspace); | |
each_machine_stack_value(ec, revert_machine_stack_references); | |
} | |
static void | |
gc_compact_finish(rb_objspace_t *objspace, rb_size_pool_t *pool, rb_heap_t *heap) | |
{ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
gc_unprotect_pages(objspace, heap); | |
} | |
uninstall_handlers(); | |
/* The mutator is allowed to run during incremental sweeping. T_MOVED | |
* objects can get pushed on the stack and when the compaction process | |
* finishes up, it may remove the read barrier before anything has a | |
* chance to read from the T_MOVED address. To fix this, we scan the stack | |
* then revert any moved objects that made it to the stack. */ | |
check_stack_for_moved(objspace); | |
gc_update_references(objspace); | |
objspace->profile.compact_count++; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
heap->compact_cursor = NULL; | |
heap->compact_cursor_index = 0; | |
} | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->moved_objects = objspace->rcompactor.total_moved - record->moved_objects; | |
} | |
rb_clear_constant_cache(); | |
objspace->flags.during_compacting = FALSE; | |
} | |
struct gc_sweep_context { | |
struct heap_page *page; | |
int final_slots; | |
int freed_slots; | |
int empty_slots; | |
}; | |
static inline void | |
gc_fill_swept_page_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, bool *finished_compacting, struct gc_sweep_context *ctx) | |
{ | |
struct heap_page * sweep_page = ctx->page; | |
if (bitset) { | |
short slot_size = sweep_page->size_pool->slot_size; | |
short slot_bits = slot_size / sizeof(RVALUE); | |
do { | |
if (bitset & 1) { | |
VALUE dest = (VALUE)p; | |
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(dest), dest)); | |
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(dest), dest)); | |
CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(dest), dest); | |
if (*finished_compacting) { | |
if (BUILTIN_TYPE(dest) == T_NONE) { | |
ctx->empty_slots++; | |
} | |
else { | |
ctx->freed_slots++; | |
} | |
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)dest, sizeof(RVALUE)); | |
heap_page_add_freeobj(objspace, sweep_page, dest); | |
} | |
else { | |
/* Zombie slots don't get marked, but we can't reuse | |
* their memory until they have their finalizers run.*/ | |
if (BUILTIN_TYPE(dest) != T_ZOMBIE) { | |
if (!try_move(objspace, heap, sweep_page, dest)) { | |
*finished_compacting = true; | |
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); | |
gc_report(5, objspace, "Quit compacting, couldn't find an object to move\n"); | |
if (BUILTIN_TYPE(dest) == T_NONE) { | |
ctx->empty_slots++; | |
} | |
else { | |
ctx->freed_slots++; | |
} | |
heap_page_add_freeobj(objspace, sweep_page, dest); | |
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(dest)); | |
} | |
else { | |
//moved_slots++; | |
} | |
} | |
} | |
} | |
p += slot_size; | |
bitset >>= slot_bits; | |
} while (bitset); | |
} | |
} | |
static bool | |
gc_fill_swept_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page, struct gc_sweep_context *ctx) | |
{ | |
/* Find any pinned but not marked objects and try to fill those slots */ | |
bool finished_compacting = false; | |
bits_t *mark_bits, *pin_bits; | |
bits_t bitset; | |
uintptr_t p; | |
mark_bits = sweep_page->mark_bits; | |
pin_bits = sweep_page->pinned_bits; | |
p = (uintptr_t)sweep_page->start; | |
struct heap_page * cursor = heap->compact_cursor; | |
unlock_page_body(objspace, GET_PAGE_BODY(cursor->start)); | |
/* *Want to move* objects are pinned but not marked. */ | |
bitset = pin_bits[0] & ~mark_bits[0]; | |
bitset >>= NUM_IN_PAGE(p); // Skip header / dead space bits | |
gc_fill_swept_page_plane(objspace, heap, (uintptr_t)p, bitset, &finished_compacting, ctx); | |
p += ((BITS_BITLENGTH - NUM_IN_PAGE(p)) * sizeof(RVALUE)); | |
for (int i = 1; i < HEAP_PAGE_BITMAP_LIMIT; i++) { | |
/* *Want to move* objects are pinned but not marked. */ | |
bitset = pin_bits[i] & ~mark_bits[i]; | |
gc_fill_swept_page_plane(objspace, heap, (uintptr_t)p, bitset, &finished_compacting, ctx); | |
p += ((BITS_BITLENGTH) * sizeof(RVALUE)); | |
} | |
lock_page_body(objspace, GET_PAGE_BODY(heap->compact_cursor->start)); | |
return finished_compacting; | |
} | |
static inline void | |
gc_plane_sweep(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct gc_sweep_context *ctx) | |
{ | |
struct heap_page * sweep_page = ctx->page; | |
short slot_size = sweep_page->size_pool->slot_size; | |
short slot_bits = slot_size / sizeof(RVALUE); | |
GC_ASSERT(slot_bits > 0); | |
do { | |
VALUE vp = (VALUE)p; | |
GC_ASSERT(vp % sizeof(RVALUE) == 0); | |
asan_unpoison_object(vp, false); | |
if (bitset & 1) { | |
switch (BUILTIN_TYPE(vp)) { | |
default: /* majority case */ | |
gc_report(2, objspace, "page_sweep: free %p\n", (void *)p); | |
#if RGENGC_CHECK_MODE | |
if (!is_full_marking(objspace)) { | |
if (RVALUE_OLD_P(vp)) rb_bug("page_sweep: %p - old while minor GC.", (void *)p); | |
if (rgengc_remembered_sweep(objspace, vp)) rb_bug("page_sweep: %p - remembered.", (void *)p); | |
} | |
#endif | |
if (obj_free(objspace, vp)) { | |
ctx->final_slots++; | |
} | |
else { | |
if (heap->compact_cursor) { | |
/* We *want* to fill this slot */ | |
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(vp), vp); | |
} | |
else { | |
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); | |
heap_page_add_freeobj(objspace, sweep_page, vp); | |
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp)); | |
ctx->freed_slots++; | |
} | |
} | |
break; | |
case T_MOVED: | |
if (objspace->flags.during_compacting) { | |
/* The sweep cursor shouldn't have made it to any | |
* T_MOVED slots while the compact flag is enabled. | |
* The sweep cursor and compact cursor move in | |
* opposite directions, and when they meet references will | |
* get updated and "during_compacting" should get disabled */ | |
rb_bug("T_MOVED shouldn't be seen until compaction is finished\n"); | |
} | |
gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp)); | |
if (FL_TEST(vp, FL_FROM_FREELIST)) { | |
ctx->empty_slots++; | |
} | |
else { | |
ctx->freed_slots++; | |
} | |
heap_page_add_freeobj(objspace, sweep_page, vp); | |
break; | |
case T_ZOMBIE: | |
/* already counted */ | |
break; | |
case T_NONE: | |
if (heap->compact_cursor) { | |
/* We *want* to fill this slot */ | |
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(vp), vp); | |
} | |
else { | |
ctx->empty_slots++; /* already freed */ | |
} | |
break; | |
} | |
} | |
p += slot_size; | |
bitset >>= slot_bits; | |
} while (bitset); | |
} | |
static inline void | |
gc_page_sweep(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct gc_sweep_context *ctx) | |
{ | |
struct heap_page *sweep_page = ctx->page; | |
GC_ASSERT(sweep_page->size_pool == size_pool); | |
int i; | |
RVALUE *p; | |
bits_t *bits, bitset; | |
gc_report(2, objspace, "page_sweep: start.\n"); | |
if (heap->compact_cursor) { | |
if (sweep_page == heap->compact_cursor) { | |
/* The compaction cursor and sweep page met, so we need to quit compacting */ | |
gc_report(5, objspace, "Quit compacting, mark and compact cursor met\n"); | |
gc_compact_finish(objspace, size_pool, heap); | |
} | |
else { | |
/* We anticipate filling the page, so NULL out the freelist. */ | |
asan_unpoison_memory_region(&sweep_page->freelist, sizeof(RVALUE*), false); | |
sweep_page->freelist = NULL; | |
asan_poison_memory_region(&sweep_page->freelist, sizeof(RVALUE*)); | |
} | |
} | |
sweep_page->flags.before_sweep = FALSE; | |
sweep_page->free_slots = 0; | |
p = sweep_page->start; | |
bits = sweep_page->mark_bits; | |
int page_rvalue_count = sweep_page->total_slots * (size_pool->slot_size / sizeof(RVALUE)); | |
int out_of_range_bits = (NUM_IN_PAGE(p) + page_rvalue_count) % BITS_BITLENGTH; | |
if (out_of_range_bits != 0) { // sizeof(RVALUE) == 64 | |
bits[BITMAP_INDEX(p) + page_rvalue_count / BITS_BITLENGTH] |= ~(((bits_t)1 << out_of_range_bits) - 1); | |
} | |
// Skip out of range slots at the head of the page | |
bitset = ~bits[0]; | |
bitset >>= NUM_IN_PAGE(p); | |
if (bitset) { | |
gc_plane_sweep(objspace, heap, (uintptr_t)p, bitset, ctx); | |
} | |
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)); | |
for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) { | |
bitset = ~bits[i]; | |
if (bitset) { | |
gc_plane_sweep(objspace, heap, (uintptr_t)p, bitset, ctx); | |
} | |
p += BITS_BITLENGTH; | |
} | |
if (heap->compact_cursor) { | |
if (gc_fill_swept_page(objspace, heap, sweep_page, ctx)) { | |
gc_compact_finish(objspace, size_pool, heap); | |
} | |
} | |
if (!heap->compact_cursor) { | |
gc_setup_mark_bits(sweep_page); | |
} | |
#if GC_PROFILE_MORE_DETAIL | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->removing_objects += ctx->final_slots + ctx->freed_slots; | |
record->empty_objects += ctx->empty_slots; | |
} | |
#endif | |
if (0) fprintf(stderr, "gc_page_sweep(%"PRIdSIZE"): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n", | |
rb_gc_count(), | |
sweep_page->total_slots, | |
ctx->freed_slots, ctx->empty_slots, ctx->final_slots); | |
sweep_page->free_slots += ctx->freed_slots + ctx->empty_slots; | |
objspace->profile.total_freed_objects += ctx->freed_slots; | |
if (heap_pages_deferred_final && !finalizing) { | |
rb_thread_t *th = GET_THREAD(); | |
if (th) { | |
gc_finalize_deferred_register(objspace); | |
} | |
} | |
#if RGENGC_CHECK_MODE | |
short freelist_len = 0; | |
RVALUE *ptr = sweep_page->freelist; | |
while (ptr) { | |
freelist_len++; | |
ptr = ptr->as.free.next; | |
} | |
if (freelist_len != sweep_page->free_slots) { | |
rb_bug("inconsistent freelist length: expected %d but was %d", sweep_page->free_slots, freelist_len); | |
} | |
#endif | |
gc_report(2, objspace, "page_sweep: end.\n"); | |
} | |
#if !USE_RVARGC | |
/* allocate additional minimum page to work */ | |
static void | |
gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
if (!heap->free_pages && heap_increment(objspace, size_pool, heap) == FALSE) { | |
/* there is no free after page_sweep() */ | |
size_pool_allocatable_pages_set(objspace, size_pool, 1); | |
if (!heap_increment(objspace, size_pool, heap)) { /* can't allocate additional free objects */ | |
rb_memerror(); | |
} | |
} | |
} | |
} | |
#endif | |
static const char * | |
gc_mode_name(enum gc_mode mode) | |
{ | |
switch (mode) { | |
case gc_mode_none: return "none"; | |
case gc_mode_marking: return "marking"; | |
case gc_mode_sweeping: return "sweeping"; | |
default: rb_bug("gc_mode_name: unknown mode: %d", (int)mode); | |
} | |
} | |
static void | |
gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode) | |
{ | |
#if RGENGC_CHECK_MODE | |
enum gc_mode prev_mode = gc_mode(objspace); | |
switch (prev_mode) { | |
case gc_mode_none: GC_ASSERT(mode == gc_mode_marking); break; | |
case gc_mode_marking: GC_ASSERT(mode == gc_mode_sweeping); break; | |
case gc_mode_sweeping: GC_ASSERT(mode == gc_mode_none); break; | |
} | |
#endif | |
if (0) fprintf(stderr, "gc_mode_transition: %s->%s\n", gc_mode_name(gc_mode(objspace)), gc_mode_name(mode)); | |
gc_mode_set(objspace, mode); | |
} | |
static void | |
heap_page_freelist_append(struct heap_page *page, RVALUE *freelist) | |
{ | |
if (freelist) { | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
if (page->freelist) { | |
RVALUE *p = page->freelist; | |
asan_unpoison_object((VALUE)p, false); | |
while (p->as.free.next) { | |
RVALUE *prev = p; | |
p = p->as.free.next; | |
asan_poison_object((VALUE)prev); | |
asan_unpoison_object((VALUE)p, false); | |
} | |
p->as.free.next = freelist; | |
asan_poison_object((VALUE)p); | |
} | |
else { | |
page->freelist = freelist; | |
} | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
} | |
} | |
static void | |
gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap) | |
{ | |
heap->sweeping_page = list_top(&heap->pages, struct heap_page, page_node); | |
heap->free_pages = NULL; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
heap->pooled_pages = NULL; | |
#endif | |
} | |
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4 | |
__attribute__((noinline)) | |
#endif | |
static void | |
gc_sweep_start(rb_objspace_t *objspace) | |
{ | |
gc_mode_transition(objspace, gc_mode_sweeping); | |
#if GC_ENABLE_INCREMENTAL_MARK | |
objspace->rincgc.pooled_slots = 0; | |
#endif | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
#if USE_RVARGC | |
heap_page_freelist_append(size_pool->using_page, size_pool->freelist); | |
size_pool->using_page = NULL; | |
size_pool->freelist = NULL; | |
#endif | |
gc_sweep_start_heap(objspace, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
rb_ractor_t *r = NULL; | |
list_for_each(&GET_VM()->ractor.set, r, vmlr_node) { | |
rb_gc_ractor_newobj_cache_clear(&r->newobj_cache); | |
} | |
} | |
#if USE_RVARGC | |
static void | |
gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool) | |
{ | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
size_t total_slots = heap->total_slots + SIZE_POOL_TOMB_HEAP(size_pool)->total_slots; | |
size_t total_pages = heap->total_pages + SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; | |
size_t swept_slots = size_pool->freed_slots + size_pool->empty_slots; | |
size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio); | |
if (swept_slots < min_free_slots) { | |
if (is_full_marking(objspace)) { | |
size_t extend_page_count = heap_extend_pages(objspace, swept_slots, total_slots, total_pages); | |
if (extend_page_count > size_pool->allocatable_pages) { | |
size_pool_allocatable_pages_set(objspace, size_pool, extend_page_count); | |
} | |
heap_increment(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
else { | |
/* The heap is a growth heap if it freed more slots than had empty slots. */ | |
bool is_growth_heap = size_pool->empty_slots == 0 || | |
size_pool->freed_slots > size_pool->empty_slots; | |
/* Only growth heaps are allowed to start a major GC. */ | |
if (is_growth_heap && | |
objspace->profile.count - objspace->rgengc.last_major_gc >= RVALUE_OLD_AGE) { | |
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE; | |
size_pool->force_major_gc_count++; | |
} | |
} | |
} | |
} | |
#endif | |
static void | |
gc_sweep_finish(rb_objspace_t *objspace) | |
{ | |
gc_report(1, objspace, "gc_sweep_finish\n"); | |
gc_prof_set_heap_info(objspace); | |
heap_pages_free_unused_pages(objspace); | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
/* if heap_pages has unused pages, then assign them to increment */ | |
size_t tomb_pages = SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; | |
if (size_pool->allocatable_pages < tomb_pages) { | |
size_pool->allocatable_pages = tomb_pages; | |
} | |
#if USE_RVARGC | |
size_pool->freed_slots = 0; | |
size_pool->empty_slots = 0; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (!will_be_incremental_marking(objspace)) { | |
rb_heap_t *eden_heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
struct heap_page *end_page = eden_heap->free_pages; | |
if (end_page) { | |
while (end_page->free_next) end_page = end_page->free_next; | |
end_page->free_next = eden_heap->pooled_pages; | |
} | |
else { | |
eden_heap->free_pages = eden_heap->pooled_pages; | |
} | |
objspace->rincgc.pooled_slots = 0; | |
} | |
#endif | |
#endif | |
} | |
heap_pages_expand_sorted(objspace); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0); | |
gc_mode_transition(objspace, gc_mode_none); | |
#if RGENGC_CHECK_MODE >= 2 | |
gc_verify_internal_consistency(objspace); | |
#endif | |
} | |
static int | |
gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
struct heap_page *sweep_page = heap->sweeping_page; | |
int unlink_limit = 3; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
int swept_slots = 0; | |
#if USE_RVARGC | |
bool need_pool = TRUE; | |
#else | |
int need_pool = will_be_incremental_marking(objspace) ? TRUE : FALSE; | |
#endif | |
gc_report(2, objspace, "gc_sweep_step (need_pool: %d)\n", need_pool); | |
#else | |
gc_report(2, objspace, "gc_sweep_step\n"); | |
#endif | |
if (sweep_page == NULL) return FALSE; | |
#if GC_ENABLE_LAZY_SWEEP | |
gc_prof_sweep_timer_start(objspace); | |
#endif | |
do { | |
GC_ASSERT(sweep_page->size_pool == size_pool); | |
RUBY_DEBUG_LOG("sweep_page:%p", (void *)sweep_page); | |
struct gc_sweep_context ctx = { | |
.page = sweep_page, | |
.final_slots = 0, | |
.freed_slots = 0, | |
.empty_slots = 0, | |
}; | |
gc_page_sweep(objspace, size_pool, heap, &ctx); | |
int free_slots = ctx.freed_slots + ctx.empty_slots; | |
heap->sweeping_page = list_next(&heap->pages, sweep_page, page_node); | |
if (sweep_page->final_slots + free_slots == sweep_page->total_slots && | |
heap_pages_freeable_pages > 0 && | |
unlink_limit > 0) { | |
heap_pages_freeable_pages--; | |
unlink_limit--; | |
/* there are no living objects -> move this page to tomb heap */ | |
heap_unlink_page(objspace, heap, sweep_page); | |
heap_add_page(objspace, size_pool, SIZE_POOL_TOMB_HEAP(size_pool), sweep_page); | |
} | |
else if (free_slots > 0) { | |
#if USE_RVARGC | |
size_pool->freed_slots += ctx.freed_slots; | |
size_pool->empty_slots += ctx.empty_slots; | |
#endif | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (need_pool) { | |
heap_add_poolpage(objspace, heap, sweep_page); | |
need_pool = FALSE; | |
} | |
else { | |
heap_add_freepage(heap, sweep_page); | |
swept_slots += free_slots; | |
if (swept_slots > 2048) { | |
break; | |
} | |
} | |
#else | |
heap_add_freepage(heap, sweep_page); | |
break; | |
#endif | |
} | |
else { | |
sweep_page->free_next = NULL; | |
} | |
} while ((sweep_page = heap->sweeping_page)); | |
if (!heap->sweeping_page) { | |
#if USE_RVARGC | |
gc_sweep_finish_size_pool(objspace, size_pool); | |
#endif | |
if (!has_sweeping_pages(objspace)) { | |
gc_sweep_finish(objspace); | |
} | |
} | |
#if GC_ENABLE_LAZY_SWEEP | |
gc_prof_sweep_timer_stop(objspace); | |
#endif | |
return heap->free_pages != NULL; | |
} | |
static void | |
gc_sweep_rest(rb_objspace_t *objspace) | |
{ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
while (SIZE_POOL_EDEN_HEAP(size_pool)->sweeping_page) { | |
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
} | |
} | |
static void | |
gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *sweep_size_pool, rb_heap_t *heap) | |
{ | |
GC_ASSERT(dont_gc_val() == FALSE); | |
if (!GC_ENABLE_LAZY_SWEEP) return; | |
unsigned int lock_lev; | |
gc_enter(objspace, gc_enter_event_sweep_continue, &lock_lev); | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
if (!gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool))) { | |
#if USE_RVARGC | |
/* sweep_size_pool requires a free slot but sweeping did not yield any. */ | |
if (size_pool == sweep_size_pool) { | |
if (size_pool->allocatable_pages > 0) { | |
heap_increment(objspace, size_pool, heap); | |
} | |
else { | |
/* Not allowed to create a new page so finish sweeping. */ | |
gc_sweep_rest(objspace); | |
break; | |
} | |
} | |
#endif | |
} | |
} | |
gc_exit(objspace, gc_enter_event_sweep_continue, &lock_lev); | |
} | |
static void | |
invalidate_moved_plane(rb_objspace_t *objspace, struct heap_page *page, uintptr_t p, bits_t bitset) | |
{ | |
if (bitset) { | |
do { | |
if (bitset & 1) { | |
VALUE forwarding_object = (VALUE)p; | |
VALUE object; | |
if (BUILTIN_TYPE(forwarding_object) == T_MOVED) { | |
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object)); | |
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object)); | |
CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object); | |
bool from_freelist = FL_TEST_RAW(forwarding_object, FL_FROM_FREELIST); | |
object = rb_gc_location(forwarding_object); | |
gc_move(objspace, object, forwarding_object, page->size_pool->slot_size); | |
/* forwarding_object is now our actual object, and "object" | |
* is the free slot for the original page */ | |
struct heap_page *orig_page = GET_HEAP_PAGE(object); | |
orig_page->free_slots++; | |
if (!from_freelist) { | |
objspace->profile.total_freed_objects++; | |
} | |
heap_page_add_freeobj(objspace, orig_page, object); | |
GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object)); | |
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_MOVED); | |
GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_NONE); | |
} | |
} | |
p += sizeof(RVALUE); | |
bitset >>= 1; | |
} while (bitset); | |
} | |
} | |
static void | |
invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page) | |
{ | |
int i; | |
bits_t *mark_bits, *pin_bits; | |
bits_t bitset; | |
RVALUE *p; | |
mark_bits = page->mark_bits; | |
pin_bits = page->pinned_bits; | |
p = page->start; | |
// Skip out of range slots at the head of the page | |
bitset = pin_bits[0] & ~mark_bits[0]; | |
bitset >>= NUM_IN_PAGE(p); | |
invalidate_moved_plane(objspace, page, (uintptr_t)p, bitset); | |
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)); | |
for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) { | |
/* Moved objects are pinned but never marked. We reuse the pin bits | |
* to indicate there is a moved object in this slot. */ | |
bitset = pin_bits[i] & ~mark_bits[i]; | |
invalidate_moved_plane(objspace, page, (uintptr_t)p, bitset); | |
p += BITS_BITLENGTH; | |
} | |
} | |
static void | |
gc_compact_start(rb_objspace_t *objspace) | |
{ | |
struct heap_page *page = NULL; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_heap_t *heap = &size_pools[i].eden_heap; | |
list_for_each(&heap->pages, page, page_node) { | |
page->flags.before_sweep = TRUE; | |
} | |
heap->compact_cursor = list_tail(&heap->pages, struct heap_page, page_node); | |
heap->compact_cursor_index = 0; | |
} | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->moved_objects = objspace->rcompactor.total_moved; | |
} | |
memset(objspace->rcompactor.considered_count_table, 0, T_MASK * sizeof(size_t)); | |
memset(objspace->rcompactor.moved_count_table, 0, T_MASK * sizeof(size_t)); | |
/* Set up read barrier for pages containing MOVED objects */ | |
install_handlers(); | |
} | |
static void | |
gc_sweep(rb_objspace_t *objspace) | |
{ | |
const unsigned int immediate_sweep = objspace->flags.immediate_sweep; | |
gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep); | |
if (immediate_sweep) { | |
#if !GC_ENABLE_LAZY_SWEEP | |
gc_prof_sweep_timer_start(objspace); | |
#endif | |
gc_sweep_start(objspace); | |
if (objspace->flags.during_compacting) { | |
gc_compact_start(objspace); | |
} | |
gc_sweep_rest(objspace); | |
#if !GC_ENABLE_LAZY_SWEEP | |
gc_prof_sweep_timer_stop(objspace); | |
#endif | |
} | |
else { | |
struct heap_page *page = NULL; | |
gc_sweep_start(objspace); | |
if (ruby_enable_autocompact && is_full_marking(objspace)) { | |
gc_compact_start(objspace); | |
} | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
list_for_each(&size_pools[i].eden_heap.pages, page, page_node) { | |
page->flags.before_sweep = TRUE; | |
} | |
} | |
/* Sweep every size pool. */ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
} | |
#if !USE_RVARGC | |
rb_size_pool_t *size_pool = &size_pools[0]; | |
gc_heap_prepare_minimum_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
#endif | |
} | |
/* Marking - Marking stack */ | |
static stack_chunk_t * | |
stack_chunk_alloc(void) | |
{ | |
stack_chunk_t *res; | |
res = malloc(sizeof(stack_chunk_t)); | |
if (!res) | |
rb_memerror(); | |
return res; | |
} | |
static inline int | |
is_mark_stack_empty(mark_stack_t *stack) | |
{ | |
return stack->chunk == NULL; | |
} | |
static size_t | |
mark_stack_size(mark_stack_t *stack) | |
{ | |
size_t size = stack->index; | |
stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL; | |
while (chunk) { | |
size += stack->limit; | |
chunk = chunk->next; | |
} | |
return size; | |
} | |
static void | |
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk) | |
{ | |
chunk->next = stack->cache; | |
stack->cache = chunk; | |
stack->cache_size++; | |
} | |
static void | |
shrink_stack_chunk_cache(mark_stack_t *stack) | |
{ | |
stack_chunk_t *chunk; | |
if (stack->unused_cache_size > (stack->cache_size/2)) { | |
chunk = stack->cache; | |
stack->cache = stack->cache->next; | |
stack->cache_size--; | |
free(chunk); | |
} | |
stack->unused_cache_size = stack->cache_size; | |
} | |
static void | |
push_mark_stack_chunk(mark_stack_t *stack) | |
{ | |
stack_chunk_t *next; | |
GC_ASSERT(stack->index == stack->limit); | |
if (stack->cache_size > 0) { | |
next = stack->cache; | |
stack->cache = stack->cache->next; | |
stack->cache_size--; | |
if (stack->unused_cache_size > stack->cache_size) | |
stack->unused_cache_size = stack->cache_size; | |
} | |
else { | |
next = stack_chunk_alloc(); | |
} | |
next->next = stack->chunk; | |
stack->chunk = next; | |
stack->index = 0; | |
} | |
static void | |
pop_mark_stack_chunk(mark_stack_t *stack) | |
{ | |
stack_chunk_t *prev; | |
prev = stack->chunk->next; | |
GC_ASSERT(stack->index == 0); | |
add_stack_chunk_cache(stack, stack->chunk); | |
stack->chunk = prev; | |
stack->index = stack->limit; | |
} | |
static void | |
free_stack_chunks(mark_stack_t *stack) | |
{ | |
stack_chunk_t *chunk = stack->chunk; | |
stack_chunk_t *next = NULL; | |
while (chunk != NULL) { | |
next = chunk->next; | |
free(chunk); | |
chunk = next; | |
} | |
} | |
static void | |
push_mark_stack(mark_stack_t *stack, VALUE data) | |
{ | |
VALUE obj = data; | |
switch (BUILTIN_TYPE(obj)) { | |
case T_OBJECT: | |
case T_CLASS: | |
case T_MODULE: | |
case T_FLOAT: | |
case T_STRING: | |
case T_REGEXP: | |
case T_ARRAY: | |
case T_HASH: | |
case T_STRUCT: | |
case T_BIGNUM: | |
case T_FILE: | |
case T_DATA: | |
case T_MATCH: | |
case T_COMPLEX: | |
case T_RATIONAL: | |
case T_TRUE: | |
case T_FALSE: | |
case T_SYMBOL: | |
case T_IMEMO: | |
case T_ICLASS: | |
if (stack->index == stack->limit) { | |
push_mark_stack_chunk(stack); | |
} | |
stack->chunk->data[stack->index++] = data; | |
return; | |
case T_NONE: | |
case T_NIL: | |
case T_FIXNUM: | |
case T_MOVED: | |
case T_ZOMBIE: | |
case T_UNDEF: | |
case T_MASK: | |
rb_bug("push_mark_stack() called for broken object"); | |
break; | |
case T_NODE: | |
UNEXPECTED_NODE(push_mark_stack); | |
break; | |
} | |
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", | |
BUILTIN_TYPE(obj), (void *)data, | |
is_pointer_to_heap(&rb_objspace, (void *)data) ? "corrupted object" : "non object"); | |
} | |
static int | |
pop_mark_stack(mark_stack_t *stack, VALUE *data) | |
{ | |
if (is_mark_stack_empty(stack)) { | |
return FALSE; | |
} | |
if (stack->index == 1) { | |
*data = stack->chunk->data[--stack->index]; | |
pop_mark_stack_chunk(stack); | |
} | |
else { | |
*data = stack->chunk->data[--stack->index]; | |
} | |
return TRUE; | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
static int | |
invalidate_mark_stack_chunk(stack_chunk_t *chunk, int limit, VALUE obj) | |
{ | |
int i; | |
for (i=0; i<limit; i++) { | |
if (chunk->data[i] == obj) { | |
chunk->data[i] = Qundef; | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
static void | |
invalidate_mark_stack(mark_stack_t *stack, VALUE obj) | |
{ | |
stack_chunk_t *chunk = stack->chunk; | |
int limit = stack->index; | |
while (chunk) { | |
if (invalidate_mark_stack_chunk(chunk, limit, obj)) return; | |
chunk = chunk->next; | |
limit = stack->limit; | |
} | |
rb_bug("invalid_mark_stack: unreachable"); | |
} | |
#endif | |
static void | |
init_mark_stack(mark_stack_t *stack) | |
{ | |
int i; | |
MEMZERO(stack, mark_stack_t, 1); | |
stack->index = stack->limit = STACK_CHUNK_SIZE; | |
for (i=0; i < 4; i++) { | |
add_stack_chunk_cache(stack, stack_chunk_alloc()); | |
} | |
stack->unused_cache_size = stack->cache_size; | |
} | |
/* Marking */ | |
#define SET_STACK_END SET_MACHINE_STACK_END(&ec->machine.stack_end) | |
#define STACK_START (ec->machine.stack_start) | |
#define STACK_END (ec->machine.stack_end) | |
#define STACK_LEVEL_MAX (ec->machine.stack_maxsize/sizeof(VALUE)) | |
#if STACK_GROW_DIRECTION < 0 | |
# define STACK_LENGTH (size_t)(STACK_START - STACK_END) | |
#elif STACK_GROW_DIRECTION > 0 | |
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1) | |
#else | |
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \ | |
: (size_t)(STACK_END - STACK_START + 1)) | |
#endif | |
#if !STACK_GROW_DIRECTION | |
int ruby_stack_grow_direction; | |
int | |
ruby_get_stack_grow_direction(volatile VALUE *addr) | |
{ | |
VALUE *end; | |
SET_MACHINE_STACK_END(&end); | |
if (end > addr) return ruby_stack_grow_direction = 1; | |
return ruby_stack_grow_direction = -1; | |
} | |
#endif | |
size_t | |
ruby_stack_length(VALUE **p) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
SET_STACK_END; | |
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END); | |
return STACK_LENGTH; | |
} | |
#define PREVENT_STACK_OVERFLOW 1 | |
#ifndef PREVENT_STACK_OVERFLOW | |
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)) | |
# define PREVENT_STACK_OVERFLOW 1 | |
#else | |
# define PREVENT_STACK_OVERFLOW 0 | |
#endif | |
#endif | |
#if PREVENT_STACK_OVERFLOW && !defined(__EMSCRIPTEN__) | |
static int | |
stack_check(rb_execution_context_t *ec, int water_mark) | |
{ | |
SET_STACK_END; | |
size_t length = STACK_LENGTH; | |
size_t maximum_length = STACK_LEVEL_MAX - water_mark; | |
return length > maximum_length; | |
} | |
#else | |
#define stack_check(ec, water_mark) FALSE | |
#endif | |
#define STACKFRAME_FOR_CALL_CFUNC 2048 | |
MJIT_FUNC_EXPORTED int | |
rb_ec_stack_check(rb_execution_context_t *ec) | |
{ | |
return stack_check(ec, STACKFRAME_FOR_CALL_CFUNC); | |
} | |
int | |
ruby_stack_check(void) | |
{ | |
return stack_check(GET_EC(), STACKFRAME_FOR_CALL_CFUNC); | |
} | |
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(static void each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE))); | |
static void | |
each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE)) | |
{ | |
VALUE v; | |
while (n--) { | |
v = *x; | |
cb(objspace, v); | |
x++; | |
} | |
} | |
static void | |
gc_mark_locations(rb_objspace_t *objspace, const VALUE *start, const VALUE *end, void (*cb)(rb_objspace_t *, VALUE)) | |
{ | |
long n; | |
if (end <= start) return; | |
n = end - start; | |
each_location(objspace, start, n, cb); | |
} | |
void | |
rb_gc_mark_locations(const VALUE *start, const VALUE *end) | |
{ | |
gc_mark_locations(&rb_objspace, start, end, gc_mark_maybe); | |
} | |
static void | |
gc_mark_values(rb_objspace_t *objspace, long n, const VALUE *values) | |
{ | |
long i; | |
for (i=0; i<n; i++) { | |
gc_mark(objspace, values[i]); | |
} | |
} | |
void | |
rb_gc_mark_values(long n, const VALUE *values) | |
{ | |
long i; | |
rb_objspace_t *objspace = &rb_objspace; | |
for (i=0; i<n; i++) { | |
gc_mark_and_pin(objspace, values[i]); | |
} | |
} | |
static void | |
gc_mark_stack_values(rb_objspace_t *objspace, long n, const VALUE *values) | |
{ | |
long i; | |
for (i=0; i<n; i++) { | |
if (is_markable_object(objspace, values[i])) { | |
gc_mark_and_pin(objspace, values[i]); | |
} | |
} | |
} | |
void | |
rb_gc_mark_vm_stack_values(long n, const VALUE *values) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_mark_stack_values(objspace, n, values); | |
} | |
static int | |
mark_value(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static int | |
mark_value_pin(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark_and_pin(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static void | |
mark_tbl_no_pin(rb_objspace_t *objspace, st_table *tbl) | |
{ | |
if (!tbl || tbl->num_entries == 0) return; | |
st_foreach(tbl, mark_value, (st_data_t)objspace); | |
} | |
static void | |
mark_tbl(rb_objspace_t *objspace, st_table *tbl) | |
{ | |
if (!tbl || tbl->num_entries == 0) return; | |
st_foreach(tbl, mark_value_pin, (st_data_t)objspace); | |
} | |
static int | |
mark_key(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark_and_pin(objspace, (VALUE)key); | |
return ST_CONTINUE; | |
} | |
static void | |
mark_set(rb_objspace_t *objspace, st_table *tbl) | |
{ | |
if (!tbl) return; | |
st_foreach(tbl, mark_key, (st_data_t)objspace); | |
} | |
static int | |
pin_value(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark_and_pin(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static void | |
mark_finalizer_tbl(rb_objspace_t *objspace, st_table *tbl) | |
{ | |
if (!tbl) return; | |
st_foreach(tbl, pin_value, (st_data_t)objspace); | |
} | |
void | |
rb_mark_set(st_table *tbl) | |
{ | |
mark_set(&rb_objspace, tbl); | |
} | |
static int | |
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark(objspace, (VALUE)key); | |
gc_mark(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static int | |
pin_key_pin_value(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark_and_pin(objspace, (VALUE)key); | |
gc_mark_and_pin(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static int | |
pin_key_mark_value(st_data_t key, st_data_t value, st_data_t data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark_and_pin(objspace, (VALUE)key); | |
gc_mark(objspace, (VALUE)value); | |
return ST_CONTINUE; | |
} | |
static void | |
mark_hash(rb_objspace_t *objspace, VALUE hash) | |
{ | |
if (rb_hash_compare_by_id_p(hash)) { | |
rb_hash_stlike_foreach(hash, pin_key_mark_value, (st_data_t)objspace); | |
} | |
else { | |
rb_hash_stlike_foreach(hash, mark_keyvalue, (st_data_t)objspace); | |
} | |
if (RHASH_AR_TABLE_P(hash)) { | |
if (LIKELY(during_gc) && RHASH_TRANSIENT_P(hash)) { | |
rb_transient_heap_mark(hash, RHASH_AR_TABLE(hash)); | |
} | |
} | |
else { | |
VM_ASSERT(!RHASH_TRANSIENT_P(hash)); | |
} | |
gc_mark(objspace, RHASH(hash)->ifnone); | |
} | |
static void | |
mark_st(rb_objspace_t *objspace, st_table *tbl) | |
{ | |
if (!tbl) return; | |
st_foreach(tbl, pin_key_pin_value, (st_data_t)objspace); | |
} | |
void | |
rb_mark_hash(st_table *tbl) | |
{ | |
mark_st(&rb_objspace, tbl); | |
} | |
static void | |
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me) | |
{ | |
const rb_method_definition_t *def = me->def; | |
gc_mark(objspace, me->owner); | |
gc_mark(objspace, me->defined_class); | |
if (def) { | |
switch (def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
if (def->body.iseq.iseqptr) gc_mark(objspace, (VALUE)def->body.iseq.iseqptr); | |
gc_mark(objspace, (VALUE)def->body.iseq.cref); | |
break; | |
case VM_METHOD_TYPE_ATTRSET: | |
case VM_METHOD_TYPE_IVAR: | |
gc_mark(objspace, def->body.attr.location); | |
break; | |
case VM_METHOD_TYPE_BMETHOD: | |
gc_mark(objspace, def->body.bmethod.proc); | |
if (def->body.bmethod.hooks) rb_hook_list_mark(def->body.bmethod.hooks); | |
break; | |
case VM_METHOD_TYPE_ALIAS: | |
gc_mark(objspace, (VALUE)def->body.alias.original_me); | |
return; | |
case VM_METHOD_TYPE_REFINED: | |
gc_mark(objspace, (VALUE)def->body.refined.orig_me); | |
gc_mark(objspace, (VALUE)def->body.refined.owner); | |
break; | |
case VM_METHOD_TYPE_CFUNC: | |
case VM_METHOD_TYPE_ZSUPER: | |
case VM_METHOD_TYPE_MISSING: | |
case VM_METHOD_TYPE_OPTIMIZED: | |
case VM_METHOD_TYPE_UNDEF: | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: | |
break; | |
} | |
} | |
} | |
static enum rb_id_table_iterator_result | |
mark_method_entry_i(VALUE me, void *data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
gc_mark(objspace, me); | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
mark_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) | |
{ | |
if (tbl) { | |
rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
mark_const_entry_i(VALUE value, void *data) | |
{ | |
const rb_const_entry_t *ce = (const rb_const_entry_t *)value; | |
rb_objspace_t *objspace = data; | |
gc_mark(objspace, ce->value); | |
gc_mark(objspace, ce->file); | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
mark_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) | |
{ | |
if (!tbl) return; | |
rb_id_table_foreach_values(tbl, mark_const_entry_i, objspace); | |
} | |
#if STACK_GROW_DIRECTION < 0 | |
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START) | |
#elif STACK_GROW_DIRECTION > 0 | |
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix)) | |
#else | |
#define GET_STACK_BOUNDS(start, end, appendix) \ | |
((STACK_END < STACK_START) ? \ | |
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix))) | |
#endif | |
static void each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec, | |
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE)); | |
#ifndef __EMSCRIPTEN__ | |
static void | |
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec) | |
{ | |
union { | |
rb_jmp_buf j; | |
VALUE v[sizeof(rb_jmp_buf) / (sizeof(VALUE))]; | |
} save_regs_gc_mark; | |
VALUE *stack_start, *stack_end; | |
FLUSH_REGISTER_WINDOWS; | |
memset(&save_regs_gc_mark, 0, sizeof(save_regs_gc_mark)); | |
/* This assumes that all registers are saved into the jmp_buf (and stack) */ | |
rb_setjmp(save_regs_gc_mark.j); | |
/* SET_STACK_END must be called in this function because | |
* the stack frame of this function may contain | |
* callee save registers and they should be marked. */ | |
SET_STACK_END; | |
GET_STACK_BOUNDS(stack_start, stack_end, 1); | |
each_location(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v), gc_mark_maybe); | |
each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_maybe); | |
} | |
#else | |
static VALUE *rb_emscripten_stack_range_tmp[2]; | |
static void | |
rb_emscripten_mark_locations(void *begin, void *end) | |
{ | |
rb_emscripten_stack_range_tmp[0] = begin; | |
rb_emscripten_stack_range_tmp[1] = end; | |
} | |
static void | |
mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec) | |
{ | |
emscripten_scan_stack(rb_emscripten_mark_locations); | |
each_stack_location(objspace, ec, rb_emscripten_stack_range_tmp[0], rb_emscripten_stack_range_tmp[1], gc_mark_maybe); | |
emscripten_scan_registers(rb_emscripten_mark_locations); | |
each_stack_location(objspace, ec, rb_emscripten_stack_range_tmp[0], rb_emscripten_stack_range_tmp[1], gc_mark_maybe); | |
} | |
#endif | |
static void | |
each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE)) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE *stack_start, *stack_end; | |
GET_STACK_BOUNDS(stack_start, stack_end, 0); | |
each_stack_location(objspace, ec, stack_start, stack_end, cb); | |
} | |
void | |
rb_gc_mark_machine_stack(const rb_execution_context_t *ec) | |
{ | |
each_machine_stack_value(ec, gc_mark_maybe); | |
} | |
static void | |
each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec, | |
const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE)) | |
{ | |
gc_mark_locations(objspace, stack_start, stack_end, cb); | |
#if defined(__mc68000__) | |
gc_mark_locations(objspace, | |
(VALUE*)((char*)stack_start + 2), | |
(VALUE*)((char*)stack_end - 2), cb); | |
#endif | |
} | |
void | |
rb_mark_tbl(st_table *tbl) | |
{ | |
mark_tbl(&rb_objspace, tbl); | |
} | |
void | |
rb_mark_tbl_no_pin(st_table *tbl) | |
{ | |
mark_tbl_no_pin(&rb_objspace, tbl); | |
} | |
static void | |
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj) | |
{ | |
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj)); | |
if (is_pointer_to_heap(objspace, (void *)obj)) { | |
void *ptr = __asan_region_is_poisoned((void *)obj, SIZEOF_VALUE); | |
asan_unpoison_object(obj, false); | |
/* Garbage can live on the stack, so do not mark or pin */ | |
switch (BUILTIN_TYPE(obj)) { | |
case T_ZOMBIE: | |
case T_NONE: | |
break; | |
default: | |
gc_mark_and_pin(objspace, obj); | |
break; | |
} | |
if (ptr) { | |
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); | |
asan_poison_object(obj); | |
} | |
} | |
} | |
void | |
rb_gc_mark_maybe(VALUE obj) | |
{ | |
gc_mark_maybe(&rb_objspace, obj); | |
} | |
static inline int | |
gc_mark_set(rb_objspace_t *objspace, VALUE obj) | |
{ | |
ASSERT_vm_locking(); | |
if (RVALUE_MARKED(obj)) return 0; | |
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj); | |
return 1; | |
} | |
static int | |
gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj) | |
{ | |
struct heap_page *page = GET_HEAP_PAGE(obj); | |
bits_t *uncollectible_bits = &page->uncollectible_bits[0]; | |
if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) { | |
page->flags.has_uncollectible_shady_objects = TRUE; | |
MARK_IN_BITMAP(uncollectible_bits, obj); | |
objspace->rgengc.uncollectible_wb_unprotected_objects++; | |
#if RGENGC_PROFILE > 0 | |
objspace->profile.total_remembered_shady_object_count++; | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++; | |
#endif | |
#endif | |
return TRUE; | |
} | |
else { | |
return FALSE; | |
} | |
} | |
static void | |
rgengc_check_relation(rb_objspace_t *objspace, VALUE obj) | |
{ | |
const VALUE old_parent = objspace->rgengc.parent_object; | |
if (old_parent) { /* parent object is old */ | |
if (RVALUE_WB_UNPROTECTED(obj)) { | |
if (gc_remember_unprotected(objspace, obj)) { | |
gc_report(2, objspace, "relation: (O->S) %s -> %s\n", obj_info(old_parent), obj_info(obj)); | |
} | |
} | |
else { | |
if (!RVALUE_OLD_P(obj)) { | |
if (RVALUE_MARKED(obj)) { | |
/* An object pointed from an OLD object should be OLD. */ | |
gc_report(2, objspace, "relation: (O->unmarked Y) %s -> %s\n", obj_info(old_parent), obj_info(obj)); | |
RVALUE_AGE_SET_OLD(objspace, obj); | |
if (is_incremental_marking(objspace)) { | |
if (!RVALUE_MARKING(obj)) { | |
gc_grey(objspace, obj); | |
} | |
} | |
else { | |
rgengc_remember(objspace, obj); | |
} | |
} | |
else { | |
gc_report(2, objspace, "relation: (O->Y) %s -> %s\n", obj_info(old_parent), obj_info(obj)); | |
RVALUE_AGE_SET_CANDIDATE(objspace, obj); | |
} | |
} | |
} | |
} | |
GC_ASSERT(old_parent == objspace->rgengc.parent_object); | |
} | |
static void | |
gc_grey(rb_objspace_t *objspace, VALUE obj) | |
{ | |
#if RGENGC_CHECK_MODE | |
if (RVALUE_MARKED(obj) == FALSE) rb_bug("gc_grey: %s is not marked.", obj_info(obj)); | |
if (RVALUE_MARKING(obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", obj_info(obj)); | |
#endif | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (is_incremental_marking(objspace)) { | |
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); | |
} | |
#endif | |
push_mark_stack(&objspace->mark_stack, obj); | |
} | |
static void | |
gc_aging(rb_objspace_t *objspace, VALUE obj) | |
{ | |
struct heap_page *page = GET_HEAP_PAGE(obj); | |
GC_ASSERT(RVALUE_MARKING(obj) == FALSE); | |
check_rvalue_consistency(obj); | |
if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) { | |
if (!RVALUE_OLD_P(obj)) { | |
gc_report(3, objspace, "gc_aging: YOUNG: %s\n", obj_info(obj)); | |
RVALUE_AGE_INC(objspace, obj); | |
} | |
else if (is_full_marking(objspace)) { | |
GC_ASSERT(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE); | |
RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj); | |
} | |
} | |
check_rvalue_consistency(obj); | |
objspace->marked_slots++; | |
} | |
NOINLINE(static void gc_mark_ptr(rb_objspace_t *objspace, VALUE obj)); | |
static void reachable_objects_from_callback(VALUE obj); | |
static void | |
gc_mark_ptr(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (LIKELY(during_gc)) { | |
rgengc_check_relation(objspace, obj); | |
if (!gc_mark_set(objspace, obj)) return; /* already marked */ | |
if (0) { // for debug GC marking miss | |
if (objspace->rgengc.parent_object) { | |
RUBY_DEBUG_LOG("%p (%s) parent:%p (%s)", | |
(void *)obj, obj_type_name(obj), | |
(void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object)); | |
} | |
else { | |
RUBY_DEBUG_LOG("%p (%s)", (void *)obj, obj_type_name(obj)); | |
} | |
} | |
if (UNLIKELY(RB_TYPE_P(obj, T_NONE))) { | |
rp(obj); | |
rb_bug("try to mark T_NONE object"); /* check here will help debugging */ | |
} | |
gc_aging(objspace, obj); | |
gc_grey(objspace, obj); | |
} | |
else { | |
reachable_objects_from_callback(obj); | |
} | |
} | |
static inline void | |
gc_pin(rb_objspace_t *objspace, VALUE obj) | |
{ | |
GC_ASSERT(is_markable_object(objspace, obj)); | |
if (UNLIKELY(objspace->flags.during_compacting)) { | |
if (LIKELY(during_gc)) { | |
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj); | |
} | |
} | |
} | |
static inline void | |
gc_mark_and_pin(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (!is_markable_object(objspace, obj)) return; | |
gc_pin(objspace, obj); | |
gc_mark_ptr(objspace, obj); | |
} | |
static inline void | |
gc_mark(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (!is_markable_object(objspace, obj)) return; | |
gc_mark_ptr(objspace, obj); | |
} | |
void | |
rb_gc_mark_movable(VALUE ptr) | |
{ | |
gc_mark(&rb_objspace, ptr); | |
} | |
void | |
rb_gc_mark(VALUE ptr) | |
{ | |
gc_mark_and_pin(&rb_objspace, ptr); | |
} | |
/* CAUTION: THIS FUNCTION ENABLE *ONLY BEFORE* SWEEPING. | |
* This function is only for GC_END_MARK timing. | |
*/ | |
int | |
rb_objspace_marked_object_p(VALUE obj) | |
{ | |
return RVALUE_MARKED(obj) ? TRUE : FALSE; | |
} | |
static inline void | |
gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (RVALUE_OLD_P(obj)) { | |
objspace->rgengc.parent_object = obj; | |
} | |
else { | |
objspace->rgengc.parent_object = Qfalse; | |
} | |
} | |
static void | |
gc_mark_imemo(rb_objspace_t *objspace, VALUE obj) | |
{ | |
switch (imemo_type(obj)) { | |
case imemo_env: | |
{ | |
const rb_env_t *env = (const rb_env_t *)obj; | |
if (LIKELY(env->ep)) { | |
// just after newobj() can be NULL here. | |
GC_ASSERT(env->ep[VM_ENV_DATA_INDEX_ENV] == obj); | |
GC_ASSERT(VM_ENV_ESCAPED_P(env->ep)); | |
gc_mark_values(objspace, (long)env->env_size, env->env); | |
VM_ENV_FLAGS_SET(env->ep, VM_ENV_FLAG_WB_REQUIRED); | |
gc_mark(objspace, (VALUE)rb_vm_env_prev_env(env)); | |
gc_mark(objspace, (VALUE)env->iseq); | |
} | |
} | |
return; | |
case imemo_cref: | |
gc_mark(objspace, RANY(obj)->as.imemo.cref.klass); | |
gc_mark(objspace, (VALUE)RANY(obj)->as.imemo.cref.next); | |
gc_mark(objspace, RANY(obj)->as.imemo.cref.refinements); | |
return; | |
case imemo_svar: | |
gc_mark(objspace, RANY(obj)->as.imemo.svar.cref_or_me); | |
gc_mark(objspace, RANY(obj)->as.imemo.svar.lastline); | |
gc_mark(objspace, RANY(obj)->as.imemo.svar.backref); | |
gc_mark(objspace, RANY(obj)->as.imemo.svar.others); | |
return; | |
case imemo_throw_data: | |
gc_mark(objspace, RANY(obj)->as.imemo.throw_data.throw_obj); | |
return; | |
case imemo_ifunc: | |
gc_mark_maybe(objspace, (VALUE)RANY(obj)->as.imemo.ifunc.data); | |
return; | |
case imemo_memo: | |
gc_mark(objspace, RANY(obj)->as.imemo.memo.v1); | |
gc_mark(objspace, RANY(obj)->as.imemo.memo.v2); | |
gc_mark_maybe(objspace, RANY(obj)->as.imemo.memo.u3.value); | |
return; | |
case imemo_ment: | |
mark_method_entry(objspace, &RANY(obj)->as.imemo.ment); | |
return; | |
case imemo_iseq: | |
rb_iseq_mark((rb_iseq_t *)obj); | |
return; | |
case imemo_tmpbuf: | |
{ | |
const rb_imemo_tmpbuf_t *m = &RANY(obj)->as.imemo.alloc; | |
do { | |
rb_gc_mark_locations(m->ptr, m->ptr + m->cnt); | |
} while ((m = m->next) != NULL); | |
} | |
return; | |
case imemo_ast: | |
rb_ast_mark(&RANY(obj)->as.imemo.ast); | |
return; | |
case imemo_parser_strterm: | |
rb_strterm_mark(obj); | |
return; | |
case imemo_callinfo: | |
return; | |
case imemo_callcache: | |
{ | |
const struct rb_callcache *cc = (const struct rb_callcache *)obj; | |
// should not mark klass here | |
gc_mark(objspace, (VALUE)vm_cc_cme(cc)); | |
} | |
return; | |
case imemo_constcache: | |
{ | |
const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj; | |
gc_mark(objspace, ice->value); | |
} | |
return; | |
#if VM_CHECK_MODE > 0 | |
default: | |
VM_UNREACHABLE(gc_mark_imemo); | |
#endif | |
} | |
} | |
static void | |
gc_mark_children(rb_objspace_t *objspace, VALUE obj) | |
{ | |
register RVALUE *any = RANY(obj); | |
gc_mark_set_parent(objspace, obj); | |
if (FL_TEST(obj, FL_EXIVAR)) { | |
rb_mark_generic_ivar(obj); | |
} | |
switch (BUILTIN_TYPE(obj)) { | |
case T_FLOAT: | |
case T_BIGNUM: | |
case T_SYMBOL: | |
/* Not immediates, but does not have references and singleton | |
* class */ | |
return; | |
case T_NIL: | |
case T_FIXNUM: | |
rb_bug("rb_gc_mark() called for broken object"); | |
break; | |
case T_NODE: | |
UNEXPECTED_NODE(rb_gc_mark); | |
break; | |
case T_IMEMO: | |
gc_mark_imemo(objspace, obj); | |
return; | |
default: | |
break; | |
} | |
gc_mark(objspace, any->as.basic.klass); | |
switch (BUILTIN_TYPE(obj)) { | |
case T_CLASS: | |
case T_MODULE: | |
if (RCLASS_SUPER(obj)) { | |
gc_mark(objspace, RCLASS_SUPER(obj)); | |
} | |
if (!RCLASS_EXT(obj)) break; | |
mark_m_tbl(objspace, RCLASS_M_TBL(obj)); | |
cc_table_mark(objspace, obj); | |
mark_tbl_no_pin(objspace, RCLASS_IV_TBL(obj)); | |
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj)); | |
break; | |
case T_ICLASS: | |
if (RICLASS_OWNS_M_TBL_P(obj)) { | |
mark_m_tbl(objspace, RCLASS_M_TBL(obj)); | |
} | |
if (RCLASS_SUPER(obj)) { | |
gc_mark(objspace, RCLASS_SUPER(obj)); | |
} | |
if (!RCLASS_EXT(obj)) break; | |
mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj)); | |
cc_table_mark(objspace, obj); | |
break; | |
case T_ARRAY: | |
if (FL_TEST(obj, ELTS_SHARED)) { | |
VALUE root = any->as.array.as.heap.aux.shared_root; | |
gc_mark(objspace, root); | |
} | |
else { | |
long i, len = RARRAY_LEN(obj); | |
const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(obj); | |
for (i=0; i < len; i++) { | |
gc_mark(objspace, ptr[i]); | |
} | |
if (LIKELY(during_gc)) { | |
if (!FL_TEST_RAW(obj, RARRAY_EMBED_FLAG) && | |
RARRAY_TRANSIENT_P(obj)) { | |
rb_transient_heap_mark(obj, ptr); | |
} | |
} | |
} | |
break; | |
case T_HASH: | |
mark_hash(objspace, obj); | |
break; | |
case T_STRING: | |
if (STR_SHARED_P(obj)) { | |
gc_mark(objspace, any->as.string.as.heap.aux.shared); | |
} | |
break; | |
case T_DATA: | |
{ | |
void *const ptr = DATA_PTR(obj); | |
if (ptr) { | |
RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ? | |
any->as.typeddata.type->function.dmark : | |
any->as.data.dmark; | |
if (mark_func) (*mark_func)(ptr); | |
} | |
} | |
break; | |
case T_OBJECT: | |
{ | |
const VALUE * const ptr = ROBJECT_IVPTR(obj); | |
uint32_t i, len = ROBJECT_NUMIV(obj); | |
for (i = 0; i < len; i++) { | |
gc_mark(objspace, ptr[i]); | |
} | |
if (LIKELY(during_gc) && | |
ROBJ_TRANSIENT_P(obj)) { | |
rb_transient_heap_mark(obj, ptr); | |
} | |
} | |
break; | |
case T_FILE: | |
if (any->as.file.fptr) { | |
gc_mark(objspace, any->as.file.fptr->self); | |
gc_mark(objspace, any->as.file.fptr->pathv); | |
gc_mark(objspace, any->as.file.fptr->tied_io_for_writing); | |
gc_mark(objspace, any->as.file.fptr->writeconv_asciicompat); | |
gc_mark(objspace, any->as.file.fptr->writeconv_pre_ecopts); | |
gc_mark(objspace, any->as.file.fptr->encs.ecopts); | |
gc_mark(objspace, any->as.file.fptr->write_lock); | |
} | |
break; | |
case T_REGEXP: | |
gc_mark(objspace, any->as.regexp.src); | |
break; | |
case T_MATCH: | |
gc_mark(objspace, any->as.match.regexp); | |
if (any->as.match.str) { | |
gc_mark(objspace, any->as.match.str); | |
} | |
break; | |
case T_RATIONAL: | |
gc_mark(objspace, any->as.rational.num); | |
gc_mark(objspace, any->as.rational.den); | |
break; | |
case T_COMPLEX: | |
gc_mark(objspace, any->as.complex.real); | |
gc_mark(objspace, any->as.complex.imag); | |
break; | |
case T_STRUCT: | |
{ | |
long i; | |
const long len = RSTRUCT_LEN(obj); | |
const VALUE * const ptr = RSTRUCT_CONST_PTR(obj); | |
for (i=0; i<len; i++) { | |
gc_mark(objspace, ptr[i]); | |
} | |
if (LIKELY(during_gc) && | |
RSTRUCT_TRANSIENT_P(obj)) { | |
rb_transient_heap_mark(obj, ptr); | |
} | |
} | |
break; | |
default: | |
#if GC_DEBUG | |
rb_gcdebug_print_obj_condition((VALUE)obj); | |
#endif | |
if (BUILTIN_TYPE(obj) == T_MOVED) rb_bug("rb_gc_mark(): %p is T_MOVED", (void *)obj); | |
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj); | |
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj); | |
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", | |
BUILTIN_TYPE(obj), (void *)any, | |
is_pointer_to_heap(objspace, any) ? "corrupted object" : "non object"); | |
} | |
} | |
/** | |
* incremental: 0 -> not incremental (do all) | |
* incremental: n -> mark at most `n' objects | |
*/ | |
static inline int | |
gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count) | |
{ | |
mark_stack_t *mstack = &objspace->mark_stack; | |
VALUE obj; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
size_t marked_slots_at_the_beginning = objspace->marked_slots; | |
size_t popped_count = 0; | |
#endif | |
while (pop_mark_stack(mstack, &obj)) { | |
if (obj == Qundef) continue; /* skip */ | |
if (RGENGC_CHECK_MODE && !RVALUE_MARKED(obj)) { | |
rb_bug("gc_mark_stacked_objects: %s is not marked.", obj_info(obj)); | |
} | |
gc_mark_children(objspace, obj); | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (incremental) { | |
if (RGENGC_CHECK_MODE && !RVALUE_MARKING(obj)) { | |
rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0"); | |
} | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); | |
popped_count++; | |
if (popped_count + (objspace->marked_slots - marked_slots_at_the_beginning) > count) { | |
break; | |
} | |
} | |
else { | |
/* just ignore marking bits */ | |
} | |
#endif | |
} | |
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace); | |
if (is_mark_stack_empty(mstack)) { | |
shrink_stack_chunk_cache(mstack); | |
return TRUE; | |
} | |
else { | |
return FALSE; | |
} | |
} | |
static int | |
gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count) | |
{ | |
return gc_mark_stacked_objects(objspace, TRUE, count); | |
} | |
static int | |
gc_mark_stacked_objects_all(rb_objspace_t *objspace) | |
{ | |
return gc_mark_stacked_objects(objspace, FALSE, 0); | |
} | |
#if PRINT_ROOT_TICKS | |
#define MAX_TICKS 0x100 | |
static tick_t mark_ticks[MAX_TICKS]; | |
static const char *mark_ticks_categories[MAX_TICKS]; | |
static void | |
show_mark_ticks(void) | |
{ | |
int i; | |
fprintf(stderr, "mark ticks result:\n"); | |
for (i=0; i<MAX_TICKS; i++) { | |
const char *category = mark_ticks_categories[i]; | |
if (category) { | |
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]); | |
} | |
else { | |
break; | |
} | |
} | |
} | |
#endif /* PRINT_ROOT_TICKS */ | |
static void | |
gc_mark_roots(rb_objspace_t *objspace, const char **categoryp) | |
{ | |
struct gc_list *list; | |
rb_execution_context_t *ec = GET_EC(); | |
rb_vm_t *vm = rb_ec_vm_ptr(ec); | |
#if PRINT_ROOT_TICKS | |
tick_t start_tick = tick(); | |
int tick_count = 0; | |
const char *prev_category = 0; | |
if (mark_ticks_categories[0] == 0) { | |
atexit(show_mark_ticks); | |
} | |
#endif | |
if (categoryp) *categoryp = "xxx"; | |
objspace->rgengc.parent_object = Qfalse; | |
#if PRINT_ROOT_TICKS | |
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \ | |
if (prev_category) { \ | |
tick_t t = tick(); \ | |
mark_ticks[tick_count] = t - start_tick; \ | |
mark_ticks_categories[tick_count] = prev_category; \ | |
tick_count++; \ | |
} \ | |
prev_category = category; \ | |
start_tick = tick(); \ | |
} while (0) | |
#else /* PRINT_ROOT_TICKS */ | |
#define MARK_CHECKPOINT_PRINT_TICK(category) | |
#endif | |
#define MARK_CHECKPOINT(category) do { \ | |
if (categoryp) *categoryp = category; \ | |
MARK_CHECKPOINT_PRINT_TICK(category); \ | |
} while (0) | |
MARK_CHECKPOINT("vm"); | |
SET_STACK_END; | |
rb_vm_mark(vm); | |
if (vm->self) gc_mark(objspace, vm->self); | |
MARK_CHECKPOINT("finalizers"); | |
mark_finalizer_tbl(objspace, finalizer_table); | |
MARK_CHECKPOINT("machine_context"); | |
mark_current_machine_context(objspace, ec); | |
/* mark protected global variables */ | |
MARK_CHECKPOINT("global_list"); | |
for (list = global_list; list; list = list->next) { | |
gc_mark_maybe(objspace, *list->varptr); | |
} | |
MARK_CHECKPOINT("end_proc"); | |
rb_mark_end_proc(); | |
MARK_CHECKPOINT("global_tbl"); | |
rb_gc_mark_global_tbl(); | |
MARK_CHECKPOINT("object_id"); | |
rb_gc_mark(objspace->next_object_id); | |
mark_tbl_no_pin(objspace, objspace->obj_to_id_tbl); /* Only mark ids */ | |
if (stress_to_class) rb_gc_mark(stress_to_class); | |
MARK_CHECKPOINT("finish"); | |
#undef MARK_CHECKPOINT | |
} | |
#if RGENGC_CHECK_MODE >= 4 | |
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01) | |
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01) | |
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1)) | |
struct reflist { | |
VALUE *list; | |
int pos; | |
int size; | |
}; | |
static struct reflist * | |
reflist_create(VALUE obj) | |
{ | |
struct reflist *refs = xmalloc(sizeof(struct reflist)); | |
refs->size = 1; | |
refs->list = ALLOC_N(VALUE, refs->size); | |
refs->list[0] = obj; | |
refs->pos = 1; | |
return refs; | |
} | |
static void | |
reflist_destruct(struct reflist *refs) | |
{ | |
xfree(refs->list); | |
xfree(refs); | |
} | |
static void | |
reflist_add(struct reflist *refs, VALUE obj) | |
{ | |
if (refs->pos == refs->size) { | |
refs->size *= 2; | |
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2); | |
} | |
refs->list[refs->pos++] = obj; | |
} | |
static void | |
reflist_dump(struct reflist *refs) | |
{ | |
int i; | |
for (i=0; i<refs->pos; i++) { | |
VALUE obj = refs->list[i]; | |
if (IS_ROOTSIG(obj)) { /* root */ | |
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj)); | |
} | |
else { | |
fprintf(stderr, "<%s>", obj_info(obj)); | |
} | |
if (i+1 < refs->pos) fprintf(stderr, ", "); | |
} | |
} | |
static int | |
reflist_referred_from_machine_context(struct reflist *refs) | |
{ | |
int i; | |
for (i=0; i<refs->pos; i++) { | |
VALUE obj = refs->list[i]; | |
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1; | |
} | |
return 0; | |
} | |
struct allrefs { | |
rb_objspace_t *objspace; | |
/* a -> obj1 | |
* b -> obj1 | |
* c -> obj1 | |
* c -> obj2 | |
* d -> obj3 | |
* #=> {obj1 => [a, b, c], obj2 => [c, d]} | |
*/ | |
struct st_table *references; | |
const char *category; | |
VALUE root_obj; | |
mark_stack_t mark_stack; | |
}; | |
static int | |
allrefs_add(struct allrefs *data, VALUE obj) | |
{ | |
struct reflist *refs; | |
st_data_t r; | |
if (st_lookup(data->references, obj, &r)) { | |
refs = (struct reflist *)r; | |
reflist_add(refs, data->root_obj); | |
return 0; | |
} | |
else { | |
refs = reflist_create(data->root_obj); | |
st_insert(data->references, obj, (st_data_t)refs); | |
return 1; | |
} | |
} | |
static void | |
allrefs_i(VALUE obj, void *ptr) | |
{ | |
struct allrefs *data = (struct allrefs *)ptr; | |
if (allrefs_add(data, obj)) { | |
push_mark_stack(&data->mark_stack, obj); | |
} | |
} | |
static void | |
allrefs_roots_i(VALUE obj, void *ptr) | |
{ | |
struct allrefs *data = (struct allrefs *)ptr; | |
if (strlen(data->category) == 0) rb_bug("!!!"); | |
data->root_obj = MAKE_ROOTSIG(data->category); | |
if (allrefs_add(data, obj)) { | |
push_mark_stack(&data->mark_stack, obj); | |
} | |
} | |
#define PUSH_MARK_FUNC_DATA(v) do { \ | |
struct gc_mark_func_data_struct *prev_mark_func_data = GET_RACTOR()->mfd; \ | |
GET_RACTOR()->mfd = (v); | |
#define POP_MARK_FUNC_DATA() GET_RACTOR()->mfd = prev_mark_func_data;} while (0) | |
static st_table * | |
objspace_allrefs(rb_objspace_t *objspace) | |
{ | |
struct allrefs data; | |
struct gc_mark_func_data_struct mfd; | |
VALUE obj; | |
int prev_dont_gc = dont_gc_val(); | |
dont_gc_on(); | |
data.objspace = objspace; | |
data.references = st_init_numtable(); | |
init_mark_stack(&data.mark_stack); | |
mfd.mark_func = allrefs_roots_i; | |
mfd.data = &data; | |
/* traverse root objects */ | |
PUSH_MARK_FUNC_DATA(&mfd); | |
GET_RACTOR()->mfd = &mfd; | |
gc_mark_roots(objspace, &data.category); | |
POP_MARK_FUNC_DATA(); | |
/* traverse rest objects reachable from root objects */ | |
while (pop_mark_stack(&data.mark_stack, &obj)) { | |
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data); | |
} | |
free_stack_chunks(&data.mark_stack); | |
dont_gc_set(prev_dont_gc); | |
return data.references; | |
} | |
static int | |
objspace_allrefs_destruct_i(st_data_t key, st_data_t value, st_data_t ptr) | |
{ | |
struct reflist *refs = (struct reflist *)value; | |
reflist_destruct(refs); | |
return ST_CONTINUE; | |
} | |
static void | |
objspace_allrefs_destruct(struct st_table *refs) | |
{ | |
st_foreach(refs, objspace_allrefs_destruct_i, 0); | |
st_free_table(refs); | |
} | |
#if RGENGC_CHECK_MODE >= 5 | |
static int | |
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr) | |
{ | |
VALUE obj = (VALUE)k; | |
struct reflist *refs = (struct reflist *)v; | |
fprintf(stderr, "[allrefs_dump_i] %s <- ", obj_info(obj)); | |
reflist_dump(refs); | |
fprintf(stderr, "\n"); | |
return ST_CONTINUE; | |
} | |
static void | |
allrefs_dump(rb_objspace_t *objspace) | |
{ | |
VALUE size = objspace->rgengc.allrefs_table->num_entries; | |
fprintf(stderr, "[all refs] (size: %"PRIuVALUE")\n", size); | |
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0); | |
} | |
#endif | |
static int | |
gc_check_after_marks_i(st_data_t k, st_data_t v, st_data_t ptr) | |
{ | |
VALUE obj = k; | |
struct reflist *refs = (struct reflist *)v; | |
rb_objspace_t *objspace = (rb_objspace_t *)ptr; | |
/* object should be marked or oldgen */ | |
if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) { | |
fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", obj_info(obj)); | |
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj); | |
reflist_dump(refs); | |
if (reflist_referred_from_machine_context(refs)) { | |
fprintf(stderr, " (marked from machine stack).\n"); | |
/* marked from machine context can be false positive */ | |
} | |
else { | |
objspace->rgengc.error_count++; | |
fprintf(stderr, "\n"); | |
} | |
} | |
return ST_CONTINUE; | |
} | |
static void | |
gc_marks_check(rb_objspace_t *objspace, st_foreach_callback_func *checker_func, const char *checker_name) | |
{ | |
size_t saved_malloc_increase = objspace->malloc_params.increase; | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase; | |
#endif | |
VALUE already_disabled = rb_objspace_gc_disable(objspace); | |
objspace->rgengc.allrefs_table = objspace_allrefs(objspace); | |
if (checker_func) { | |
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace); | |
} | |
if (objspace->rgengc.error_count > 0) { | |
#if RGENGC_CHECK_MODE >= 5 | |
allrefs_dump(objspace); | |
#endif | |
if (checker_name) rb_bug("%s: GC has problem.", checker_name); | |
} | |
objspace_allrefs_destruct(objspace->rgengc.allrefs_table); | |
objspace->rgengc.allrefs_table = 0; | |
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); | |
objspace->malloc_params.increase = saved_malloc_increase; | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase; | |
#endif | |
} | |
#endif /* RGENGC_CHECK_MODE >= 4 */ | |
struct verify_internal_consistency_struct { | |
rb_objspace_t *objspace; | |
int err_count; | |
size_t live_object_count; | |
size_t zombie_object_count; | |
VALUE parent; | |
size_t old_object_count; | |
size_t remembered_shady_count; | |
}; | |
static void | |
check_generation_i(const VALUE child, void *ptr) | |
{ | |
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; | |
const VALUE parent = data->parent; | |
if (RGENGC_CHECK_MODE) GC_ASSERT(RVALUE_OLD_P(parent)); | |
if (!RVALUE_OLD_P(child)) { | |
if (!RVALUE_REMEMBERED(parent) && | |
!RVALUE_REMEMBERED(child) && | |
!RVALUE_UNCOLLECTIBLE(child)) { | |
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", obj_info(parent), obj_info(child)); | |
data->err_count++; | |
} | |
} | |
} | |
static void | |
check_color_i(const VALUE child, void *ptr) | |
{ | |
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; | |
const VALUE parent = data->parent; | |
if (!RVALUE_WB_UNPROTECTED(parent) && RVALUE_WHITE_P(child)) { | |
fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n", | |
obj_info(parent), obj_info(child)); | |
data->err_count++; | |
} | |
} | |
static void | |
check_children_i(const VALUE child, void *ptr) | |
{ | |
struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; | |
if (check_rvalue_consistency_force(child, FALSE) != 0) { | |
fprintf(stderr, "check_children_i: %s has error (referenced from %s)", | |
obj_info(child), obj_info(data->parent)); | |
rb_print_backtrace(); /* C backtrace will help to debug */ | |
data->err_count++; | |
} | |
} | |
static int | |
verify_internal_consistency_i(void *page_start, void *page_end, size_t stride, | |
struct verify_internal_consistency_struct *data) | |
{ | |
VALUE obj; | |
rb_objspace_t *objspace = data->objspace; | |
for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) { | |
void *poisoned = asan_poisoned_object_p(obj); | |
asan_unpoison_object(obj, false); | |
if (is_live_object(objspace, obj)) { | |
/* count objects */ | |
data->live_object_count++; | |
data->parent = obj; | |
/* Normally, we don't expect T_MOVED objects to be in the heap. | |
* But they can stay alive on the stack, */ | |
if (!gc_object_moved_p(objspace, obj)) { | |
/* moved slots don't have children */ | |
rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data); | |
} | |
/* check health of children */ | |
if (RVALUE_OLD_P(obj)) data->old_object_count++; | |
if (RVALUE_WB_UNPROTECTED(obj) && RVALUE_UNCOLLECTIBLE(obj)) data->remembered_shady_count++; | |
if (!is_marking(objspace) && RVALUE_OLD_P(obj)) { | |
/* reachable objects from an oldgen object should be old or (young with remember) */ | |
data->parent = obj; | |
rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data); | |
} | |
if (is_incremental_marking(objspace)) { | |
if (RVALUE_BLACK_P(obj)) { | |
/* reachable objects from black objects should be black or grey objects */ | |
data->parent = obj; | |
rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data); | |
} | |
} | |
} | |
else { | |
if (BUILTIN_TYPE(obj) == T_ZOMBIE) { | |
GC_ASSERT((RBASIC(obj)->flags & ~FL_SEEN_OBJ_ID) == T_ZOMBIE); | |
data->zombie_object_count++; | |
} | |
} | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); | |
asan_poison_object(obj); | |
} | |
} | |
return 0; | |
} | |
static int | |
gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) | |
{ | |
int i; | |
unsigned int has_remembered_shady = FALSE; | |
unsigned int has_remembered_old = FALSE; | |
int remembered_old_objects = 0; | |
int free_objects = 0; | |
int zombie_objects = 0; | |
int stride = page->size_pool->slot_size / sizeof(RVALUE); | |
for (i=0; i<page->total_slots; i+=stride) { | |
VALUE val = (VALUE)&page->start[i]; | |
void *poisoned = asan_poisoned_object_p(val); | |
asan_unpoison_object(val, false); | |
if (RBASIC(val) == 0) free_objects++; | |
if (BUILTIN_TYPE(val) == T_ZOMBIE) zombie_objects++; | |
if (RVALUE_PAGE_UNCOLLECTIBLE(page, val) && RVALUE_PAGE_WB_UNPROTECTED(page, val)) { | |
has_remembered_shady = TRUE; | |
} | |
if (RVALUE_PAGE_MARKING(page, val)) { | |
has_remembered_old = TRUE; | |
remembered_old_objects++; | |
} | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(val) == T_NONE); | |
asan_poison_object(val); | |
} | |
} | |
if (!is_incremental_marking(objspace) && | |
page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) { | |
for (i=0; i<page->total_slots; i++) { | |
VALUE val = (VALUE)&page->start[i]; | |
if (RVALUE_PAGE_MARKING(page, val)) { | |
fprintf(stderr, "marking -> %s\n", obj_info(val)); | |
} | |
} | |
rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s", | |
(void *)page, remembered_old_objects, obj ? obj_info(obj) : ""); | |
} | |
if (page->flags.has_uncollectible_shady_objects == FALSE && has_remembered_shady == TRUE) { | |
rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s", | |
(void *)page, obj ? obj_info(obj) : ""); | |
} | |
if (0) { | |
/* free_slots may not equal to free_objects */ | |
if (page->free_slots != free_objects) { | |
rb_bug("page %p's free_slots should be %d, but %d\n", (void *)page, page->free_slots, free_objects); | |
} | |
} | |
if (page->final_slots != zombie_objects) { | |
rb_bug("page %p's final_slots should be %d, but %d\n", (void *)page, page->final_slots, zombie_objects); | |
} | |
return remembered_old_objects; | |
} | |
static int | |
gc_verify_heap_pages_(rb_objspace_t *objspace, struct list_head *head) | |
{ | |
int remembered_old_objects = 0; | |
struct heap_page *page = 0; | |
list_for_each(head, page, page_node) { | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
RVALUE *p = page->freelist; | |
while (p) { | |
VALUE vp = (VALUE)p; | |
VALUE prev = vp; | |
asan_unpoison_object(vp, false); | |
if (BUILTIN_TYPE(vp) != T_NONE) { | |
fprintf(stderr, "freelist slot expected to be T_NONE but was: %s\n", obj_info(vp)); | |
} | |
p = p->as.free.next; | |
asan_poison_object(prev); | |
} | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
if (page->flags.has_remembered_objects == FALSE) { | |
remembered_old_objects += gc_verify_heap_page(objspace, page, Qfalse); | |
} | |
} | |
return remembered_old_objects; | |
} | |
static int | |
gc_verify_heap_pages(rb_objspace_t *objspace) | |
{ | |
int remembered_old_objects = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
remembered_old_objects += gc_verify_heap_pages_(objspace, &size_pools[i].eden_heap.pages); | |
remembered_old_objects += gc_verify_heap_pages_(objspace, &size_pools[i].tomb_heap.pages); | |
} | |
return remembered_old_objects; | |
} | |
/* | |
* call-seq: | |
* GC.verify_internal_consistency -> nil | |
* | |
* Verify internal consistency. | |
* | |
* This method is implementation specific. | |
* Now this method checks generational consistency | |
* if RGenGC is supported. | |
*/ | |
static VALUE | |
gc_verify_internal_consistency_m(VALUE dummy) | |
{ | |
gc_verify_internal_consistency(&rb_objspace); | |
return Qnil; | |
} | |
static void | |
gc_verify_internal_consistency_(rb_objspace_t *objspace) | |
{ | |
struct verify_internal_consistency_struct data = {0}; | |
data.objspace = objspace; | |
gc_report(5, objspace, "gc_verify_internal_consistency: start\n"); | |
/* check relations */ | |
for (size_t i = 0; i < heap_allocated_pages; i++) { | |
struct heap_page *page = heap_pages_sorted[i]; | |
short slot_size = page->size_pool->slot_size; | |
uintptr_t start = (uintptr_t)page->start; | |
uintptr_t end = start + page->total_slots * slot_size; | |
verify_internal_consistency_i((void *)start, (void *)end, slot_size, &data); | |
} | |
if (data.err_count != 0) { | |
#if RGENGC_CHECK_MODE >= 5 | |
objspace->rgengc.error_count = data.err_count; | |
gc_marks_check(objspace, NULL, NULL); | |
allrefs_dump(objspace); | |
#endif | |
rb_bug("gc_verify_internal_consistency: found internal inconsistency."); | |
} | |
/* check heap_page status */ | |
gc_verify_heap_pages(objspace); | |
/* check counters */ | |
if (!is_lazy_sweeping(objspace) && | |
!finalizing && | |
ruby_single_main_ractor != NULL) { | |
if (objspace_live_slots(objspace) != data.live_object_count) { | |
fprintf(stderr, "heap_pages_final_slots: %"PRIdSIZE", " | |
"objspace->profile.total_freed_objects: %"PRIdSIZE"\n", | |
heap_pages_final_slots, objspace->profile.total_freed_objects); | |
rb_bug("inconsistent live slot number: expect %"PRIuSIZE", but %"PRIuSIZE".", | |
objspace_live_slots(objspace), data.live_object_count); | |
} | |
} | |
if (!is_marking(objspace)) { | |
if (objspace->rgengc.old_objects != data.old_object_count) { | |
rb_bug("inconsistent old slot number: expect %"PRIuSIZE", but %"PRIuSIZE".", | |
objspace->rgengc.old_objects, data.old_object_count); | |
} | |
if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) { | |
rb_bug("inconsistent number of wb unprotected objects: expect %"PRIuSIZE", but %"PRIuSIZE".", | |
objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count); | |
} | |
} | |
if (!finalizing) { | |
size_t list_count = 0; | |
{ | |
VALUE z = heap_pages_deferred_final; | |
while (z) { | |
list_count++; | |
z = RZOMBIE(z)->next; | |
} | |
} | |
if (heap_pages_final_slots != data.zombie_object_count || | |
heap_pages_final_slots != list_count) { | |
rb_bug("inconsistent finalizing object count:\n" | |
" expect %"PRIuSIZE"\n" | |
" but %"PRIuSIZE" zombies\n" | |
" heap_pages_deferred_final list has %"PRIuSIZE" items.", | |
heap_pages_final_slots, | |
data.zombie_object_count, | |
list_count); | |
} | |
} | |
gc_report(5, objspace, "gc_verify_internal_consistency: OK\n"); | |
} | |
static void | |
gc_verify_internal_consistency(rb_objspace_t *objspace) | |
{ | |
RB_VM_LOCK_ENTER(); | |
{ | |
rb_vm_barrier(); // stop other ractors | |
unsigned int prev_during_gc = during_gc; | |
during_gc = FALSE; // stop gc here | |
{ | |
gc_verify_internal_consistency_(objspace); | |
} | |
during_gc = prev_during_gc; | |
} | |
RB_VM_LOCK_LEAVE(); | |
} | |
void | |
rb_gc_verify_internal_consistency(void) | |
{ | |
gc_verify_internal_consistency(&rb_objspace); | |
} | |
static VALUE | |
gc_verify_transient_heap_internal_consistency(VALUE dmy) | |
{ | |
rb_transient_heap_verify(); | |
return Qnil; | |
} | |
/* marks */ | |
static void | |
gc_marks_start(rb_objspace_t *objspace, int full_mark) | |
{ | |
/* start marking */ | |
gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor"); | |
gc_mode_transition(objspace, gc_mode_marking); | |
if (full_mark) { | |
#if GC_ENABLE_INCREMENTAL_MARK | |
objspace->rincgc.step_slots = (objspace->marked_slots * 2) / ((objspace->rincgc.pooled_slots / HEAP_PAGE_OBJ_LIMIT) + 1); | |
if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE", " | |
"objspace->rincgc.pooled_page_num: %"PRIdSIZE", " | |
"objspace->rincgc.step_slots: %"PRIdSIZE", \n", | |
objspace->marked_slots, objspace->rincgc.pooled_slots, objspace->rincgc.step_slots); | |
#endif | |
objspace->flags.during_minor_gc = FALSE; | |
if (ruby_enable_autocompact) { | |
objspace->flags.during_compacting |= TRUE; | |
} | |
objspace->profile.major_gc_count++; | |
objspace->rgengc.uncollectible_wb_unprotected_objects = 0; | |
objspace->rgengc.old_objects = 0; | |
objspace->rgengc.last_major_gc = objspace->profile.count; | |
objspace->marked_slots = 0; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rgengc_mark_and_rememberset_clear(objspace, &size_pools[i].eden_heap); | |
} | |
} | |
else { | |
objspace->flags.during_minor_gc = TRUE; | |
objspace->marked_slots = | |
objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */ | |
objspace->profile.minor_gc_count++; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rgengc_rememberset_mark(objspace, &size_pools[i].eden_heap); | |
} | |
} | |
gc_mark_roots(objspace, NULL); | |
gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %"PRIdSIZE"\n", | |
full_mark ? "full" : "minor", mark_stack_size(&objspace->mark_stack)); | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
static inline void | |
gc_marks_wb_unprotected_objects_in_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bits) | |
{ | |
if (bits) { | |
do { | |
if (bits & 1) { | |
gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", obj_info((VALUE)p)); | |
GC_ASSERT(RVALUE_WB_UNPROTECTED((VALUE)p)); | |
GC_ASSERT(RVALUE_MARKED((VALUE)p)); | |
gc_mark_children(objspace, (VALUE)p); | |
} | |
p += sizeof(RVALUE); | |
bits >>= 1; | |
} while (bits); | |
} | |
} | |
static void | |
gc_marks_wb_unprotected_objects(rb_objspace_t *objspace, rb_heap_t *heap) | |
{ | |
struct heap_page *page = 0; | |
list_for_each(&heap->pages, page, page_node) { | |
bits_t *mark_bits = page->mark_bits; | |
bits_t *wbun_bits = page->wb_unprotected_bits; | |
RVALUE *p = page->start; | |
size_t j; | |
bits_t bits = mark_bits[0] & wbun_bits[0]; | |
bits >>= NUM_IN_PAGE(p); | |
gc_marks_wb_unprotected_objects_in_plane(objspace, (uintptr_t)p, bits); | |
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)); | |
for (j=1; j<HEAP_PAGE_BITMAP_LIMIT; j++) { | |
bits_t bits = mark_bits[j] & wbun_bits[j]; | |
gc_marks_wb_unprotected_objects_in_plane(objspace, (uintptr_t)p, bits); | |
p += BITS_BITLENGTH; | |
} | |
} | |
gc_mark_stacked_objects_all(objspace); | |
} | |
static struct heap_page * | |
heap_move_pooled_pages_to_free_pages(rb_heap_t *heap) | |
{ | |
struct heap_page *page = heap->pooled_pages; | |
if (page) { | |
heap->pooled_pages = page->free_next; | |
heap_add_freepage(heap, page); | |
} | |
return page; | |
} | |
#endif | |
static int | |
gc_marks_finish(rb_objspace_t *objspace) | |
{ | |
#if GC_ENABLE_INCREMENTAL_MARK | |
/* finish incremental GC */ | |
if (is_incremental_marking(objspace)) { | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(&size_pools[i]); | |
if (heap->pooled_pages) { | |
heap_move_pooled_pages_to_free_pages(heap); | |
gc_report(1, objspace, "gc_marks_finish: pooled pages are exists. retry.\n"); | |
return FALSE; /* continue marking phase */ | |
} | |
} | |
if (RGENGC_CHECK_MODE && is_mark_stack_empty(&objspace->mark_stack) == 0) { | |
rb_bug("gc_marks_finish: mark stack is not empty (%"PRIdSIZE").", | |
mark_stack_size(&objspace->mark_stack)); | |
} | |
gc_mark_roots(objspace, 0); | |
if (is_mark_stack_empty(&objspace->mark_stack) == FALSE) { | |
gc_report(1, objspace, "gc_marks_finish: not empty (%"PRIdSIZE"). retry.\n", | |
mark_stack_size(&objspace->mark_stack)); | |
return FALSE; | |
} | |
#if RGENGC_CHECK_MODE >= 2 | |
if (gc_verify_heap_pages(objspace) != 0) { | |
rb_bug("gc_marks_finish (incremental): there are remembered old objects."); | |
} | |
#endif | |
objspace->flags.during_incremental_marking = FALSE; | |
/* check children of all marked wb-unprotected objects */ | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
gc_marks_wb_unprotected_objects(objspace, &size_pools[i].eden_heap); | |
} | |
} | |
#endif /* GC_ENABLE_INCREMENTAL_MARK */ | |
#if RGENGC_CHECK_MODE >= 2 | |
gc_verify_internal_consistency(objspace); | |
#endif | |
if (is_full_marking(objspace)) { | |
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */ | |
const double r = gc_params.oldobject_limit_factor; | |
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r); | |
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r); | |
} | |
#if RGENGC_CHECK_MODE >= 4 | |
during_gc = FALSE; | |
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks"); | |
during_gc = TRUE; | |
#endif | |
{ | |
/* decide full GC is needed or not */ | |
size_t total_slots = heap_allocatable_slots(objspace) + heap_eden_total_slots(objspace); | |
size_t sweep_slots = total_slots - objspace->marked_slots; /* will be swept slots */ | |
size_t max_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_max_ratio); | |
size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio); | |
int full_marking = is_full_marking(objspace); | |
const int r_cnt = GET_VM()->ractor.cnt; | |
const int r_mul = r_cnt > 8 ? 8 : r_cnt; // upto 8 | |
GC_ASSERT(heap_eden_total_slots(objspace) >= objspace->marked_slots); | |
/* setup free-able page counts */ | |
if (max_free_slots < gc_params.heap_init_slots * r_mul) { | |
max_free_slots = gc_params.heap_init_slots * r_mul; | |
} | |
if (sweep_slots > max_free_slots) { | |
heap_pages_freeable_pages = (sweep_slots - max_free_slots) / HEAP_PAGE_OBJ_LIMIT; | |
} | |
else { | |
heap_pages_freeable_pages = 0; | |
} | |
/* check free_min */ | |
if (min_free_slots < gc_params.heap_free_slots * r_mul) { | |
min_free_slots = gc_params.heap_free_slots * r_mul; | |
} | |
if (sweep_slots < min_free_slots) { | |
if (!full_marking) { | |
if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) { | |
full_marking = TRUE; | |
/* do not update last_major_gc, because full marking is not done. */ | |
/* goto increment; */ | |
} | |
else { | |
gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n"); | |
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE; | |
} | |
} | |
#if !USE_RVARGC | |
if (full_marking) { | |
/* increment: */ | |
gc_report(1, objspace, "gc_marks_finish: heap_set_increment!!\n"); | |
rb_size_pool_t *size_pool = &size_pools[0]; | |
size_pool_allocatable_pages_set(objspace, size_pool, heap_extend_pages(objspace, sweep_slots, total_slots, heap_allocated_pages + heap_allocatable_pages(objspace))); | |
heap_increment(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
#endif | |
} | |
if (full_marking) { | |
/* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */ | |
const double r = gc_params.oldobject_limit_factor; | |
objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r); | |
objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r); | |
} | |
if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) { | |
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_SHADY; | |
} | |
if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) { | |
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDGEN; | |
} | |
if (RGENGC_FORCE_MAJOR_GC) { | |
objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_FORCE; | |
} | |
gc_report(1, objspace, "gc_marks_finish (marks %"PRIdSIZE" objects, " | |
"old %"PRIdSIZE" objects, total %"PRIdSIZE" slots, " | |
"sweep %"PRIdSIZE" slots, increment: %"PRIdSIZE", next GC: %s)\n", | |
objspace->marked_slots, objspace->rgengc.old_objects, heap_eden_total_slots(objspace), sweep_slots, heap_allocatable_pages(objspace), | |
objspace->rgengc.need_major_gc ? "major" : "minor"); | |
} | |
rb_transient_heap_finish_marking(); | |
rb_ractor_finish_marking(); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0); | |
return TRUE; | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
static void | |
gc_marks_step(rb_objspace_t *objspace, size_t slots) | |
{ | |
GC_ASSERT(is_marking(objspace)); | |
if (gc_mark_stacked_objects_incremental(objspace, slots)) { | |
if (gc_marks_finish(objspace)) { | |
/* finish */ | |
gc_sweep(objspace); | |
} | |
} | |
if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE"\n", objspace->marked_slots); | |
} | |
#endif | |
static void | |
gc_marks_rest(rb_objspace_t *objspace) | |
{ | |
gc_report(1, objspace, "gc_marks_rest\n"); | |
#if GC_ENABLE_INCREMENTAL_MARK | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
size_pools[i].eden_heap.pooled_pages = NULL; | |
} | |
#endif | |
if (is_incremental_marking(objspace)) { | |
do { | |
while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE); | |
} while (gc_marks_finish(objspace) == FALSE); | |
} | |
else { | |
gc_mark_stacked_objects_all(objspace); | |
gc_marks_finish(objspace); | |
} | |
/* move to sweep */ | |
gc_sweep(objspace); | |
} | |
static void | |
gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
GC_ASSERT(dont_gc_val() == FALSE); | |
#if GC_ENABLE_INCREMENTAL_MARK | |
unsigned int lock_lev; | |
gc_enter(objspace, gc_enter_event_mark_continue, &lock_lev); | |
int slots = 0; | |
const char *from; | |
if (heap->pooled_pages) { | |
while (heap->pooled_pages && slots < HEAP_PAGE_OBJ_LIMIT) { | |
struct heap_page *page = heap_move_pooled_pages_to_free_pages(heap); | |
slots += page->free_slots; | |
} | |
from = "pooled-pages"; | |
} | |
else if (heap_increment(objspace, size_pool, heap)) { | |
slots = heap->free_pages->free_slots; | |
from = "incremented-pages"; | |
} | |
if (slots > 0) { | |
gc_report(2, objspace, "gc_marks_continue: provide %d slots from %s.\n", | |
slots, from); | |
gc_marks_step(objspace, objspace->rincgc.step_slots); | |
} | |
else { | |
gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %"PRIdSIZE").\n", | |
mark_stack_size(&objspace->mark_stack)); | |
gc_marks_rest(objspace); | |
} | |
gc_exit(objspace, gc_enter_event_mark_continue, &lock_lev); | |
#endif | |
} | |
static void | |
gc_marks(rb_objspace_t *objspace, int full_mark) | |
{ | |
gc_prof_mark_timer_start(objspace); | |
/* setup marking */ | |
gc_marks_start(objspace, full_mark); | |
if (!is_incremental_marking(objspace)) { | |
gc_marks_rest(objspace); | |
} | |
#if RGENGC_PROFILE > 0 | |
if (gc_prof_record(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->old_objects = objspace->rgengc.old_objects; | |
} | |
#endif | |
gc_prof_mark_timer_stop(objspace); | |
} | |
/* RGENGC */ | |
static void | |
gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...) | |
{ | |
if (level <= RGENGC_DEBUG) { | |
char buf[1024]; | |
FILE *out = stderr; | |
va_list args; | |
const char *status = " "; | |
if (during_gc) { | |
status = is_full_marking(objspace) ? "+" : "-"; | |
} | |
else { | |
if (is_lazy_sweeping(objspace)) { | |
status = "S"; | |
} | |
if (is_incremental_marking(objspace)) { | |
status = "M"; | |
} | |
} | |
va_start(args, fmt); | |
vsnprintf(buf, 1024, fmt, args); | |
va_end(args); | |
fprintf(out, "%s|", status); | |
fputs(buf, out); | |
} | |
} | |
/* bit operations */ | |
static int | |
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj) | |
{ | |
return RVALUE_REMEMBERED(obj); | |
} | |
static int | |
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj) | |
{ | |
struct heap_page *page = GET_HEAP_PAGE(obj); | |
bits_t *bits = &page->marking_bits[0]; | |
GC_ASSERT(!is_incremental_marking(objspace)); | |
if (MARKED_IN_BITMAP(bits, obj)) { | |
return FALSE; | |
} | |
else { | |
page->flags.has_remembered_objects = TRUE; | |
MARK_IN_BITMAP(bits, obj); | |
return TRUE; | |
} | |
} | |
/* wb, etc */ | |
/* return FALSE if already remembered */ | |
static int | |
rgengc_remember(rb_objspace_t *objspace, VALUE obj) | |
{ | |
gc_report(6, objspace, "rgengc_remember: %s %s\n", obj_info(obj), | |
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now"); | |
check_rvalue_consistency(obj); | |
if (RGENGC_CHECK_MODE) { | |
if (RVALUE_WB_UNPROTECTED(obj)) rb_bug("rgengc_remember: %s is not wb protected.", obj_info(obj)); | |
} | |
#if RGENGC_PROFILE > 0 | |
if (!rgengc_remembered(objspace, obj)) { | |
if (RVALUE_WB_UNPROTECTED(obj) == 0) { | |
objspace->profile.total_remembered_normal_object_count++; | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++; | |
#endif | |
} | |
} | |
#endif /* RGENGC_PROFILE > 0 */ | |
return rgengc_remembersetbits_set(objspace, obj); | |
} | |
static int | |
rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj) | |
{ | |
int result = rgengc_remembersetbits_get(objspace, obj); | |
check_rvalue_consistency(obj); | |
return result; | |
} | |
static int | |
rgengc_remembered(rb_objspace_t *objspace, VALUE obj) | |
{ | |
gc_report(6, objspace, "rgengc_remembered: %s\n", obj_info(obj)); | |
return rgengc_remembered_sweep(objspace, obj); | |
} | |
#ifndef PROFILE_REMEMBERSET_MARK | |
#define PROFILE_REMEMBERSET_MARK 0 | |
#endif | |
static inline void | |
rgengc_rememberset_mark_in_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bitset) | |
{ | |
if (bitset) { | |
do { | |
if (bitset & 1) { | |
VALUE obj = (VALUE)p; | |
gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", obj_info(obj)); | |
GC_ASSERT(RVALUE_UNCOLLECTIBLE(obj)); | |
GC_ASSERT(RVALUE_OLD_P(obj) || RVALUE_WB_UNPROTECTED(obj)); | |
gc_mark_children(objspace, obj); | |
} | |
p += sizeof(RVALUE); | |
bitset >>= 1; | |
} while (bitset); | |
} | |
} | |
static void | |
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap) | |
{ | |
size_t j; | |
struct heap_page *page = 0; | |
#if PROFILE_REMEMBERSET_MARK | |
int has_old = 0, has_shady = 0, has_both = 0, skip = 0; | |
#endif | |
gc_report(1, objspace, "rgengc_rememberset_mark: start\n"); | |
list_for_each(&heap->pages, page, page_node) { | |
if (page->flags.has_remembered_objects | page->flags.has_uncollectible_shady_objects) { | |
RVALUE *p = page->start; | |
bits_t bitset, bits[HEAP_PAGE_BITMAP_LIMIT]; | |
bits_t *marking_bits = page->marking_bits; | |
bits_t *uncollectible_bits = page->uncollectible_bits; | |
bits_t *wb_unprotected_bits = page->wb_unprotected_bits; | |
#if PROFILE_REMEMBERSET_MARK | |
if (page->flags.has_remembered_objects && page->flags.has_uncollectible_shady_objects) has_both++; | |
else if (page->flags.has_remembered_objects) has_old++; | |
else if (page->flags.has_uncollectible_shady_objects) has_shady++; | |
#endif | |
for (j=0; j<HEAP_PAGE_BITMAP_LIMIT; j++) { | |
bits[j] = marking_bits[j] | (uncollectible_bits[j] & wb_unprotected_bits[j]); | |
marking_bits[j] = 0; | |
} | |
page->flags.has_remembered_objects = FALSE; | |
bitset = bits[0]; | |
bitset >>= NUM_IN_PAGE(p); | |
rgengc_rememberset_mark_in_plane(objspace, (uintptr_t)p, bitset); | |
p += (BITS_BITLENGTH - NUM_IN_PAGE(p)); | |
for (j=1; j < HEAP_PAGE_BITMAP_LIMIT; j++) { | |
bitset = bits[j]; | |
rgengc_rememberset_mark_in_plane(objspace, (uintptr_t)p, bitset); | |
p += BITS_BITLENGTH; | |
} | |
} | |
#if PROFILE_REMEMBERSET_MARK | |
else { | |
skip++; | |
} | |
#endif | |
} | |
#if PROFILE_REMEMBERSET_MARK | |
fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip); | |
#endif | |
gc_report(1, objspace, "rgengc_rememberset_mark: finished\n"); | |
} | |
static void | |
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap) | |
{ | |
struct heap_page *page = 0; | |
list_for_each(&heap->pages, page, page_node) { | |
memset(&page->mark_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); | |
memset(&page->uncollectible_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); | |
memset(&page->marking_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); | |
memset(&page->pinned_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); | |
page->flags.has_uncollectible_shady_objects = FALSE; | |
page->flags.has_remembered_objects = FALSE; | |
} | |
} | |
/* RGENGC: APIs */ | |
NOINLINE(static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace)); | |
static void | |
gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace) | |
{ | |
if (RGENGC_CHECK_MODE) { | |
if (!RVALUE_OLD_P(a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", obj_info(a)); | |
if ( RVALUE_OLD_P(b)) rb_bug("gc_writebarrier_generational: %s is an old object.", obj_info(b)); | |
if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", obj_info(a), obj_info(b)); | |
} | |
#if 1 | |
/* mark `a' and remember (default behavior) */ | |
if (!rgengc_remembered(objspace, a)) { | |
RB_VM_LOCK_ENTER_NO_BARRIER(); | |
{ | |
rgengc_remember(objspace, a); | |
} | |
RB_VM_LOCK_LEAVE_NO_BARRIER(); | |
gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", obj_info(a), obj_info(b)); | |
} | |
#else | |
/* mark `b' and remember */ | |
MARK_IN_BITMAP(GET_HEAP_MARK_BITS(b), b); | |
if (RVALUE_WB_UNPROTECTED(b)) { | |
gc_remember_unprotected(objspace, b); | |
} | |
else { | |
RVALUE_AGE_SET_OLD(objspace, b); | |
rgengc_remember(objspace, b); | |
} | |
gc_report(1, objspace, "gc_writebarrier_generational: %s -> %s (remembered)\n", obj_info(a), obj_info(b)); | |
#endif | |
check_rvalue_consistency(a); | |
check_rvalue_consistency(b); | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
static void | |
gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent) | |
{ | |
gc_mark_set_parent(objspace, parent); | |
rgengc_check_relation(objspace, obj); | |
if (gc_mark_set(objspace, obj) == FALSE) return; | |
gc_aging(objspace, obj); | |
gc_grey(objspace, obj); | |
} | |
NOINLINE(static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace)); | |
static void | |
gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace) | |
{ | |
gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %p -> %s\n", (void *)a, obj_info(b)); | |
if (RVALUE_BLACK_P(a)) { | |
if (RVALUE_WHITE_P(b)) { | |
if (!RVALUE_WB_UNPROTECTED(a)) { | |
gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %p -> %s\n", (void *)a, obj_info(b)); | |
gc_mark_from(objspace, b, a); | |
} | |
} | |
else if (RVALUE_OLD_P(a) && !RVALUE_OLD_P(b)) { | |
if (!RVALUE_WB_UNPROTECTED(b)) { | |
gc_report(1, objspace, "gc_writebarrier_incremental: [GN] %p -> %s\n", (void *)a, obj_info(b)); | |
RVALUE_AGE_SET_OLD(objspace, b); | |
if (RVALUE_BLACK_P(b)) { | |
gc_grey(objspace, b); | |
} | |
} | |
else { | |
gc_report(1, objspace, "gc_writebarrier_incremental: [LL] %p -> %s\n", (void *)a, obj_info(b)); | |
gc_remember_unprotected(objspace, b); | |
} | |
} | |
if (UNLIKELY(objspace->flags.during_compacting)) { | |
MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(b), b); | |
} | |
} | |
} | |
#else | |
#define gc_writebarrier_incremental(a, b, objspace) | |
#endif | |
void | |
rb_gc_writebarrier(VALUE a, VALUE b) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const"); | |
if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const"); | |
retry: | |
if (!is_incremental_marking(objspace)) { | |
if (!RVALUE_OLD_P(a) || RVALUE_OLD_P(b)) { | |
// do nothing | |
} | |
else { | |
gc_writebarrier_generational(a, b, objspace); | |
} | |
} | |
else { | |
bool retry = false; | |
/* slow path */ | |
RB_VM_LOCK_ENTER_NO_BARRIER(); | |
{ | |
if (is_incremental_marking(objspace)) { | |
gc_writebarrier_incremental(a, b, objspace); | |
} | |
else { | |
retry = true; | |
} | |
} | |
RB_VM_LOCK_LEAVE_NO_BARRIER(); | |
if (retry) goto retry; | |
} | |
return; | |
} | |
void | |
rb_gc_writebarrier_unprotect(VALUE obj) | |
{ | |
if (RVALUE_WB_UNPROTECTED(obj)) { | |
return; | |
} | |
else { | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", obj_info(obj), | |
rgengc_remembered(objspace, obj) ? " (already remembered)" : ""); | |
if (RVALUE_OLD_P(obj)) { | |
gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", obj_info(obj)); | |
RVALUE_DEMOTE(objspace, obj); | |
gc_mark_set(objspace, obj); | |
gc_remember_unprotected(objspace, obj); | |
#if RGENGC_PROFILE | |
objspace->profile.total_shade_operation_count++; | |
#if RGENGC_PROFILE >= 2 | |
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++; | |
#endif /* RGENGC_PROFILE >= 2 */ | |
#endif /* RGENGC_PROFILE */ | |
} | |
else { | |
RVALUE_AGE_RESET(obj); | |
} | |
RB_DEBUG_COUNTER_INC(obj_wb_unprotect); | |
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); | |
} | |
} | |
/* | |
* remember `obj' if needed. | |
*/ | |
MJIT_FUNC_EXPORTED void | |
rb_gc_writebarrier_remember(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", obj_info(obj)); | |
if (is_incremental_marking(objspace)) { | |
if (RVALUE_BLACK_P(obj)) { | |
gc_grey(objspace, obj); | |
} | |
} | |
else { | |
if (RVALUE_OLD_P(obj)) { | |
rgengc_remember(objspace, obj); | |
} | |
} | |
} | |
static st_table *rgengc_unprotect_logging_table; | |
static int | |
rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
fprintf(stderr, "%s\t%"PRIuVALUE"\n", (char *)key, (VALUE)val); | |
return ST_CONTINUE; | |
} | |
static void | |
rgengc_unprotect_logging_exit_func(void) | |
{ | |
st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0); | |
} | |
void | |
rb_gc_unprotect_logging(void *objptr, const char *filename, int line) | |
{ | |
VALUE obj = (VALUE)objptr; | |
if (rgengc_unprotect_logging_table == 0) { | |
rgengc_unprotect_logging_table = st_init_strtable(); | |
atexit(rgengc_unprotect_logging_exit_func); | |
} | |
if (RVALUE_WB_UNPROTECTED(obj) == 0) { | |
char buff[0x100]; | |
st_data_t cnt = 1; | |
char *ptr = buff; | |
snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_info(obj), filename, line); | |
if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) { | |
cnt++; | |
} | |
else { | |
ptr = (strdup)(buff); | |
if (!ptr) rb_memerror(); | |
} | |
st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt); | |
} | |
} | |
void | |
rb_copy_wb_protected_attribute(VALUE dest, VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (RVALUE_WB_UNPROTECTED(obj) && !RVALUE_WB_UNPROTECTED(dest)) { | |
if (!RVALUE_OLD_P(dest)) { | |
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest); | |
RVALUE_AGE_RESET_RAW(dest); | |
} | |
else { | |
RVALUE_DEMOTE(objspace, dest); | |
} | |
} | |
check_rvalue_consistency(dest); | |
} | |
/* RGENGC analysis information */ | |
VALUE | |
rb_obj_rgengc_writebarrier_protected_p(VALUE obj) | |
{ | |
return RVALUE_WB_UNPROTECTED(obj) ? Qfalse : Qtrue; | |
} | |
VALUE | |
rb_obj_rgengc_promoted_p(VALUE obj) | |
{ | |
return RBOOL(OBJ_PROMOTED(obj)); | |
} | |
size_t | |
rb_obj_gc_flags(VALUE obj, ID* flags, size_t max) | |
{ | |
size_t n = 0; | |
static ID ID_marked; | |
static ID ID_wb_protected, ID_old, ID_marking, ID_uncollectible, ID_pinned; | |
if (!ID_marked) { | |
#define I(s) ID_##s = rb_intern(#s); | |
I(marked); | |
I(wb_protected); | |
I(old); | |
I(marking); | |
I(uncollectible); | |
I(pinned); | |
#undef I | |
} | |
if (RVALUE_WB_UNPROTECTED(obj) == 0 && n<max) flags[n++] = ID_wb_protected; | |
if (RVALUE_OLD_P(obj) && n<max) flags[n++] = ID_old; | |
if (RVALUE_UNCOLLECTIBLE(obj) && n<max) flags[n++] = ID_uncollectible; | |
if (MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj) && n<max) flags[n++] = ID_marking; | |
if (MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) && n<max) flags[n++] = ID_marked; | |
if (MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj) && n<max) flags[n++] = ID_pinned; | |
return n; | |
} | |
/* GC */ | |
void | |
rb_gc_ractor_newobj_cache_clear(rb_ractor_newobj_cache_t *newobj_cache) | |
{ | |
struct heap_page *page = newobj_cache->using_page; | |
RVALUE *freelist = newobj_cache->freelist; | |
RUBY_DEBUG_LOG("ractor using_page:%p freelist:%p", (void *)page, (void *)freelist); | |
heap_page_freelist_append(page, freelist); | |
newobj_cache->using_page = NULL; | |
newobj_cache->freelist = NULL; | |
} | |
void | |
rb_gc_force_recycle(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
RB_VM_LOCK_ENTER(); | |
{ | |
int is_old = RVALUE_OLD_P(obj); | |
gc_report(2, objspace, "rb_gc_force_recycle: %s\n", obj_info(obj)); | |
if (is_old) { | |
if (RVALUE_MARKED(obj)) { | |
objspace->rgengc.old_objects--; | |
} | |
} | |
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj); | |
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); | |
CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj); | |
if (is_incremental_marking(objspace)) { | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj)) { | |
invalidate_mark_stack(&objspace->mark_stack, obj); | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); | |
} | |
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj); | |
#endif | |
} | |
else { | |
if (is_old || GET_HEAP_PAGE(obj)->flags.before_sweep) { | |
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj); | |
} | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); | |
} | |
objspace->profile.total_freed_objects++; | |
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(obj), obj); | |
/* Disable counting swept_slots because there are no meaning. | |
* if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) { | |
* objspace->heap.swept_slots++; | |
* } | |
*/ | |
} | |
RB_VM_LOCK_LEAVE(); | |
} | |
#ifndef MARK_OBJECT_ARY_BUCKET_SIZE | |
#define MARK_OBJECT_ARY_BUCKET_SIZE 1024 | |
#endif | |
void | |
rb_gc_register_mark_object(VALUE obj) | |
{ | |
if (!is_pointer_to_heap(&rb_objspace, (void *)obj)) | |
return; | |
RB_VM_LOCK_ENTER(); | |
{ | |
VALUE ary_ary = GET_VM()->mark_object_ary; | |
VALUE ary = rb_ary_last(0, 0, ary_ary); | |
if (NIL_P(ary) || RARRAY_LEN(ary) >= MARK_OBJECT_ARY_BUCKET_SIZE) { | |
ary = rb_ary_tmp_new(MARK_OBJECT_ARY_BUCKET_SIZE); | |
rb_ary_push(ary_ary, ary); | |
} | |
rb_ary_push(ary, obj); | |
} | |
RB_VM_LOCK_LEAVE(); | |
} | |
void | |
rb_gc_register_address(VALUE *addr) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
struct gc_list *tmp; | |
tmp = ALLOC(struct gc_list); | |
tmp->next = global_list; | |
tmp->varptr = addr; | |
global_list = tmp; | |
} | |
void | |
rb_gc_unregister_address(VALUE *addr) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
struct gc_list *tmp = global_list; | |
if (tmp->varptr == addr) { | |
global_list = tmp->next; | |
xfree(tmp); | |
return; | |
} | |
while (tmp->next) { | |
if (tmp->next->varptr == addr) { | |
struct gc_list *t = tmp->next; | |
tmp->next = tmp->next->next; | |
xfree(t); | |
break; | |
} | |
tmp = tmp->next; | |
} | |
} | |
void | |
rb_global_variable(VALUE *var) | |
{ | |
rb_gc_register_address(var); | |
} | |
#define GC_NOTIFY 0 | |
enum { | |
gc_stress_no_major, | |
gc_stress_no_immediate_sweep, | |
gc_stress_full_mark_after_malloc, | |
gc_stress_max | |
}; | |
#define gc_stress_full_mark_after_malloc_p() \ | |
(FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<<gc_stress_full_mark_after_malloc))) | |
static void | |
heap_ready_to_gc(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) | |
{ | |
if (!heap->free_pages) { | |
if (!heap_increment(objspace, size_pool, heap)) { | |
size_pool_allocatable_pages_set(objspace, size_pool, 1); | |
heap_increment(objspace, size_pool, heap); | |
} | |
} | |
} | |
static int | |
ready_to_gc(rb_objspace_t *objspace) | |
{ | |
if (dont_gc_val() || during_gc || ruby_disable_gc) { | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
heap_ready_to_gc(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); | |
} | |
return FALSE; | |
} | |
else { | |
return TRUE; | |
} | |
} | |
static void | |
gc_reset_malloc_info(rb_objspace_t *objspace, bool full_mark) | |
{ | |
gc_prof_set_malloc_info(objspace); | |
{ | |
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0); | |
size_t old_limit = malloc_limit; | |
if (inc > malloc_limit) { | |
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor); | |
if (malloc_limit > gc_params.malloc_limit_max) { | |
malloc_limit = gc_params.malloc_limit_max; | |
} | |
} | |
else { | |
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */ | |
if (malloc_limit < gc_params.malloc_limit_min) { | |
malloc_limit = gc_params.malloc_limit_min; | |
} | |
} | |
if (0) { | |
if (old_limit != malloc_limit) { | |
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n", | |
rb_gc_count(), old_limit, malloc_limit); | |
} | |
else { | |
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n", | |
rb_gc_count(), malloc_limit); | |
} | |
} | |
} | |
/* reset oldmalloc info */ | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
if (!full_mark) { | |
if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) { | |
objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDMALLOC; | |
objspace->rgengc.oldmalloc_increase_limit = | |
(size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor); | |
if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) { | |
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max; | |
} | |
} | |
if (0) fprintf(stderr, "%"PRIdSIZE"\t%d\t%"PRIuSIZE"\t%"PRIuSIZE"\t%"PRIdSIZE"\n", | |
rb_gc_count(), | |
objspace->rgengc.need_major_gc, | |
objspace->rgengc.oldmalloc_increase, | |
objspace->rgengc.oldmalloc_increase_limit, | |
gc_params.oldmalloc_limit_max); | |
} | |
else { | |
/* major GC */ | |
objspace->rgengc.oldmalloc_increase = 0; | |
if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) { | |
objspace->rgengc.oldmalloc_increase_limit = | |
(size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1)); | |
if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) { | |
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; | |
} | |
} | |
} | |
#endif | |
} | |
static int | |
garbage_collect(rb_objspace_t *objspace, unsigned int reason) | |
{ | |
int ret; | |
RB_VM_LOCK_ENTER(); | |
{ | |
#if GC_PROFILE_MORE_DETAIL | |
objspace->profile.prepare_time = getrusage_time(); | |
#endif | |
gc_rest(objspace); | |
#if GC_PROFILE_MORE_DETAIL | |
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time; | |
#endif | |
ret = gc_start(objspace, reason); | |
} | |
RB_VM_LOCK_LEAVE(); | |
return ret; | |
} | |
static int | |
gc_start(rb_objspace_t *objspace, unsigned int reason) | |
{ | |
unsigned int do_full_mark = !!(reason & GPR_FLAG_FULL_MARK); | |
#if GC_ENABLE_INCREMENTAL_MARK | |
unsigned int immediate_mark = reason & GPR_FLAG_IMMEDIATE_MARK; | |
#endif | |
/* reason may be clobbered, later, so keep set immediate_sweep here */ | |
objspace->flags.immediate_sweep = !!(reason & GPR_FLAG_IMMEDIATE_SWEEP); | |
/* Explicitly enable compaction (GC.compact) */ | |
objspace->flags.during_compacting = !!(reason & GPR_FLAG_COMPACT); | |
if (!heap_allocated_pages) return FALSE; /* heap is not ready */ | |
if (!(reason & GPR_FLAG_METHOD) && !ready_to_gc(objspace)) return TRUE; /* GC is not allowed */ | |
GC_ASSERT(gc_mode(objspace) == gc_mode_none); | |
GC_ASSERT(!is_lazy_sweeping(objspace)); | |
GC_ASSERT(!is_incremental_marking(objspace)); | |
unsigned int lock_lev; | |
gc_enter(objspace, gc_enter_event_start, &lock_lev); | |
#if RGENGC_CHECK_MODE >= 2 | |
gc_verify_internal_consistency(objspace); | |
#endif | |
if (ruby_gc_stressful) { | |
int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0; | |
if ((flag & (1<<gc_stress_no_major)) == 0) { | |
do_full_mark = TRUE; | |
} | |
objspace->flags.immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep)); | |
} | |
else { | |
if (objspace->rgengc.need_major_gc) { | |
reason |= objspace->rgengc.need_major_gc; | |
do_full_mark = TRUE; | |
} | |
else if (RGENGC_FORCE_MAJOR_GC) { | |
reason = GPR_FLAG_MAJOR_BY_FORCE; | |
do_full_mark = TRUE; | |
} | |
objspace->rgengc.need_major_gc = GPR_FLAG_NONE; | |
} | |
if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) { | |
reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */ | |
} | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (!GC_ENABLE_INCREMENTAL_MARK || objspace->flags.dont_incremental || immediate_mark) { | |
objspace->flags.during_incremental_marking = FALSE; | |
} | |
else { | |
objspace->flags.during_incremental_marking = do_full_mark; | |
} | |
#endif | |
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) { | |
objspace->flags.immediate_sweep = TRUE; | |
} | |
if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP; | |
gc_report(1, objspace, "gc_start(reason: %x) => %u, %d, %d\n", | |
reason, | |
do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep); | |
#if USE_DEBUG_COUNTER | |
RB_DEBUG_COUNTER_INC(gc_count); | |
if (reason & GPR_FLAG_MAJOR_MASK) { | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_nofree, reason & GPR_FLAG_MAJOR_BY_NOFREE); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldgen, reason & GPR_FLAG_MAJOR_BY_OLDGEN); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_shady, reason & GPR_FLAG_MAJOR_BY_SHADY); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_force, reason & GPR_FLAG_MAJOR_BY_FORCE); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldmalloc, reason & GPR_FLAG_MAJOR_BY_OLDMALLOC); | |
#endif | |
} | |
else { | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_newobj, reason & GPR_FLAG_NEWOBJ); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_malloc, reason & GPR_FLAG_MALLOC); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_method, reason & GPR_FLAG_METHOD); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_capi, reason & GPR_FLAG_CAPI); | |
(void)RB_DEBUG_COUNTER_INC_IF(gc_minor_stress, reason & GPR_FLAG_STRESS); | |
} | |
#endif | |
objspace->profile.count++; | |
objspace->profile.latest_gc_info = reason; | |
objspace->profile.total_allocated_objects_at_gc_start = objspace->total_allocated_objects; | |
objspace->profile.heap_used_at_gc_start = heap_allocated_pages; | |
gc_prof_setup_new_record(objspace, reason); | |
gc_reset_malloc_info(objspace, do_full_mark); | |
rb_transient_heap_start_marking(do_full_mark); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */); | |
GC_ASSERT(during_gc); | |
gc_prof_timer_start(objspace); | |
{ | |
gc_marks(objspace, do_full_mark); | |
} | |
gc_prof_timer_stop(objspace); | |
gc_exit(objspace, gc_enter_event_start, &lock_lev); | |
return TRUE; | |
} | |
static void | |
gc_rest(rb_objspace_t *objspace) | |
{ | |
int marking = is_incremental_marking(objspace); | |
int sweeping = is_lazy_sweeping(objspace); | |
if (marking || sweeping) { | |
unsigned int lock_lev; | |
gc_enter(objspace, gc_enter_event_rest, &lock_lev); | |
if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(objspace); | |
if (is_incremental_marking(objspace)) { | |
gc_marks_rest(objspace); | |
} | |
if (is_lazy_sweeping(objspace)) { | |
gc_sweep_rest(objspace); | |
} | |
gc_exit(objspace, gc_enter_event_rest, &lock_lev); | |
} | |
} | |
struct objspace_and_reason { | |
rb_objspace_t *objspace; | |
unsigned int reason; | |
}; | |
static void | |
gc_current_status_fill(rb_objspace_t *objspace, char *buff) | |
{ | |
int i = 0; | |
if (is_marking(objspace)) { | |
buff[i++] = 'M'; | |
if (is_full_marking(objspace)) buff[i++] = 'F'; | |
#if GC_ENABLE_INCREMENTAL_MARK | |
if (is_incremental_marking(objspace)) buff[i++] = 'I'; | |
#endif | |
} | |
else if (is_sweeping(objspace)) { | |
buff[i++] = 'S'; | |
if (is_lazy_sweeping(objspace)) buff[i++] = 'L'; | |
} | |
else { | |
buff[i++] = 'N'; | |
} | |
buff[i] = '\0'; | |
} | |
static const char * | |
gc_current_status(rb_objspace_t *objspace) | |
{ | |
static char buff[0x10]; | |
gc_current_status_fill(objspace, buff); | |
return buff; | |
} | |
#if PRINT_ENTER_EXIT_TICK | |
static tick_t last_exit_tick; | |
static tick_t enter_tick; | |
static int enter_count = 0; | |
static char last_gc_status[0x10]; | |
static inline void | |
gc_record(rb_objspace_t *objspace, int direction, const char *event) | |
{ | |
if (direction == 0) { /* enter */ | |
enter_count++; | |
enter_tick = tick(); | |
gc_current_status_fill(objspace, last_gc_status); | |
} | |
else { /* exit */ | |
tick_t exit_tick = tick(); | |
char current_gc_status[0x10]; | |
gc_current_status_fill(objspace, current_gc_status); | |
#if 1 | |
/* [last mutator time] [gc time] [event] */ | |
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n", | |
enter_tick - last_exit_tick, | |
exit_tick - enter_tick, | |
event, | |
last_gc_status, current_gc_status, | |
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-'); | |
last_exit_tick = exit_tick; | |
#else | |
/* [enter_tick] [gc time] [event] */ | |
fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n", | |
enter_tick, | |
exit_tick - enter_tick, | |
event, | |
last_gc_status, current_gc_status, | |
(objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-'); | |
#endif | |
} | |
} | |
#else /* PRINT_ENTER_EXIT_TICK */ | |
static inline void | |
gc_record(rb_objspace_t *objspace, int direction, const char *event) | |
{ | |
/* null */ | |
} | |
#endif /* PRINT_ENTER_EXIT_TICK */ | |
static const char * | |
gc_enter_event_cstr(enum gc_enter_event event) | |
{ | |
switch (event) { | |
case gc_enter_event_start: return "start"; | |
case gc_enter_event_mark_continue: return "mark_continue"; | |
case gc_enter_event_sweep_continue: return "sweep_continue"; | |
case gc_enter_event_rest: return "rest"; | |
case gc_enter_event_finalizer: return "finalizer"; | |
case gc_enter_event_rb_memerror: return "rb_memerror"; | |
} | |
return NULL; | |
} | |
static void | |
gc_enter_count(enum gc_enter_event event) | |
{ | |
switch (event) { | |
case gc_enter_event_start: RB_DEBUG_COUNTER_INC(gc_enter_start); break; | |
case gc_enter_event_mark_continue: RB_DEBUG_COUNTER_INC(gc_enter_mark_continue); break; | |
case gc_enter_event_sweep_continue: RB_DEBUG_COUNTER_INC(gc_enter_sweep_continue); break; | |
case gc_enter_event_rest: RB_DEBUG_COUNTER_INC(gc_enter_rest); break; | |
case gc_enter_event_finalizer: RB_DEBUG_COUNTER_INC(gc_enter_finalizer); break; | |
case gc_enter_event_rb_memerror: /* nothing */ break; | |
} | |
} | |
static inline void | |
gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev) | |
{ | |
RB_VM_LOCK_ENTER_LEV(lock_lev); | |
switch (event) { | |
case gc_enter_event_rest: | |
if (!is_marking(objspace)) break; | |
// fall through | |
case gc_enter_event_start: | |
case gc_enter_event_mark_continue: | |
// stop other ractors | |
rb_vm_barrier(); | |
break; | |
default: | |
break; | |
} | |
gc_enter_count(event); | |
if (UNLIKELY(during_gc != 0)) rb_bug("during_gc != 0"); | |
if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace); | |
mjit_gc_start_hook(); | |
during_gc = TRUE; | |
RUBY_DEBUG_LOG("%s (%s)",gc_enter_event_cstr(event), gc_current_status(objspace)); | |
gc_report(1, objspace, "gc_enter: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace)); | |
gc_record(objspace, 0, gc_enter_event_cstr(event)); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_ENTER, 0); /* TODO: which parameter should be passed? */ | |
} | |
static inline void | |
gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev) | |
{ | |
GC_ASSERT(during_gc != 0); | |
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_EXIT, 0); /* TODO: which parameter should be passsed? */ | |
gc_record(objspace, 1, gc_enter_event_cstr(event)); | |
RUBY_DEBUG_LOG("%s (%s)", gc_enter_event_cstr(event), gc_current_status(objspace)); | |
gc_report(1, objspace, "gc_exit: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace)); | |
during_gc = FALSE; | |
mjit_gc_exit_hook(); | |
RB_VM_LOCK_LEAVE_LEV(lock_lev); | |
} | |
static void * | |
gc_with_gvl(void *ptr) | |
{ | |
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr; | |
return (void *)(VALUE)garbage_collect(oar->objspace, oar->reason); | |
} | |
static int | |
garbage_collect_with_gvl(rb_objspace_t *objspace, unsigned int reason) | |
{ | |
if (dont_gc_val()) return TRUE; | |
if (ruby_thread_has_gvl_p()) { | |
return garbage_collect(objspace, reason); | |
} | |
else { | |
if (ruby_native_thread_p()) { | |
struct objspace_and_reason oar; | |
oar.objspace = objspace; | |
oar.reason = reason; | |
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar); | |
} | |
else { | |
/* no ruby thread */ | |
fprintf(stderr, "[FATAL] failed to allocate memory\n"); | |
exit(EXIT_FAILURE); | |
} | |
} | |
} | |
static VALUE | |
gc_start_internal(rb_execution_context_t *ec, VALUE self, VALUE full_mark, VALUE immediate_mark, VALUE immediate_sweep, VALUE compact) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
unsigned int reason = (GPR_FLAG_FULL_MARK | | |
GPR_FLAG_IMMEDIATE_MARK | | |
GPR_FLAG_IMMEDIATE_SWEEP | | |
GPR_FLAG_METHOD); | |
/* For now, compact implies full mark / sweep, so ignore other flags */ | |
if (RTEST(compact)) { | |
#if defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE) | |
/* If Ruby's heap pages are not a multiple of the system page size, we | |
* cannot use mprotect for the read barrier, so we must disable compaction. */ | |
int pagesize; | |
pagesize = (int)sysconf(_SC_PAGE_SIZE); | |
if ((HEAP_PAGE_SIZE % pagesize) != 0) { | |
rb_raise(rb_eNotImpError, "Compaction isn't available on this platform"); | |
} | |
#endif | |
/* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for | |
* the read barrier, so we must disable compaction. */ | |
#if !defined(__MINGW32__) && !defined(_WIN32) | |
if (!USE_MMAP_ALIGNED_ALLOC) { | |
rb_raise(rb_eNotImpError, "Compaction isn't available on this platform"); | |
} | |
#endif | |
reason |= GPR_FLAG_COMPACT; | |
} | |
else { | |
if (!RTEST(full_mark)) reason &= ~GPR_FLAG_FULL_MARK; | |
if (!RTEST(immediate_mark)) reason &= ~GPR_FLAG_IMMEDIATE_MARK; | |
if (!RTEST(immediate_sweep)) reason &= ~GPR_FLAG_IMMEDIATE_SWEEP; | |
} | |
garbage_collect(objspace, reason); | |
gc_finalize_deferred(objspace); | |
return Qnil; | |
} | |
static int | |
gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj) | |
{ | |
GC_ASSERT(!SPECIAL_CONST_P(obj)); | |
switch (BUILTIN_TYPE(obj)) { | |
case T_NONE: | |
case T_NIL: | |
case T_MOVED: | |
case T_ZOMBIE: | |
return FALSE; | |
case T_SYMBOL: | |
if (DYNAMIC_SYM_P(obj) && (RSYMBOL(obj)->id & ~ID_SCOPE_MASK)) { | |
return FALSE; | |
} | |
/* fall through */ | |
case T_STRING: | |
case T_OBJECT: | |
case T_FLOAT: | |
case T_IMEMO: | |
case T_ARRAY: | |
case T_BIGNUM: | |
case T_ICLASS: | |
case T_MODULE: | |
case T_REGEXP: | |
case T_DATA: | |
case T_MATCH: | |
case T_STRUCT: | |
case T_HASH: | |
case T_FILE: | |
case T_COMPLEX: | |
case T_RATIONAL: | |
case T_NODE: | |
case T_CLASS: | |
if (FL_TEST(obj, FL_FINALIZE)) { | |
/* The finalizer table is a numtable. It looks up objects by address. | |
* We can't mark the keys in the finalizer table because that would | |
* prevent the objects from being collected. This check prevents | |
* objects that are keys in the finalizer table from being moved | |
* without directly pinning them. */ | |
if (st_is_member(finalizer_table, obj)) { | |
return FALSE; | |
} | |
} | |
GC_ASSERT(RVALUE_MARKED(obj)); | |
GC_ASSERT(!RVALUE_PINNED(obj)); | |
return TRUE; | |
default: | |
rb_bug("gc_is_moveable_obj: unreachable (%d)", (int)BUILTIN_TYPE(obj)); | |
break; | |
} | |
return FALSE; | |
} | |
static VALUE | |
gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t slot_size) | |
{ | |
int marked; | |
int wb_unprotected; | |
int uncollectible; | |
int marking; | |
RVALUE *dest = (RVALUE *)free; | |
RVALUE *src = (RVALUE *)scan; | |
gc_report(4, objspace, "Moving object: %p -> %p\n", (void*)scan, (void *)free); | |
GC_ASSERT(BUILTIN_TYPE(scan) != T_NONE); | |
GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(free), free)); | |
/* Save off bits for current object. */ | |
marked = rb_objspace_marked_object_p((VALUE)src); | |
wb_unprotected = RVALUE_WB_UNPROTECTED((VALUE)src); | |
uncollectible = RVALUE_UNCOLLECTIBLE((VALUE)src); | |
marking = RVALUE_MARKING((VALUE)src); | |
/* Clear bits for eventual T_MOVED */ | |
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)src), (VALUE)src); | |
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)src), (VALUE)src); | |
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)src), (VALUE)src); | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)src), (VALUE)src); | |
if (FL_TEST((VALUE)src, FL_EXIVAR)) { | |
/* Same deal as below. Generic ivars are held in st tables. | |
* Resizing the table could cause a GC to happen and we can't allow it */ | |
VALUE already_disabled = rb_gc_disable_no_rest(); | |
rb_mv_generic_ivar((VALUE)src, (VALUE)dest); | |
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); | |
} | |
st_data_t srcid = (st_data_t)src, id; | |
/* If the source object's object_id has been seen, we need to update | |
* the object to object id mapping. */ | |
if (st_lookup(objspace->obj_to_id_tbl, srcid, &id)) { | |
gc_report(4, objspace, "Moving object with seen id: %p -> %p\n", (void *)src, (void *)dest); | |
/* inserting in the st table can cause the GC to run. We need to | |
* prevent re-entry in to the GC since `gc_move` is running in the GC, | |
* so temporarily disable the GC around the st table mutation */ | |
VALUE already_disabled = rb_gc_disable_no_rest(); | |
st_delete(objspace->obj_to_id_tbl, &srcid, 0); | |
st_insert(objspace->obj_to_id_tbl, (st_data_t)dest, id); | |
if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); | |
} | |
/* Move the object */ | |
memcpy(dest, src, slot_size); | |
memset(src, 0, slot_size); | |
/* Set bits for object in new location */ | |
if (marking) { | |
MARK_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest); | |
} | |
else { | |
CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest); | |
} | |
if (marked) { | |
MARK_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest); | |
} | |
else { | |
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest); | |
} | |
if (wb_unprotected) { | |
MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest); | |
} | |
else { | |
CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest); | |
} | |
if (uncollectible) { | |
MARK_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest); | |
} | |
else { | |
CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest); | |
} | |
/* Assign forwarding address */ | |
src->as.moved.flags = T_MOVED; | |
src->as.moved.dummy = Qundef; | |
src->as.moved.destination = (VALUE)dest; | |
GC_ASSERT(BUILTIN_TYPE((VALUE)dest) != T_NONE); | |
return (VALUE)src; | |
} | |
static int | |
compare_free_slots(const void *left, const void *right, void *dummy) | |
{ | |
struct heap_page *left_page; | |
struct heap_page *right_page; | |
left_page = *(struct heap_page * const *)left; | |
right_page = *(struct heap_page * const *)right; | |
return left_page->free_slots - right_page->free_slots; | |
} | |
static void | |
gc_sort_heap_by_empty_slots(rb_objspace_t *objspace) | |
{ | |
for (int j = 0; j < SIZE_POOL_COUNT; j++) { | |
rb_size_pool_t *size_pool = &size_pools[j]; | |
size_t total_pages = SIZE_POOL_EDEN_HEAP(size_pool)->total_pages; | |
size_t size = size_mul_or_raise(total_pages, sizeof(struct heap_page *), rb_eRuntimeError); | |
struct heap_page *page = 0, **page_list = malloc(size); | |
size_t i = 0; | |
list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) { | |
page_list[i++] = page; | |
GC_ASSERT(page); | |
} | |
GC_ASSERT((size_t)i == total_pages); | |
/* Sort the heap so "filled pages" are first. `heap_add_page` adds to the | |
* head of the list, so empty pages will end up at the start of the heap */ | |
ruby_qsort(page_list, total_pages, sizeof(struct heap_page *), compare_free_slots, NULL); | |
/* Reset the eden heap */ | |
list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages); | |
for (i = 0; i < total_pages; i++) { | |
list_add(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, &page_list[i]->page_node); | |
if (page_list[i]->free_slots != 0) { | |
heap_add_freepage(SIZE_POOL_EDEN_HEAP(size_pool), page_list[i]); | |
} | |
} | |
free(page_list); | |
} | |
} | |
static void | |
gc_ref_update_array(rb_objspace_t * objspace, VALUE v) | |
{ | |
long i, len; | |
if (FL_TEST(v, ELTS_SHARED)) | |
return; | |
len = RARRAY_LEN(v); | |
if (len > 0) { | |
VALUE *ptr = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(v); | |
for (i = 0; i < len; i++) { | |
UPDATE_IF_MOVED(objspace, ptr[i]); | |
} | |
} | |
} | |
static void | |
gc_ref_update_object(rb_objspace_t * objspace, VALUE v) | |
{ | |
VALUE *ptr = ROBJECT_IVPTR(v); | |
uint32_t i, len = ROBJECT_NUMIV(v); | |
for (i = 0; i < len; i++) { | |
UPDATE_IF_MOVED(objspace, ptr[i]); | |
} | |
} | |
static int | |
hash_replace_ref(st_data_t *key, st_data_t *value, st_data_t argp, int existing) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)argp; | |
if (gc_object_moved_p(objspace, (VALUE)*key)) { | |
*key = rb_gc_location((VALUE)*key); | |
} | |
if (gc_object_moved_p(objspace, (VALUE)*value)) { | |
*value = rb_gc_location((VALUE)*value); | |
} | |
return ST_CONTINUE; | |
} | |
static int | |
hash_foreach_replace(st_data_t key, st_data_t value, st_data_t argp, int error) | |
{ | |
rb_objspace_t *objspace; | |
objspace = (rb_objspace_t *)argp; | |
if (gc_object_moved_p(objspace, (VALUE)key)) { | |
return ST_REPLACE; | |
} | |
if (gc_object_moved_p(objspace, (VALUE)value)) { | |
return ST_REPLACE; | |
} | |
return ST_CONTINUE; | |
} | |
static int | |
hash_replace_ref_value(st_data_t *key, st_data_t *value, st_data_t argp, int existing) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)argp; | |
if (gc_object_moved_p(objspace, (VALUE)*value)) { | |
*value = rb_gc_location((VALUE)*value); | |
} | |
return ST_CONTINUE; | |
} | |
static int | |
hash_foreach_replace_value(st_data_t key, st_data_t value, st_data_t argp, int error) | |
{ | |
rb_objspace_t *objspace; | |
objspace = (rb_objspace_t *)argp; | |
if (gc_object_moved_p(objspace, (VALUE)value)) { | |
return ST_REPLACE; | |
} | |
return ST_CONTINUE; | |
} | |
static void | |
gc_update_tbl_refs(rb_objspace_t * objspace, st_table *tbl) | |
{ | |
if (!tbl || tbl->num_entries == 0) return; | |
if (st_foreach_with_replace(tbl, hash_foreach_replace_value, hash_replace_ref_value, (st_data_t)objspace)) { | |
rb_raise(rb_eRuntimeError, "hash modified during iteration"); | |
} | |
} | |
static void | |
gc_update_table_refs(rb_objspace_t * objspace, st_table *tbl) | |
{ | |
if (!tbl || tbl->num_entries == 0) return; | |
if (st_foreach_with_replace(tbl, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace)) { | |
rb_raise(rb_eRuntimeError, "hash modified during iteration"); | |
} | |
} | |
/* Update MOVED references in an st_table */ | |
void | |
rb_gc_update_tbl_refs(st_table *ptr) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_update_table_refs(objspace, ptr); | |
} | |
static void | |
gc_ref_update_hash(rb_objspace_t * objspace, VALUE v) | |
{ | |
rb_hash_stlike_foreach_with_replace(v, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace); | |
} | |
static void | |
gc_ref_update_method_entry(rb_objspace_t *objspace, rb_method_entry_t *me) | |
{ | |
rb_method_definition_t *def = me->def; | |
UPDATE_IF_MOVED(objspace, me->owner); | |
UPDATE_IF_MOVED(objspace, me->defined_class); | |
if (def) { | |
switch (def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
if (def->body.iseq.iseqptr) { | |
TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, def->body.iseq.iseqptr); | |
} | |
TYPED_UPDATE_IF_MOVED(objspace, rb_cref_t *, def->body.iseq.cref); | |
break; | |
case VM_METHOD_TYPE_ATTRSET: | |
case VM_METHOD_TYPE_IVAR: | |
UPDATE_IF_MOVED(objspace, def->body.attr.location); | |
break; | |
case VM_METHOD_TYPE_BMETHOD: | |
UPDATE_IF_MOVED(objspace, def->body.bmethod.proc); | |
break; | |
case VM_METHOD_TYPE_ALIAS: | |
TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.alias.original_me); | |
return; | |
case VM_METHOD_TYPE_REFINED: | |
TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.refined.orig_me); | |
UPDATE_IF_MOVED(objspace, def->body.refined.owner); | |
break; | |
case VM_METHOD_TYPE_CFUNC: | |
case VM_METHOD_TYPE_ZSUPER: | |
case VM_METHOD_TYPE_MISSING: | |
case VM_METHOD_TYPE_OPTIMIZED: | |
case VM_METHOD_TYPE_UNDEF: | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: | |
break; | |
} | |
} | |
} | |
static void | |
gc_update_values(rb_objspace_t *objspace, long n, VALUE *values) | |
{ | |
long i; | |
for (i=0; i<n; i++) { | |
UPDATE_IF_MOVED(objspace, values[i]); | |
} | |
} | |
static void | |
gc_ref_update_imemo(rb_objspace_t *objspace, VALUE obj) | |
{ | |
switch (imemo_type(obj)) { | |
case imemo_env: | |
{ | |
rb_env_t *env = (rb_env_t *)obj; | |
if (LIKELY(env->ep)) { | |
// just after newobj() can be NULL here. | |
TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, env->iseq); | |
UPDATE_IF_MOVED(objspace, env->ep[VM_ENV_DATA_INDEX_ENV]); | |
gc_update_values(objspace, (long)env->env_size, (VALUE *)env->env); | |
} | |
} | |
break; | |
case imemo_cref: | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.klass); | |
TYPED_UPDATE_IF_MOVED(objspace, struct rb_cref_struct *, RANY(obj)->as.imemo.cref.next); | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.refinements); | |
break; | |
case imemo_svar: | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.cref_or_me); | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.lastline); | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.backref); | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.others); | |
break; | |
case imemo_throw_data: | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.throw_data.throw_obj); | |
break; | |
case imemo_ifunc: | |
break; | |
case imemo_memo: | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v1); | |
UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v2); | |
break; | |
case imemo_ment: | |
gc_ref_update_method_entry(objspace, &RANY(obj)->as.imemo.ment); | |
break; | |
case imemo_iseq: | |
rb_iseq_update_references((rb_iseq_t *)obj); | |
break; | |
case imemo_ast: | |
rb_ast_update_references((rb_ast_t *)obj); | |
break; | |
case imemo_callcache: | |
{ | |
const struct rb_callcache *cc = (const struct rb_callcache *)obj; | |
if (cc->klass) { | |
UPDATE_IF_MOVED(objspace, cc->klass); | |
if (!is_live_object(objspace, cc->klass)) { | |
*((VALUE *)(&cc->klass)) = (VALUE)0; | |
} | |
} | |
if (cc->cme_) { | |
TYPED_UPDATE_IF_MOVED(objspace, struct rb_callable_method_entry_struct *, cc->cme_); | |
if (!is_live_object(objspace, (VALUE)cc->cme_)) { | |
*((struct rb_callable_method_entry_struct **)(&cc->cme_)) = (struct rb_callable_method_entry_struct *)0; | |
} | |
} | |
} | |
break; | |
case imemo_constcache: | |
{ | |
const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj; | |
UPDATE_IF_MOVED(objspace, ice->value); | |
} | |
break; | |
case imemo_parser_strterm: | |
case imemo_tmpbuf: | |
case imemo_callinfo: | |
break; | |
default: | |
rb_bug("not reachable %d", imemo_type(obj)); | |
break; | |
} | |
} | |
static enum rb_id_table_iterator_result | |
check_id_table_move(ID id, VALUE value, void *data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
if (gc_object_moved_p(objspace, (VALUE)value)) { | |
return ID_TABLE_REPLACE; | |
} | |
return ID_TABLE_CONTINUE; | |
} | |
/* Returns the new location of an object, if it moved. Otherwise returns | |
* the existing location. */ | |
VALUE | |
rb_gc_location(VALUE value) | |
{ | |
VALUE destination; | |
if (!SPECIAL_CONST_P(value)) { | |
void *poisoned = asan_poisoned_object_p(value); | |
asan_unpoison_object(value, false); | |
if (BUILTIN_TYPE(value) == T_MOVED) { | |
destination = (VALUE)RMOVED(value)->destination; | |
GC_ASSERT(BUILTIN_TYPE(destination) != T_NONE); | |
} | |
else { | |
destination = value; | |
} | |
/* Re-poison slot if it's not the one we want */ | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(value) == T_NONE); | |
asan_poison_object(value); | |
} | |
} | |
else { | |
destination = value; | |
} | |
return destination; | |
} | |
static enum rb_id_table_iterator_result | |
update_id_table(ID *key, VALUE * value, void *data, int existing) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
if (gc_object_moved_p(objspace, (VALUE)*value)) { | |
*value = rb_gc_location((VALUE)*value); | |
} | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
update_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) | |
{ | |
if (tbl) { | |
rb_id_table_foreach_with_replace(tbl, check_id_table_move, update_id_table, objspace); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
update_cc_tbl_i(ID id, VALUE ccs_ptr, void *data) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)data; | |
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; | |
VM_ASSERT(vm_ccs_p(ccs)); | |
if (gc_object_moved_p(objspace, (VALUE)ccs->cme)) { | |
ccs->cme = (const rb_callable_method_entry_t *)rb_gc_location((VALUE)ccs->cme); | |
} | |
for (int i=0; i<ccs->len; i++) { | |
if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].ci)) { | |
ccs->entries[i].ci = (struct rb_callinfo *)rb_gc_location((VALUE)ccs->entries[i].ci); | |
} | |
if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].cc)) { | |
ccs->entries[i].cc = (struct rb_callcache *)rb_gc_location((VALUE)ccs->entries[i].cc); | |
} | |
} | |
// do not replace | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
update_cc_tbl(rb_objspace_t *objspace, VALUE klass) | |
{ | |
struct rb_id_table *tbl = RCLASS_CC_TBL(klass); | |
if (tbl) { | |
rb_id_table_foreach_with_replace(tbl, update_cc_tbl_i, 0, objspace); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
update_cvc_tbl_i(ID id, VALUE cvc_entry, void *data) | |
{ | |
struct rb_cvar_class_tbl_entry *entry; | |
entry = (struct rb_cvar_class_tbl_entry *)cvc_entry; | |
entry->class_value = rb_gc_location(entry->class_value); | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
update_cvc_tbl(rb_objspace_t *objspace, VALUE klass) | |
{ | |
struct rb_id_table *tbl = RCLASS_CVC_TBL(klass); | |
if (tbl) { | |
rb_id_table_foreach_with_replace(tbl, update_cvc_tbl_i, 0, objspace); | |
} | |
} | |
static enum rb_id_table_iterator_result | |
update_const_table(VALUE value, void *data) | |
{ | |
rb_const_entry_t *ce = (rb_const_entry_t *)value; | |
rb_objspace_t * objspace = (rb_objspace_t *)data; | |
if (gc_object_moved_p(objspace, ce->value)) { | |
ce->value = rb_gc_location(ce->value); | |
} | |
if (gc_object_moved_p(objspace, ce->file)) { | |
ce->file = rb_gc_location(ce->file); | |
} | |
return ID_TABLE_CONTINUE; | |
} | |
static void | |
update_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) | |
{ | |
if (!tbl) return; | |
rb_id_table_foreach_values(tbl, update_const_table, objspace); | |
} | |
static void | |
update_subclass_entries(rb_objspace_t *objspace, rb_subclass_entry_t *entry) | |
{ | |
while (entry) { | |
UPDATE_IF_MOVED(objspace, entry->klass); | |
entry = entry->next; | |
} | |
} | |
static int | |
update_iv_index_tbl_i(st_data_t key, st_data_t value, st_data_t arg) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)arg; | |
struct rb_iv_index_tbl_entry *ent = (struct rb_iv_index_tbl_entry *)value; | |
UPDATE_IF_MOVED(objspace, ent->class_value); | |
return ST_CONTINUE; | |
} | |
static void | |
update_class_ext(rb_objspace_t *objspace, rb_classext_t *ext) | |
{ | |
UPDATE_IF_MOVED(objspace, ext->origin_); | |
UPDATE_IF_MOVED(objspace, ext->refined_class); | |
update_subclass_entries(objspace, ext->subclasses); | |
// ext->iv_index_tbl | |
if (ext->iv_index_tbl) { | |
st_foreach(ext->iv_index_tbl, update_iv_index_tbl_i, (st_data_t)objspace); | |
} | |
} | |
static void | |
gc_update_object_references(rb_objspace_t *objspace, VALUE obj) | |
{ | |
RVALUE *any = RANY(obj); | |
gc_report(4, objspace, "update-refs: %p ->\n", (void *)obj); | |
switch (BUILTIN_TYPE(obj)) { | |
case T_CLASS: | |
case T_MODULE: | |
if (RCLASS_SUPER((VALUE)obj)) { | |
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super); | |
} | |
if (!RCLASS_EXT(obj)) break; | |
update_m_tbl(objspace, RCLASS_M_TBL(obj)); | |
update_cc_tbl(objspace, obj); | |
update_cvc_tbl(objspace, obj); | |
gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj)); | |
update_class_ext(objspace, RCLASS_EXT(obj)); | |
update_const_tbl(objspace, RCLASS_CONST_TBL(obj)); | |
break; | |
case T_ICLASS: | |
if (FL_TEST(obj, RICLASS_IS_ORIGIN) && | |
!FL_TEST(obj, RICLASS_ORIGIN_SHARED_MTBL)) { | |
update_m_tbl(objspace, RCLASS_M_TBL(obj)); | |
} | |
if (RCLASS_SUPER((VALUE)obj)) { | |
UPDATE_IF_MOVED(objspace, RCLASS(obj)->super); | |
} | |
if (!RCLASS_EXT(obj)) break; | |
if (RCLASS_IV_TBL(obj)) { | |
gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj)); | |
} | |
update_class_ext(objspace, RCLASS_EXT(obj)); | |
update_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj)); | |
update_cc_tbl(objspace, obj); | |
break; | |
case T_IMEMO: | |
gc_ref_update_imemo(objspace, obj); | |
return; | |
case T_NIL: | |
case T_FIXNUM: | |
case T_NODE: | |
case T_MOVED: | |
case T_NONE: | |
/* These can't move */ | |
return; | |
case T_ARRAY: | |
if (FL_TEST(obj, ELTS_SHARED)) { | |
UPDATE_IF_MOVED(objspace, any->as.array.as.heap.aux.shared_root); | |
} | |
else { | |
gc_ref_update_array(objspace, obj); | |
} | |
break; | |
case T_HASH: | |
gc_ref_update_hash(objspace, obj); | |
UPDATE_IF_MOVED(objspace, any->as.hash.ifnone); | |
break; | |
case T_STRING: | |
if (STR_SHARED_P(obj)) { | |
UPDATE_IF_MOVED(objspace, any->as.string.as.heap.aux.shared); | |
} | |
break; | |
case T_DATA: | |
/* Call the compaction callback, if it exists */ | |
{ | |
void *const ptr = DATA_PTR(obj); | |
if (ptr) { | |
if (RTYPEDDATA_P(obj)) { | |
RUBY_DATA_FUNC compact_func = any->as.typeddata.type->function.dcompact; | |
if (compact_func) (*compact_func)(ptr); | |
} | |
} | |
} | |
break; | |
case T_OBJECT: | |
gc_ref_update_object(objspace, obj); | |
break; | |
case T_FILE: | |
if (any->as.file.fptr) { | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->self); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->pathv); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->tied_io_for_writing); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_asciicompat); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_pre_ecopts); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->encs.ecopts); | |
UPDATE_IF_MOVED(objspace, any->as.file.fptr->write_lock); | |
} | |
break; | |
case T_REGEXP: | |
UPDATE_IF_MOVED(objspace, any->as.regexp.src); | |
break; | |
case T_SYMBOL: | |
if (DYNAMIC_SYM_P((VALUE)any)) { | |
UPDATE_IF_MOVED(objspace, RSYMBOL(any)->fstr); | |
} | |
break; | |
case T_FLOAT: | |
case T_BIGNUM: | |
break; | |
case T_MATCH: | |
UPDATE_IF_MOVED(objspace, any->as.match.regexp); | |
if (any->as.match.str) { | |
UPDATE_IF_MOVED(objspace, any->as.match.str); | |
} | |
break; | |
case T_RATIONAL: | |
UPDATE_IF_MOVED(objspace, any->as.rational.num); | |
UPDATE_IF_MOVED(objspace, any->as.rational.den); | |
break; | |
case T_COMPLEX: | |
UPDATE_IF_MOVED(objspace, any->as.complex.real); | |
UPDATE_IF_MOVED(objspace, any->as.complex.imag); | |
break; | |
case T_STRUCT: | |
{ | |
long i, len = RSTRUCT_LEN(obj); | |
VALUE *ptr = (VALUE *)RSTRUCT_CONST_PTR(obj); | |
for (i = 0; i < len; i++) { | |
UPDATE_IF_MOVED(objspace, ptr[i]); | |
} | |
} | |
break; | |
default: | |
#if GC_DEBUG | |
rb_gcdebug_print_obj_condition((VALUE)obj); | |
rb_obj_info_dump(obj); | |
rb_bug("unreachable"); | |
#endif | |
break; | |
} | |
UPDATE_IF_MOVED(objspace, RBASIC(obj)->klass); | |
gc_report(4, objspace, "update-refs: %p <-\n", (void *)obj); | |
} | |
static int | |
gc_ref_update(void *vstart, void *vend, size_t stride, rb_objspace_t * objspace, struct heap_page *page) | |
{ | |
VALUE v = (VALUE)vstart; | |
asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); | |
asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); | |
page->flags.has_uncollectible_shady_objects = FALSE; | |
page->flags.has_remembered_objects = FALSE; | |
/* For each object on the page */ | |
for (; v != (VALUE)vend; v += stride) { | |
void *poisoned = asan_poisoned_object_p(v); | |
asan_unpoison_object(v, false); | |
switch (BUILTIN_TYPE(v)) { | |
case T_NONE: | |
case T_MOVED: | |
case T_ZOMBIE: | |
break; | |
default: | |
if (RVALUE_WB_UNPROTECTED(v)) { | |
page->flags.has_uncollectible_shady_objects = TRUE; | |
} | |
if (RVALUE_PAGE_MARKING(page, v)) { | |
page->flags.has_remembered_objects = TRUE; | |
} | |
if (page->flags.before_sweep) { | |
if (RVALUE_MARKED(v)) { | |
gc_update_object_references(objspace, v); | |
} | |
} | |
else { | |
gc_update_object_references(objspace, v); | |
} | |
} | |
if (poisoned) { | |
asan_poison_object(v); | |
} | |
} | |
return 0; | |
} | |
extern rb_symbols_t ruby_global_symbols; | |
#define global_symbols ruby_global_symbols | |
static void | |
gc_update_references(rb_objspace_t *objspace) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
rb_vm_t *vm = rb_ec_vm_ptr(ec); | |
struct heap_page *page = NULL; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
bool should_set_mark_bits = TRUE; | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
list_for_each(&heap->pages, page, page_node) { | |
uintptr_t start = (uintptr_t)page->start; | |
uintptr_t end = start + (page->total_slots * size_pool->slot_size); | |
gc_ref_update((void *)start, (void *)end, size_pool->slot_size, objspace, page); | |
if (page == heap->sweeping_page) { | |
should_set_mark_bits = FALSE; | |
} | |
if (should_set_mark_bits) { | |
gc_setup_mark_bits(page); | |
} | |
} | |
} | |
rb_vm_update_references(vm); | |
rb_transient_heap_update_references(); | |
rb_gc_update_global_tbl(); | |
global_symbols.ids = rb_gc_location(global_symbols.ids); | |
global_symbols.dsymbol_fstr_hash = rb_gc_location(global_symbols.dsymbol_fstr_hash); | |
gc_update_tbl_refs(objspace, objspace->obj_to_id_tbl); | |
gc_update_table_refs(objspace, objspace->id_to_obj_tbl); | |
gc_update_table_refs(objspace, global_symbols.str_sym); | |
gc_update_table_refs(objspace, finalizer_table); | |
} | |
static VALUE | |
gc_compact_stats(rb_execution_context_t *ec, VALUE self) | |
{ | |
size_t i; | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE h = rb_hash_new(); | |
VALUE considered = rb_hash_new(); | |
VALUE moved = rb_hash_new(); | |
for (i=0; i<T_MASK; i++) { | |
if (objspace->rcompactor.considered_count_table[i]) { | |
rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i])); | |
} | |
if (objspace->rcompactor.moved_count_table[i]) { | |
rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i])); | |
} | |
} | |
rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered); | |
rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved); | |
return h; | |
} | |
static void | |
root_obj_check_moved_i(const char *category, VALUE obj, void *data) | |
{ | |
if (gc_object_moved_p(&rb_objspace, obj)) { | |
rb_bug("ROOT %s points to MOVED: %p -> %s\n", category, (void *)obj, obj_info(rb_gc_location(obj))); | |
} | |
} | |
static void | |
reachable_object_check_moved_i(VALUE ref, void *data) | |
{ | |
VALUE parent = (VALUE)data; | |
if (gc_object_moved_p(&rb_objspace, ref)) { | |
rb_bug("Object %s points to MOVED: %p -> %s\n", obj_info(parent), (void *)ref, obj_info(rb_gc_location(ref))); | |
} | |
} | |
static int | |
heap_check_moved_i(void *vstart, void *vend, size_t stride, void *data) | |
{ | |
VALUE v = (VALUE)vstart; | |
for (; v != (VALUE)vend; v += stride) { | |
if (gc_object_moved_p(&rb_objspace, v)) { | |
/* Moved object still on the heap, something may have a reference. */ | |
} | |
else { | |
void *poisoned = asan_poisoned_object_p(v); | |
asan_unpoison_object(v, false); | |
switch (BUILTIN_TYPE(v)) { | |
case T_NONE: | |
case T_ZOMBIE: | |
break; | |
default: | |
if (!rb_objspace_garbage_object_p(v)) { | |
rb_objspace_reachable_objects_from(v, reachable_object_check_moved_i, (void *)v); | |
} | |
} | |
if (poisoned) { | |
GC_ASSERT(BUILTIN_TYPE(v) == T_NONE); | |
asan_poison_object(v); | |
} | |
} | |
} | |
return 0; | |
} | |
static VALUE | |
gc_compact(rb_execution_context_t *ec, VALUE self) | |
{ | |
/* Run GC with compaction enabled */ | |
gc_start_internal(ec, self, Qtrue, Qtrue, Qtrue, Qtrue); | |
return gc_compact_stats(ec, self); | |
} | |
static VALUE | |
gc_verify_compaction_references(rb_execution_context_t *ec, VALUE self, VALUE double_heap, VALUE toward_empty) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
/* Clear the heap. */ | |
gc_start_internal(ec, self, Qtrue, Qtrue, Qtrue, Qfalse); | |
RB_VM_LOCK_ENTER(); | |
{ | |
gc_rest(objspace); | |
if (RTEST(double_heap)) { | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); | |
heap_add_pages(objspace, size_pool, heap, heap->total_pages); | |
} | |
} | |
if (RTEST(toward_empty)) { | |
gc_sort_heap_by_empty_slots(objspace); | |
} | |
} | |
RB_VM_LOCK_LEAVE(); | |
gc_start_internal(ec, self, Qtrue, Qtrue, Qtrue, Qtrue); | |
objspace_reachable_objects_from_root(objspace, root_obj_check_moved_i, NULL); | |
objspace_each_objects(objspace, heap_check_moved_i, NULL, TRUE); | |
return gc_compact_stats(ec, self); | |
} | |
VALUE | |
rb_gc_start(void) | |
{ | |
rb_gc(); | |
return Qnil; | |
} | |
void | |
rb_gc(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
unsigned int reason = GPR_DEFAULT_REASON; | |
garbage_collect(objspace, reason); | |
} | |
int | |
rb_during_gc(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return during_gc; | |
} | |
#if RGENGC_PROFILE >= 2 | |
static const char *type_name(int type, VALUE obj); | |
static void | |
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types) | |
{ | |
VALUE result = rb_hash_new_with_size(T_MASK); | |
int i; | |
for (i=0; i<T_MASK; i++) { | |
const char *type = type_name(i, 0); | |
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i])); | |
} | |
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result); | |
} | |
#endif | |
size_t | |
rb_gc_count(void) | |
{ | |
return rb_objspace.profile.count; | |
} | |
static VALUE | |
gc_count(rb_execution_context_t *ec, VALUE self) | |
{ | |
return SIZET2NUM(rb_gc_count()); | |
} | |
static VALUE | |
gc_info_decode(rb_objspace_t *objspace, const VALUE hash_or_key, const unsigned int orig_flags) | |
{ | |
static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer, sym_state; | |
static VALUE sym_nofree, sym_oldgen, sym_shady, sym_force, sym_stress; | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
static VALUE sym_oldmalloc; | |
#endif | |
static VALUE sym_newobj, sym_malloc, sym_method, sym_capi; | |
static VALUE sym_none, sym_marking, sym_sweeping; | |
VALUE hash = Qnil, key = Qnil; | |
VALUE major_by; | |
unsigned int flags = orig_flags ? orig_flags : objspace->profile.latest_gc_info; | |
if (SYMBOL_P(hash_or_key)) { | |
key = hash_or_key; | |
} | |
else if (RB_TYPE_P(hash_or_key, T_HASH)) { | |
hash = hash_or_key; | |
} | |
else { | |
rb_raise(rb_eTypeError, "non-hash or symbol given"); | |
} | |
if (NIL_P(sym_major_by)) { | |
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) | |
S(major_by); | |
S(gc_by); | |
S(immediate_sweep); | |
S(have_finalizer); | |
S(state); | |
S(stress); | |
S(nofree); | |
S(oldgen); | |
S(shady); | |
S(force); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
S(oldmalloc); | |
#endif | |
S(newobj); | |
S(malloc); | |
S(method); | |
S(capi); | |
S(none); | |
S(marking); | |
S(sweeping); | |
#undef S | |
} | |
#define SET(name, attr) \ | |
if (key == sym_##name) \ | |
return (attr); \ | |
else if (hash != Qnil) \ | |
rb_hash_aset(hash, sym_##name, (attr)); | |
major_by = | |
(flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree : | |
(flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen : | |
(flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady : | |
(flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force : | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
(flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc : | |
#endif | |
Qnil; | |
SET(major_by, major_by); | |
SET(gc_by, | |
(flags & GPR_FLAG_NEWOBJ) ? sym_newobj : | |
(flags & GPR_FLAG_MALLOC) ? sym_malloc : | |
(flags & GPR_FLAG_METHOD) ? sym_method : | |
(flags & GPR_FLAG_CAPI) ? sym_capi : | |
(flags & GPR_FLAG_STRESS) ? sym_stress : | |
Qnil | |
); | |
SET(have_finalizer, RBOOL(flags & GPR_FLAG_HAVE_FINALIZE)); | |
SET(immediate_sweep, RBOOL(flags & GPR_FLAG_IMMEDIATE_SWEEP)); | |
if (orig_flags == 0) { | |
SET(state, gc_mode(objspace) == gc_mode_none ? sym_none : | |
gc_mode(objspace) == gc_mode_marking ? sym_marking : sym_sweeping); | |
} | |
#undef SET | |
if (!NIL_P(key)) {/* matched key should return above */ | |
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); | |
} | |
return hash; | |
} | |
VALUE | |
rb_gc_latest_gc_info(VALUE key) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return gc_info_decode(objspace, key, 0); | |
} | |
static VALUE | |
gc_latest_gc_info(rb_execution_context_t *ec, VALUE self, VALUE arg) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (NIL_P(arg)) { | |
arg = rb_hash_new(); | |
} | |
else if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) { | |
rb_raise(rb_eTypeError, "non-hash or symbol given"); | |
} | |
return gc_info_decode(objspace, arg, 0); | |
} | |
enum gc_stat_sym { | |
gc_stat_sym_count, | |
gc_stat_sym_heap_allocated_pages, | |
gc_stat_sym_heap_sorted_length, | |
gc_stat_sym_heap_allocatable_pages, | |
gc_stat_sym_heap_available_slots, | |
gc_stat_sym_heap_live_slots, | |
gc_stat_sym_heap_free_slots, | |
gc_stat_sym_heap_final_slots, | |
gc_stat_sym_heap_marked_slots, | |
gc_stat_sym_heap_eden_pages, | |
gc_stat_sym_heap_tomb_pages, | |
gc_stat_sym_total_allocated_pages, | |
gc_stat_sym_total_freed_pages, | |
gc_stat_sym_total_allocated_objects, | |
gc_stat_sym_total_freed_objects, | |
gc_stat_sym_malloc_increase_bytes, | |
gc_stat_sym_malloc_increase_bytes_limit, | |
gc_stat_sym_minor_gc_count, | |
gc_stat_sym_major_gc_count, | |
gc_stat_sym_compact_count, | |
gc_stat_sym_read_barrier_faults, | |
gc_stat_sym_total_moved_objects, | |
gc_stat_sym_remembered_wb_unprotected_objects, | |
gc_stat_sym_remembered_wb_unprotected_objects_limit, | |
gc_stat_sym_old_objects, | |
gc_stat_sym_old_objects_limit, | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
gc_stat_sym_oldmalloc_increase_bytes, | |
gc_stat_sym_oldmalloc_increase_bytes_limit, | |
#endif | |
#if RGENGC_PROFILE | |
gc_stat_sym_total_generated_normal_object_count, | |
gc_stat_sym_total_generated_shady_object_count, | |
gc_stat_sym_total_shade_operation_count, | |
gc_stat_sym_total_promoted_count, | |
gc_stat_sym_total_remembered_normal_object_count, | |
gc_stat_sym_total_remembered_shady_object_count, | |
#endif | |
gc_stat_sym_last | |
}; | |
static VALUE gc_stat_symbols[gc_stat_sym_last]; | |
static void | |
setup_gc_stat_symbols(void) | |
{ | |
if (gc_stat_symbols[0] == 0) { | |
#define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s)) | |
S(count); | |
S(heap_allocated_pages); | |
S(heap_sorted_length); | |
S(heap_allocatable_pages); | |
S(heap_available_slots); | |
S(heap_live_slots); | |
S(heap_free_slots); | |
S(heap_final_slots); | |
S(heap_marked_slots); | |
S(heap_eden_pages); | |
S(heap_tomb_pages); | |
S(total_allocated_pages); | |
S(total_freed_pages); | |
S(total_allocated_objects); | |
S(total_freed_objects); | |
S(malloc_increase_bytes); | |
S(malloc_increase_bytes_limit); | |
S(minor_gc_count); | |
S(major_gc_count); | |
S(compact_count); | |
S(read_barrier_faults); | |
S(total_moved_objects); | |
S(remembered_wb_unprotected_objects); | |
S(remembered_wb_unprotected_objects_limit); | |
S(old_objects); | |
S(old_objects_limit); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
S(oldmalloc_increase_bytes); | |
S(oldmalloc_increase_bytes_limit); | |
#endif | |
#if RGENGC_PROFILE | |
S(total_generated_normal_object_count); | |
S(total_generated_shady_object_count); | |
S(total_shade_operation_count); | |
S(total_promoted_count); | |
S(total_remembered_normal_object_count); | |
S(total_remembered_shady_object_count); | |
#endif /* RGENGC_PROFILE */ | |
#undef S | |
} | |
} | |
static size_t | |
gc_stat_internal(VALUE hash_or_sym) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
VALUE hash = Qnil, key = Qnil; | |
setup_gc_stat_symbols(); | |
if (RB_TYPE_P(hash_or_sym, T_HASH)) { | |
hash = hash_or_sym; | |
} | |
else if (SYMBOL_P(hash_or_sym)) { | |
key = hash_or_sym; | |
} | |
else { | |
rb_raise(rb_eTypeError, "non-hash or symbol argument"); | |
} | |
#define SET(name, attr) \ | |
if (key == gc_stat_symbols[gc_stat_sym_##name]) \ | |
return attr; \ | |
else if (hash != Qnil) \ | |
rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr)); | |
SET(count, objspace->profile.count); | |
/* implementation dependent counters */ | |
SET(heap_allocated_pages, heap_allocated_pages); | |
SET(heap_sorted_length, heap_pages_sorted_length); | |
SET(heap_allocatable_pages, heap_allocatable_pages(objspace)); | |
SET(heap_available_slots, objspace_available_slots(objspace)); | |
SET(heap_live_slots, objspace_live_slots(objspace)); | |
SET(heap_free_slots, objspace_free_slots(objspace)); | |
SET(heap_final_slots, heap_pages_final_slots); | |
SET(heap_marked_slots, objspace->marked_slots); | |
SET(heap_eden_pages, heap_eden_total_pages(objspace)); | |
SET(heap_tomb_pages, heap_tomb_total_pages(objspace)); | |
SET(total_allocated_pages, objspace->profile.total_allocated_pages); | |
SET(total_freed_pages, objspace->profile.total_freed_pages); | |
SET(total_allocated_objects, objspace->total_allocated_objects); | |
SET(total_freed_objects, objspace->profile.total_freed_objects); | |
SET(malloc_increase_bytes, malloc_increase); | |
SET(malloc_increase_bytes_limit, malloc_limit); | |
SET(minor_gc_count, objspace->profile.minor_gc_count); | |
SET(major_gc_count, objspace->profile.major_gc_count); | |
SET(compact_count, objspace->profile.compact_count); | |
SET(read_barrier_faults, objspace->profile.read_barrier_faults); | |
SET(total_moved_objects, objspace->rcompactor.total_moved); | |
SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects); | |
SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit); | |
SET(old_objects, objspace->rgengc.old_objects); | |
SET(old_objects_limit, objspace->rgengc.old_objects_limit); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase); | |
SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit); | |
#endif | |
#if RGENGC_PROFILE | |
SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count); | |
SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count); | |
SET(total_shade_operation_count, objspace->profile.total_shade_operation_count); | |
SET(total_promoted_count, objspace->profile.total_promoted_count); | |
SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count); | |
SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count); | |
#endif /* RGENGC_PROFILE */ | |
#undef SET | |
if (!NIL_P(key)) { /* matched key should return above */ | |
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); | |
} | |
#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2 | |
if (hash != Qnil) { | |
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types); | |
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types); | |
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types); | |
gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types); | |
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types); | |
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types); | |
} | |
#endif | |
return 0; | |
} | |
static VALUE | |
gc_stat(rb_execution_context_t *ec, VALUE self, VALUE arg) // arg is (nil || hash || symbol) | |
{ | |
if (NIL_P(arg)) { | |
arg = rb_hash_new(); | |
} | |
else if (SYMBOL_P(arg)) { | |
size_t value = gc_stat_internal(arg); | |
return SIZET2NUM(value); | |
} | |
else if (RB_TYPE_P(arg, T_HASH)) { | |
// ok | |
} | |
else { | |
rb_raise(rb_eTypeError, "non-hash or symbol given"); | |
} | |
gc_stat_internal(arg); | |
return arg; | |
} | |
size_t | |
rb_gc_stat(VALUE key) | |
{ | |
if (SYMBOL_P(key)) { | |
size_t value = gc_stat_internal(key); | |
return value; | |
} | |
else { | |
gc_stat_internal(key); | |
return 0; | |
} | |
} | |
static VALUE | |
gc_stress_get(rb_execution_context_t *ec, VALUE self) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return ruby_gc_stress_mode; | |
} | |
static void | |
gc_stress_set(rb_objspace_t *objspace, VALUE flag) | |
{ | |
objspace->flags.gc_stressful = RTEST(flag); | |
objspace->gc_stress_mode = flag; | |
} | |
static VALUE | |
gc_stress_set_m(rb_execution_context_t *ec, VALUE self, VALUE flag) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_stress_set(objspace, flag); | |
return flag; | |
} | |
VALUE | |
rb_gc_enable(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return rb_objspace_gc_enable(objspace); | |
} | |
VALUE | |
rb_objspace_gc_enable(rb_objspace_t *objspace) | |
{ | |
int old = dont_gc_val(); | |
dont_gc_off(); | |
return RBOOL(old); | |
} | |
static VALUE | |
gc_enable(rb_execution_context_t *ec, VALUE _) | |
{ | |
return rb_gc_enable(); | |
} | |
VALUE | |
rb_gc_disable_no_rest(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return gc_disable_no_rest(objspace); | |
} | |
static VALUE | |
gc_disable_no_rest(rb_objspace_t *objspace) | |
{ | |
int old = dont_gc_val(); | |
dont_gc_on(); | |
return RBOOL(old); | |
} | |
VALUE | |
rb_gc_disable(void) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return rb_objspace_gc_disable(objspace); | |
} | |
VALUE | |
rb_objspace_gc_disable(rb_objspace_t *objspace) | |
{ | |
gc_rest(objspace); | |
return gc_disable_no_rest(objspace); | |
} | |
static VALUE | |
gc_disable(rb_execution_context_t *ec, VALUE _) | |
{ | |
return rb_gc_disable(); | |
} | |
static VALUE | |
gc_set_auto_compact(rb_execution_context_t *ec, VALUE _, VALUE v) | |
{ | |
#if defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE) | |
/* If Ruby's heap pages are not a multiple of the system page size, we | |
* cannot use mprotect for the read barrier, so we must disable automatic | |
* compaction. */ | |
int pagesize; | |
pagesize = (int)sysconf(_SC_PAGE_SIZE); | |
if ((HEAP_PAGE_SIZE % pagesize) != 0) { | |
rb_raise(rb_eNotImpError, "Automatic compaction isn't available on this platform"); | |
} | |
#endif | |
/* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for | |
* the read barrier, so we must disable automatic compaction. */ | |
#if !defined(__MINGW32__) && !defined(_WIN32) | |
if (!USE_MMAP_ALIGNED_ALLOC) { | |
rb_raise(rb_eNotImpError, "Automatic compaction isn't available on this platform"); | |
} | |
#endif | |
ruby_enable_autocompact = RTEST(v); | |
return v; | |
} | |
static VALUE | |
gc_get_auto_compact(rb_execution_context_t *ec, VALUE _) | |
{ | |
return RBOOL(ruby_enable_autocompact); | |
} | |
static int | |
get_envparam_size(const char *name, size_t *default_value, size_t lower_bound) | |
{ | |
const char *ptr = getenv(name); | |
ssize_t val; | |
if (ptr != NULL && *ptr) { | |
size_t unit = 0; | |
char *end; | |
#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG | |
val = strtoll(ptr, &end, 0); | |
#else | |
val = strtol(ptr, &end, 0); | |
#endif | |
switch (*end) { | |
case 'k': case 'K': | |
unit = 1024; | |
++end; | |
break; | |
case 'm': case 'M': | |
unit = 1024*1024; | |
++end; | |
break; | |
case 'g': case 'G': | |
unit = 1024*1024*1024; | |
++end; | |
break; | |
} | |
while (*end && isspace((unsigned char)*end)) end++; | |
if (*end) { | |
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr); | |
return 0; | |
} | |
if (unit > 0) { | |
if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) { | |
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr); | |
return 0; | |
} | |
val *= unit; | |
} | |
if (val > 0 && (size_t)val > lower_bound) { | |
if (RTEST(ruby_verbose)) { | |
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE")\n", name, val, *default_value); | |
} | |
*default_value = (size_t)val; | |
return 1; | |
} | |
else { | |
if (RTEST(ruby_verbose)) { | |
fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE") is ignored because it must be greater than %"PRIuSIZE".\n", | |
name, val, *default_value, lower_bound); | |
} | |
return 0; | |
} | |
} | |
return 0; | |
} | |
static int | |
get_envparam_double(const char *name, double *default_value, double lower_bound, double upper_bound, int accept_zero) | |
{ | |
const char *ptr = getenv(name); | |
double val; | |
if (ptr != NULL && *ptr) { | |
char *end; | |
val = strtod(ptr, &end); | |
if (!*ptr || *end) { | |
if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr); | |
return 0; | |
} | |
if (accept_zero && val == 0.0) { | |
goto accept; | |
} | |
else if (val <= lower_bound) { | |
if (RTEST(ruby_verbose)) { | |
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n", | |
name, val, *default_value, lower_bound); | |
} | |
} | |
else if (upper_bound != 0.0 && /* ignore upper_bound if it is 0.0 */ | |
val > upper_bound) { | |
if (RTEST(ruby_verbose)) { | |
fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be lower than %f.\n", | |
name, val, *default_value, upper_bound); | |
} | |
} | |
else { | |
goto accept; | |
} | |
} | |
return 0; | |
accept: | |
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value); | |
*default_value = val; | |
return 1; | |
} | |
static void | |
gc_set_initial_pages(void) | |
{ | |
size_t min_pages; | |
rb_objspace_t *objspace = &rb_objspace; | |
gc_rest(objspace); | |
min_pages = gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT; | |
size_t pages_per_class = (min_pages - heap_eden_total_pages(objspace)) / SIZE_POOL_COUNT; | |
for (int i = 0; i < SIZE_POOL_COUNT; i++) { | |
rb_size_pool_t *size_pool = &size_pools[i]; | |
heap_add_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool), pages_per_class); | |
} | |
heap_add_pages(objspace, &size_pools[0], &size_pools[0].eden_heap, min_pages - heap_eden_total_pages(objspace)); | |
} | |
/* | |
* GC tuning environment variables | |
* | |
* * RUBY_GC_HEAP_INIT_SLOTS | |
* - Initial allocation slots. | |
* * RUBY_GC_HEAP_FREE_SLOTS | |
* - Prepare at least this amount of slots after GC. | |
* - Allocate slots if there are not enough slots. | |
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1) | |
* - Allocate slots by this factor. | |
* - (next slots number) = (current slots number) * (this factor) | |
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1) | |
* - Allocation rate is limited to this number of slots. | |
* * RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO (new from 2.4) | |
* - Allocate additional pages when the number of free slots is | |
* lower than the value (total_slots * (this ratio)). | |
* * RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO (new from 2.4) | |
* - Allocate slots to satisfy this formula: | |
* free_slots = total_slots * goal_ratio | |
* - In other words, prepare (total_slots * goal_ratio) free slots. | |
* - if this value is 0.0, then use RUBY_GC_HEAP_GROWTH_FACTOR directly. | |
* * RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO (new from 2.4) | |
* - Allow to free pages when the number of free slots is | |
* greater than the value (total_slots * (this ratio)). | |
* * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1) | |
* - Do full GC when the number of old objects is more than R * N | |
* where R is this factor and | |
* N is the number of old objects just after last full GC. | |
* | |
* * obsolete | |
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1) | |
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1) | |
* | |
* * RUBY_GC_MALLOC_LIMIT | |
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1) | |
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) | |
* | |
* * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1) | |
* * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1) | |
* * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) | |
*/ | |
void | |
ruby_gc_set_params(void) | |
{ | |
/* RUBY_GC_HEAP_FREE_SLOTS */ | |
if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) { | |
/* ok */ | |
} | |
/* RUBY_GC_HEAP_INIT_SLOTS */ | |
if (get_envparam_size("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) { | |
gc_set_initial_pages(); | |
} | |
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0, 0.0, FALSE); | |
get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0); | |
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO", &gc_params.heap_free_slots_min_ratio, | |
0.0, 1.0, FALSE); | |
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO", &gc_params.heap_free_slots_max_ratio, | |
gc_params.heap_free_slots_min_ratio, 1.0, FALSE); | |
get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO", &gc_params.heap_free_slots_goal_ratio, | |
gc_params.heap_free_slots_min_ratio, gc_params.heap_free_slots_max_ratio, TRUE); | |
get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0, 0.0, TRUE); | |
get_envparam_size ("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0); | |
get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0); | |
if (!gc_params.malloc_limit_max) { /* ignore max-check if 0 */ | |
gc_params.malloc_limit_max = SIZE_MAX; | |
} | |
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0, 0.0, FALSE); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) { | |
rb_objspace_t *objspace = &rb_objspace; | |
objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; | |
} | |
get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0); | |
get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0, 0.0, FALSE); | |
#endif | |
} | |
static void | |
reachable_objects_from_callback(VALUE obj) | |
{ | |
rb_ractor_t *cr = GET_RACTOR(); | |
cr->mfd->mark_func(obj, cr->mfd->data); | |
} | |
void | |
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (during_gc) rb_bug("rb_objspace_reachable_objects_from() is not supported while during_gc == true"); | |
if (is_markable_object(objspace, obj)) { | |
rb_ractor_t *cr = GET_RACTOR(); | |
struct gc_mark_func_data_struct mfd = { | |
.mark_func = func, | |
.data = data, | |
}, *prev_mfd = cr->mfd; | |
cr->mfd = &mfd; | |
gc_mark_children(objspace, obj); | |
cr->mfd = prev_mfd; | |
} | |
} | |
struct root_objects_data { | |
const char *category; | |
void (*func)(const char *category, VALUE, void *); | |
void *data; | |
}; | |
static void | |
root_objects_from(VALUE obj, void *ptr) | |
{ | |
const struct root_objects_data *data = (struct root_objects_data *)ptr; | |
(*data->func)(data->category, obj, data->data); | |
} | |
void | |
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
objspace_reachable_objects_from_root(objspace, func, passing_data); | |
} | |
static void | |
objspace_reachable_objects_from_root(rb_objspace_t *objspace, void (func)(const char *category, VALUE, void *), void *passing_data) | |
{ | |
if (during_gc) rb_bug("objspace_reachable_objects_from_root() is not supported while during_gc == true"); | |
rb_ractor_t *cr = GET_RACTOR(); | |
struct root_objects_data data = { | |
.func = func, | |
.data = passing_data, | |
}; | |
struct gc_mark_func_data_struct mfd = { | |
.mark_func = root_objects_from, | |
.data = &data, | |
}, *prev_mfd = cr->mfd; | |
cr->mfd = &mfd; | |
gc_mark_roots(objspace, &data.category); | |
cr->mfd = prev_mfd; | |
} | |
/* | |
------------------------ Extended allocator ------------------------ | |
*/ | |
struct gc_raise_tag { | |
VALUE exc; | |
const char *fmt; | |
va_list *ap; | |
}; | |
static void * | |
gc_vraise(void *ptr) | |
{ | |
struct gc_raise_tag *argv = ptr; | |
rb_vraise(argv->exc, argv->fmt, *argv->ap); | |
UNREACHABLE_RETURN(NULL); | |
} | |
static void | |
gc_raise(VALUE exc, const char *fmt, ...) | |
{ | |
va_list ap; | |
va_start(ap, fmt); | |
struct gc_raise_tag argv = { | |
exc, fmt, &ap, | |
}; | |
if (ruby_thread_has_gvl_p()) { | |
gc_vraise(&argv); | |
UNREACHABLE; | |
} | |
else if (ruby_native_thread_p()) { | |
rb_thread_call_with_gvl(gc_vraise, &argv); | |
UNREACHABLE; | |
} | |
else { | |
/* Not in a ruby thread */ | |
fprintf(stderr, "%s", "[FATAL] "); | |
vfprintf(stderr, fmt, ap); | |
} | |
va_end(ap); | |
abort(); | |
} | |
static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size); | |
static void | |
negative_size_allocation_error(const char *msg) | |
{ | |
gc_raise(rb_eNoMemError, "%s", msg); | |
} | |
static void * | |
ruby_memerror_body(void *dummy) | |
{ | |
rb_memerror(); | |
return 0; | |
} | |
NORETURN(static void ruby_memerror(void)); | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static void | |
ruby_memerror(void) | |
{ | |
if (ruby_thread_has_gvl_p()) { | |
rb_memerror(); | |
} | |
else { | |
if (ruby_native_thread_p()) { | |
rb_thread_call_with_gvl(ruby_memerror_body, 0); | |
} | |
else { | |
/* no ruby thread */ | |
fprintf(stderr, "[FATAL] failed to allocate memory\n"); | |
} | |
} | |
exit(EXIT_FAILURE); | |
} | |
void | |
rb_memerror(void) | |
{ | |
rb_execution_context_t *ec = GET_EC(); | |
rb_objspace_t *objspace = rb_objspace_of(rb_ec_vm_ptr(ec)); | |
VALUE exc; | |
if (0) { | |
// Print out pid, sleep, so you can attach debugger to see what went wrong: | |
fprintf(stderr, "rb_memerror pid=%"PRI_PIDT_PREFIX"d\n", getpid()); | |
sleep(60); | |
} | |
if (during_gc) { | |
// TODO: OMG!! How to implement it? | |
gc_exit(objspace, gc_enter_event_rb_memerror, NULL); | |
} | |
exc = nomem_error; | |
if (!exc || | |
rb_ec_raised_p(ec, RAISED_NOMEMORY)) { | |
fprintf(stderr, "[FATAL] failed to allocate memory\n"); | |
exit(EXIT_FAILURE); | |
} | |
if (rb_ec_raised_p(ec, RAISED_NOMEMORY)) { | |
rb_ec_raised_clear(ec); | |
} | |
else { | |
rb_ec_raised_set(ec, RAISED_NOMEMORY); | |
exc = ruby_vm_special_exception_copy(exc); | |
} | |
ec->errinfo = exc; | |
EC_JUMP_TAG(ec, TAG_RAISE); | |
} | |
void * | |
rb_aligned_malloc(size_t alignment, size_t size) | |
{ | |
void *res; | |
#if defined __MINGW32__ | |
res = __mingw_aligned_malloc(size, alignment); | |
#elif defined _WIN32 | |
void *_aligned_malloc(size_t, size_t); | |
res = _aligned_malloc(size, alignment); | |
#else | |
if (USE_MMAP_ALIGNED_ALLOC) { | |
GC_ASSERT(alignment % sysconf(_SC_PAGE_SIZE) == 0); | |
char *ptr = mmap(NULL, alignment + size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
if (ptr == MAP_FAILED) { | |
return NULL; | |
} | |
char *aligned = ptr + alignment; | |
aligned -= ((VALUE)aligned & (alignment - 1)); | |
GC_ASSERT(aligned > ptr); | |
GC_ASSERT(aligned <= ptr + alignment); | |
size_t start_out_of_range_size = aligned - ptr; | |
GC_ASSERT(start_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0); | |
if (start_out_of_range_size > 0) { | |
if (munmap(ptr, start_out_of_range_size)) { | |
rb_bug("rb_aligned_malloc: munmap failed for start"); | |
} | |
} | |
size_t end_out_of_range_size = alignment - start_out_of_range_size; | |
GC_ASSERT(end_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0); | |
if (end_out_of_range_size > 0) { | |
if (munmap(aligned + size, end_out_of_range_size)) { | |
rb_bug("rb_aligned_malloc: munmap failed for end"); | |
} | |
} | |
res = (void *)aligned; | |
} | |
else { | |
# if defined(HAVE_POSIX_MEMALIGN) | |
if (posix_memalign(&res, alignment, size) != 0) { | |
return NULL; | |
} | |
# elif defined(HAVE_MEMALIGN) | |
res = memalign(alignment, size); | |
# else | |
char* aligned; | |
res = malloc(alignment + size + sizeof(void*)); | |
aligned = (char*)res + alignment + sizeof(void*); | |
aligned -= ((VALUE)aligned & (alignment - 1)); | |
((void**)aligned)[-1] = res; | |
res = (void*)aligned; | |
# endif | |
} | |
#endif | |
/* alignment must be a power of 2 */ | |
GC_ASSERT(((alignment - 1) & alignment) == 0); | |
GC_ASSERT(alignment % sizeof(void*) == 0); | |
return res; | |
} | |
static void | |
rb_aligned_free(void *ptr, size_t size) | |
{ | |
#if defined __MINGW32__ | |
__mingw_aligned_free(ptr); | |
#elif defined _WIN32 | |
_aligned_free(ptr); | |
#else | |
if (USE_MMAP_ALIGNED_ALLOC) { | |
GC_ASSERT(size % sysconf(_SC_PAGE_SIZE) == 0); | |
if (munmap(ptr, size)) { | |
rb_bug("rb_aligned_free: munmap failed"); | |
} | |
} | |
else { | |
# if defined(HAVE_POSIX_MEMALIGN) || defined(HAVE_MEMALIGN) | |
free(ptr); | |
# else | |
free(((void**)ptr)[-1]); | |
# endif | |
} | |
#endif | |
} | |
static inline size_t | |
objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint) | |
{ | |
#ifdef HAVE_MALLOC_USABLE_SIZE | |
return malloc_usable_size(ptr); | |
#else | |
return hint; | |
#endif | |
} | |
enum memop_type { | |
MEMOP_TYPE_MALLOC = 0, | |
MEMOP_TYPE_FREE, | |
MEMOP_TYPE_REALLOC | |
}; | |
static inline void | |
atomic_sub_nounderflow(size_t *var, size_t sub) | |
{ | |
if (sub == 0) return; | |
while (1) { | |
size_t val = *var; | |
if (val < sub) sub = val; | |
if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break; | |
} | |
} | |
static void | |
objspace_malloc_gc_stress(rb_objspace_t *objspace) | |
{ | |
if (ruby_gc_stressful && ruby_native_thread_p()) { | |
unsigned int reason = (GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP | | |
GPR_FLAG_STRESS | GPR_FLAG_MALLOC); | |
if (gc_stress_full_mark_after_malloc_p()) { | |
reason |= GPR_FLAG_FULL_MARK; | |
} | |
garbage_collect_with_gvl(objspace, reason); | |
} | |
} | |
static void | |
objspace_malloc_increase(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type) | |
{ | |
if (new_size > old_size) { | |
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size); | |
#endif | |
} | |
else { | |
atomic_sub_nounderflow(&malloc_increase, old_size - new_size); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size); | |
#endif | |
} | |
if (type == MEMOP_TYPE_MALLOC) { | |
retry: | |
if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc_val()) { | |
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(objspace)) { | |
gc_rest(objspace); /* gc_rest can reduce malloc_increase */ | |
goto retry; | |
} | |
garbage_collect_with_gvl(objspace, GPR_FLAG_MALLOC); | |
} | |
} | |
#if MALLOC_ALLOCATED_SIZE | |
if (new_size >= old_size) { | |
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size); | |
} | |
else { | |
size_t dec_size = old_size - new_size; | |
size_t allocated_size = objspace->malloc_params.allocated_size; | |
#if MALLOC_ALLOCATED_SIZE_CHECK | |
if (allocated_size < dec_size) { | |
rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size."); | |
} | |
#endif | |
atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size); | |
} | |
if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %"PRIdSIZE", old_size: %"PRIdSIZE"\n", | |
mem, | |
type == MEMOP_TYPE_MALLOC ? "malloc" : | |
type == MEMOP_TYPE_FREE ? "free " : | |
type == MEMOP_TYPE_REALLOC ? "realloc": "error", | |
new_size, old_size); | |
switch (type) { | |
case MEMOP_TYPE_MALLOC: | |
ATOMIC_SIZE_INC(objspace->malloc_params.allocations); | |
break; | |
case MEMOP_TYPE_FREE: | |
{ | |
size_t allocations = objspace->malloc_params.allocations; | |
if (allocations > 0) { | |
atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1); | |
} | |
#if MALLOC_ALLOCATED_SIZE_CHECK | |
else { | |
GC_ASSERT(objspace->malloc_params.allocations > 0); | |
} | |
#endif | |
} | |
break; | |
case MEMOP_TYPE_REALLOC: /* ignore */ break; | |
} | |
#endif | |
} | |
struct malloc_obj_info { /* 4 words */ | |
size_t size; | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
size_t gen; | |
const char *file; | |
size_t line; | |
#endif | |
}; | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
const char *ruby_malloc_info_file; | |
int ruby_malloc_info_line; | |
#endif | |
static inline size_t | |
objspace_malloc_prepare(rb_objspace_t *objspace, size_t size) | |
{ | |
if (size == 0) size = 1; | |
#if CALC_EXACT_MALLOC_SIZE | |
size += sizeof(struct malloc_obj_info); | |
#endif | |
return size; | |
} | |
static inline void * | |
objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size) | |
{ | |
size = objspace_malloc_size(objspace, mem, size); | |
objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC); | |
#if CALC_EXACT_MALLOC_SIZE | |
{ | |
struct malloc_obj_info *info = mem; | |
info->size = size; | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
info->gen = objspace->profile.count; | |
info->file = ruby_malloc_info_file; | |
info->line = info->file ? ruby_malloc_info_line : 0; | |
#endif | |
mem = info + 1; | |
} | |
#endif | |
return mem; | |
} | |
#if defined(__GNUC__) && RUBY_DEBUG | |
#define RB_BUG_INSTEAD_OF_RB_MEMERROR | |
#endif | |
#ifdef RB_BUG_INSTEAD_OF_RB_MEMERROR | |
#define TRY_WITH_GC(siz, expr) do { \ | |
const gc_profile_record_flag gpr = \ | |
GPR_FLAG_FULL_MARK | \ | |
GPR_FLAG_IMMEDIATE_MARK | \ | |
GPR_FLAG_IMMEDIATE_SWEEP | \ | |
GPR_FLAG_MALLOC; \ | |
objspace_malloc_gc_stress(objspace); \ | |
\ | |
if (LIKELY((expr))) { \ | |
/* Success on 1st try */ \ | |
} \ | |
else if (!garbage_collect_with_gvl(objspace, gpr)) { \ | |
/* @shyouhei thinks this doesn't happen */ \ | |
rb_bug("TRY_WITH_GC: could not GC"); \ | |
} \ | |
else if ((expr)) { \ | |
/* Success on 2nd try */ \ | |
} \ | |
else { \ | |
rb_bug("TRY_WITH_GC: could not allocate:" \ | |
"%"PRIdSIZE" bytes for %s", \ | |
siz, # expr); \ | |
} \ | |
} while (0) | |
#else | |
#define TRY_WITH_GC(siz, alloc) do { \ | |
objspace_malloc_gc_stress(objspace); \ | |
if (!(alloc) && \ | |
(!garbage_collect_with_gvl(objspace, GPR_FLAG_FULL_MARK | \ | |
GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP | \ | |
GPR_FLAG_MALLOC) || \ | |
!(alloc))) { \ | |
ruby_memerror(); \ | |
} \ | |
} while (0) | |
#endif | |
/* these shouldn't be called directly. | |
* objspace_* functions do not check allocation size. | |
*/ | |
static void * | |
objspace_xmalloc0(rb_objspace_t *objspace, size_t size) | |
{ | |
void *mem; | |
size = objspace_malloc_prepare(objspace, size); | |
TRY_WITH_GC(size, mem = malloc(size)); | |
RB_DEBUG_COUNTER_INC(heap_xmalloc); | |
return objspace_malloc_fixup(objspace, mem, size); | |
} | |
static inline size_t | |
xmalloc2_size(const size_t count, const size_t elsize) | |
{ | |
return size_mul_or_raise(count, elsize, rb_eArgError); | |
} | |
static void * | |
objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size) | |
{ | |
void *mem; | |
if (!ptr) return objspace_xmalloc0(objspace, new_size); | |
/* | |
* The behavior of realloc(ptr, 0) is implementation defined. | |
* Therefore we don't use realloc(ptr, 0) for portability reason. | |
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm | |
*/ | |
if (new_size == 0) { | |
if ((mem = objspace_xmalloc0(objspace, 0)) != NULL) { | |
/* | |
* - OpenBSD's malloc(3) man page says that when 0 is passed, it | |
* returns a non-NULL pointer to an access-protected memory page. | |
* The returned pointer cannot be read / written at all, but | |
* still be a valid argument of free(). | |
* | |
* https://man.openbsd.org/malloc.3 | |
* | |
* - Linux's malloc(3) man page says that it _might_ perhaps return | |
* a non-NULL pointer when its argument is 0. That return value | |
* is safe (and is expected) to be passed to free(). | |
* | |
* http://man7.org/linux/man-pages/man3/malloc.3.html | |
* | |
* - As I read the implementation jemalloc's malloc() returns fully | |
* normal 16 bytes memory region when its argument is 0. | |
* | |
* - As I read the implementation musl libc's malloc() returns | |
* fully normal 32 bytes memory region when its argument is 0. | |
* | |
* - Other malloc implementations can also return non-NULL. | |
*/ | |
objspace_xfree(objspace, ptr, old_size); | |
return mem; | |
} | |
else { | |
/* | |
* It is dangerous to return NULL here, because that could lead to | |
* RCE. Fallback to 1 byte instead of zero. | |
* | |
* https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932 | |
*/ | |
new_size = 1; | |
} | |
} | |
#if CALC_EXACT_MALLOC_SIZE | |
{ | |
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1; | |
new_size += sizeof(struct malloc_obj_info); | |
ptr = info; | |
old_size = info->size; | |
} | |
#endif | |
old_size = objspace_malloc_size(objspace, ptr, old_size); | |
TRY_WITH_GC(new_size, mem = realloc(ptr, new_size)); | |
new_size = objspace_malloc_size(objspace, mem, new_size); | |
#if CALC_EXACT_MALLOC_SIZE | |
{ | |
struct malloc_obj_info *info = mem; | |
info->size = new_size; | |
mem = info + 1; | |
} | |
#endif | |
objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC); | |
RB_DEBUG_COUNTER_INC(heap_xrealloc); | |
return mem; | |
} | |
#if CALC_EXACT_MALLOC_SIZE && USE_GC_MALLOC_OBJ_INFO_DETAILS | |
#define MALLOC_INFO_GEN_SIZE 100 | |
#define MALLOC_INFO_SIZE_SIZE 10 | |
static size_t malloc_info_gen_cnt[MALLOC_INFO_GEN_SIZE]; | |
static size_t malloc_info_gen_size[MALLOC_INFO_GEN_SIZE]; | |
static size_t malloc_info_size[MALLOC_INFO_SIZE_SIZE+1]; | |
static st_table *malloc_info_file_table; | |
static int | |
mmalloc_info_file_i(st_data_t key, st_data_t val, st_data_t dmy) | |
{ | |
const char *file = (void *)key; | |
const size_t *data = (void *)val; | |
fprintf(stderr, "%s\t%"PRIdSIZE"\t%"PRIdSIZE"\n", file, data[0], data[1]); | |
return ST_CONTINUE; | |
} | |
__attribute__((destructor)) | |
void | |
rb_malloc_info_show_results(void) | |
{ | |
int i; | |
fprintf(stderr, "* malloc_info gen statistics\n"); | |
for (i=0; i<MALLOC_INFO_GEN_SIZE; i++) { | |
if (i == MALLOC_INFO_GEN_SIZE-1) { | |
fprintf(stderr, "more\t%"PRIdSIZE"\t%"PRIdSIZE"\n", malloc_info_gen_cnt[i], malloc_info_gen_size[i]); | |
} | |
else { | |
fprintf(stderr, "%d\t%"PRIdSIZE"\t%"PRIdSIZE"\n", i, malloc_info_gen_cnt[i], malloc_info_gen_size[i]); | |
} | |
} | |
fprintf(stderr, "* malloc_info size statistics\n"); | |
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) { | |
int s = 16 << i; | |
fprintf(stderr, "%d\t%"PRIdSIZE"\n", s, malloc_info_size[i]); | |
} | |
fprintf(stderr, "more\t%"PRIdSIZE"\n", malloc_info_size[i]); | |
if (malloc_info_file_table) { | |
fprintf(stderr, "* malloc_info file statistics\n"); | |
st_foreach(malloc_info_file_table, mmalloc_info_file_i, 0); | |
} | |
} | |
#else | |
void | |
rb_malloc_info_show_results(void) | |
{ | |
} | |
#endif | |
static void | |
objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size) | |
{ | |
if (!ptr) { | |
/* | |
* ISO/IEC 9899 says "If ptr is a null pointer, no action occurs" since | |
* its first version. We would better follow. | |
*/ | |
return; | |
} | |
#if CALC_EXACT_MALLOC_SIZE | |
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1; | |
ptr = info; | |
old_size = info->size; | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
{ | |
int gen = (int)(objspace->profile.count - info->gen); | |
int gen_index = gen >= MALLOC_INFO_GEN_SIZE ? MALLOC_INFO_GEN_SIZE-1 : gen; | |
int i; | |
malloc_info_gen_cnt[gen_index]++; | |
malloc_info_gen_size[gen_index] += info->size; | |
for (i=0; i<MALLOC_INFO_SIZE_SIZE; i++) { | |
size_t s = 16 << i; | |
if (info->size <= s) { | |
malloc_info_size[i]++; | |
goto found; | |
} | |
} | |
malloc_info_size[i]++; | |
found:; | |
{ | |
st_data_t key = (st_data_t)info->file, d; | |
size_t *data; | |
if (malloc_info_file_table == NULL) { | |
malloc_info_file_table = st_init_numtable_with_size(1024); | |
} | |
if (st_lookup(malloc_info_file_table, key, &d)) { | |
/* hit */ | |
data = (size_t *)d; | |
} | |
else { | |
data = malloc(xmalloc2_size(2, sizeof(size_t))); | |
if (data == NULL) rb_bug("objspace_xfree: can not allocate memory"); | |
data[0] = data[1] = 0; | |
st_insert(malloc_info_file_table, key, (st_data_t)data); | |
} | |
data[0] ++; | |
data[1] += info->size; | |
}; | |
if (0 && gen >= 2) { /* verbose output */ | |
if (info->file) { | |
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d, pos: %s:%"PRIdSIZE"\n", | |
info->size, gen, info->file, info->line); | |
} | |
else { | |
fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d\n", | |
info->size, gen); | |
} | |
} | |
} | |
#endif | |
#endif | |
old_size = objspace_malloc_size(objspace, ptr, old_size); | |
free(ptr); | |
RB_DEBUG_COUNTER_INC(heap_xfree); | |
objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE); | |
} | |
static void * | |
ruby_xmalloc0(size_t size) | |
{ | |
return objspace_xmalloc0(&rb_objspace, size); | |
} | |
void * | |
ruby_xmalloc_body(size_t size) | |
{ | |
if ((ssize_t)size < 0) { | |
negative_size_allocation_error("too large allocation size"); | |
} | |
return ruby_xmalloc0(size); | |
} | |
void | |
ruby_malloc_size_overflow(size_t count, size_t elsize) | |
{ | |
rb_raise(rb_eArgError, | |
"malloc: possible integer overflow (%"PRIuSIZE"*%"PRIuSIZE")", | |
count, elsize); | |
} | |
void * | |
ruby_xmalloc2_body(size_t n, size_t size) | |
{ | |
return objspace_xmalloc0(&rb_objspace, xmalloc2_size(n, size)); | |
} | |
static void * | |
objspace_xcalloc(rb_objspace_t *objspace, size_t size) | |
{ | |
void *mem; | |
size = objspace_malloc_prepare(objspace, size); | |
TRY_WITH_GC(size, mem = calloc1(size)); | |
return objspace_malloc_fixup(objspace, mem, size); | |
} | |
void * | |
ruby_xcalloc_body(size_t n, size_t size) | |
{ | |
return objspace_xcalloc(&rb_objspace, xmalloc2_size(n, size)); | |
} | |
#ifdef ruby_sized_xrealloc | |
#undef ruby_sized_xrealloc | |
#endif | |
void * | |
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size) | |
{ | |
if ((ssize_t)new_size < 0) { | |
negative_size_allocation_error("too large allocation size"); | |
} | |
return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size); | |
} | |
void * | |
ruby_xrealloc_body(void *ptr, size_t new_size) | |
{ | |
return ruby_sized_xrealloc(ptr, new_size, 0); | |
} | |
#ifdef ruby_sized_xrealloc2 | |
#undef ruby_sized_xrealloc2 | |
#endif | |
void * | |
ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n) | |
{ | |
size_t len = xmalloc2_size(n, size); | |
return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size); | |
} | |
void * | |
ruby_xrealloc2_body(void *ptr, size_t n, size_t size) | |
{ | |
return ruby_sized_xrealloc2(ptr, n, size, 0); | |
} | |
#ifdef ruby_sized_xfree | |
#undef ruby_sized_xfree | |
#endif | |
void | |
ruby_sized_xfree(void *x, size_t size) | |
{ | |
if (x) { | |
objspace_xfree(&rb_objspace, x, size); | |
} | |
} | |
void | |
ruby_xfree(void *x) | |
{ | |
ruby_sized_xfree(x, 0); | |
} | |
void * | |
rb_xmalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */ | |
{ | |
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError); | |
return ruby_xmalloc(w); | |
} | |
void * | |
rb_xrealloc_mul_add(const void *p, size_t x, size_t y, size_t z) /* x * y + z */ | |
{ | |
size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError); | |
return ruby_xrealloc((void *)p, w); | |
} | |
void * | |
rb_xmalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ | |
{ | |
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError); | |
return ruby_xmalloc(u); | |
} | |
void * | |
rb_xcalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ | |
{ | |
size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError); | |
return ruby_xcalloc(u, 1); | |
} | |
/* Mimic ruby_xmalloc, but need not rb_objspace. | |
* should return pointer suitable for ruby_xfree | |
*/ | |
void * | |
ruby_mimmalloc(size_t size) | |
{ | |
void *mem; | |
#if CALC_EXACT_MALLOC_SIZE | |
size += sizeof(struct malloc_obj_info); | |
#endif | |
mem = malloc(size); | |
#if CALC_EXACT_MALLOC_SIZE | |
if (!mem) { | |
return NULL; | |
} | |
else | |
/* set 0 for consistency of allocated_size/allocations */ | |
{ | |
struct malloc_obj_info *info = mem; | |
info->size = 0; | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
info->gen = 0; | |
info->file = NULL; | |
info->line = 0; | |
#endif | |
mem = info + 1; | |
} | |
#endif | |
return mem; | |
} | |
void | |
ruby_mimfree(void *ptr) | |
{ | |
#if CALC_EXACT_MALLOC_SIZE | |
struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1; | |
ptr = info; | |
#endif | |
free(ptr); | |
} | |
void * | |
rb_alloc_tmp_buffer_with_count(volatile VALUE *store, size_t size, size_t cnt) | |
{ | |
void *ptr; | |
VALUE imemo; | |
rb_imemo_tmpbuf_t *tmpbuf; | |
/* Keep the order; allocate an empty imemo first then xmalloc, to | |
* get rid of potential memory leak */ | |
imemo = rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(NULL, 0); | |
*store = imemo; | |
ptr = ruby_xmalloc0(size); | |
tmpbuf = (rb_imemo_tmpbuf_t *)imemo; | |
tmpbuf->ptr = ptr; | |
tmpbuf->cnt = cnt; | |
return ptr; | |
} | |
void * | |
rb_alloc_tmp_buffer(volatile VALUE *store, long len) | |
{ | |
long cnt; | |
if (len < 0 || (cnt = (long)roomof(len, sizeof(VALUE))) < 0) { | |
rb_raise(rb_eArgError, "negative buffer size (or size too big)"); | |
} | |
return rb_alloc_tmp_buffer_with_count(store, len, cnt); | |
} | |
void | |
rb_free_tmp_buffer(volatile VALUE *store) | |
{ | |
rb_imemo_tmpbuf_t *s = (rb_imemo_tmpbuf_t*)ATOMIC_VALUE_EXCHANGE(*store, 0); | |
if (s) { | |
void *ptr = ATOMIC_PTR_EXCHANGE(s->ptr, 0); | |
s->cnt = 0; | |
ruby_xfree(ptr); | |
} | |
} | |
#if MALLOC_ALLOCATED_SIZE | |
/* | |
* call-seq: | |
* GC.malloc_allocated_size -> Integer | |
* | |
* Returns the size of memory allocated by malloc(). | |
* | |
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. | |
*/ | |
static VALUE | |
gc_malloc_allocated_size(VALUE self) | |
{ | |
return UINT2NUM(rb_objspace.malloc_params.allocated_size); | |
} | |
/* | |
* call-seq: | |
* GC.malloc_allocations -> Integer | |
* | |
* Returns the number of malloc() allocations. | |
* | |
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. | |
*/ | |
static VALUE | |
gc_malloc_allocations(VALUE self) | |
{ | |
return UINT2NUM(rb_objspace.malloc_params.allocations); | |
} | |
#endif | |
void | |
rb_gc_adjust_memory_usage(ssize_t diff) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (diff > 0) { | |
objspace_malloc_increase(objspace, 0, diff, 0, MEMOP_TYPE_REALLOC); | |
} | |
else if (diff < 0) { | |
objspace_malloc_increase(objspace, 0, 0, -diff, MEMOP_TYPE_REALLOC); | |
} | |
} | |
/* | |
------------------------------ WeakMap ------------------------------ | |
*/ | |
struct weakmap { | |
st_table *obj2wmap; /* obj -> [ref,...] */ | |
st_table *wmap2obj; /* ref -> obj */ | |
VALUE final; | |
}; | |
#define WMAP_DELETE_DEAD_OBJECT_IN_MARK 0 | |
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK | |
static int | |
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)arg; | |
VALUE obj = (VALUE)val; | |
if (!is_live_object(objspace, obj)) return ST_DELETE; | |
return ST_CONTINUE; | |
} | |
#endif | |
static void | |
wmap_compact(void *ptr) | |
{ | |
struct weakmap *w = ptr; | |
if (w->wmap2obj) rb_gc_update_tbl_refs(w->wmap2obj); | |
if (w->obj2wmap) rb_gc_update_tbl_refs(w->obj2wmap); | |
w->final = rb_gc_location(w->final); | |
} | |
static void | |
wmap_mark(void *ptr) | |
{ | |
struct weakmap *w = ptr; | |
#if WMAP_DELETE_DEAD_OBJECT_IN_MARK | |
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace); | |
#endif | |
rb_gc_mark_movable(w->final); | |
} | |
static int | |
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
VALUE *ptr = (VALUE *)val; | |
ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE)); | |
return ST_CONTINUE; | |
} | |
static void | |
wmap_free(void *ptr) | |
{ | |
struct weakmap *w = ptr; | |
st_foreach(w->obj2wmap, wmap_free_map, 0); | |
st_free_table(w->obj2wmap); | |
st_free_table(w->wmap2obj); | |
} | |
static int | |
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
VALUE *ptr = (VALUE *)val; | |
*(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE); | |
return ST_CONTINUE; | |
} | |
static size_t | |
wmap_memsize(const void *ptr) | |
{ | |
size_t size; | |
const struct weakmap *w = ptr; | |
size = sizeof(*w); | |
size += st_memsize(w->obj2wmap); | |
size += st_memsize(w->wmap2obj); | |
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size); | |
return size; | |
} | |
static const rb_data_type_t weakmap_type = { | |
"weakmap", | |
{ | |
wmap_mark, | |
wmap_free, | |
wmap_memsize, | |
wmap_compact, | |
}, | |
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | |
}; | |
static VALUE wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self)); | |
static VALUE | |
wmap_allocate(VALUE klass) | |
{ | |
struct weakmap *w; | |
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w); | |
w->obj2wmap = rb_init_identtable(); | |
w->wmap2obj = rb_init_identtable(); | |
w->final = rb_func_lambda_new(wmap_finalize, obj, 1, 1); | |
return obj; | |
} | |
static int | |
wmap_live_p(rb_objspace_t *objspace, VALUE obj) | |
{ | |
if (!FL_ABLE(obj)) return TRUE; | |
if (!is_id_value(objspace, obj)) return FALSE; | |
if (!is_live_object(objspace, obj)) return FALSE; | |
return TRUE; | |
} | |
static int | |
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) | |
{ | |
VALUE wmap, *ptr, size, i, j; | |
if (!existing) return ST_STOP; | |
wmap = (VALUE)arg, ptr = (VALUE *)*value; | |
for (i = j = 1, size = ptr[0]; i <= size; ++i) { | |
if (ptr[i] != wmap) { | |
ptr[j++] = ptr[i]; | |
} | |
} | |
if (j == 1) { | |
ruby_sized_xfree(ptr, i * sizeof(VALUE)); | |
return ST_DELETE; | |
} | |
if (j < i) { | |
SIZED_REALLOC_N(ptr, VALUE, j + 1, i); | |
ptr[0] = j; | |
*value = (st_data_t)ptr; | |
} | |
return ST_CONTINUE; | |
} | |
/* :nodoc: */ | |
static VALUE | |
wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self)) | |
{ | |
st_data_t orig, wmap, data; | |
VALUE obj, *rids, i, size; | |
struct weakmap *w; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
/* Get reference from object id. */ | |
if ((obj = id2ref_obj_tbl(&rb_objspace, objid)) == Qundef) { | |
rb_bug("wmap_finalize: objid is not found."); | |
} | |
/* obj is original referenced object and/or weak reference. */ | |
orig = (st_data_t)obj; | |
if (st_delete(w->obj2wmap, &orig, &data)) { | |
rids = (VALUE *)data; | |
size = *rids++; | |
for (i = 0; i < size; ++i) { | |
wmap = (st_data_t)rids[i]; | |
st_delete(w->wmap2obj, &wmap, NULL); | |
} | |
ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE)); | |
} | |
wmap = (st_data_t)obj; | |
if (st_delete(w->wmap2obj, &wmap, &orig)) { | |
wmap = (st_data_t)obj; | |
st_update(w->obj2wmap, orig, wmap_final_func, wmap); | |
} | |
return self; | |
} | |
struct wmap_iter_arg { | |
rb_objspace_t *objspace; | |
VALUE value; | |
}; | |
static int | |
wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
VALUE str = (VALUE)arg; | |
VALUE k = (VALUE)key, v = (VALUE)val; | |
if (RSTRING_PTR(str)[0] == '#') { | |
rb_str_cat2(str, ", "); | |
} | |
else { | |
rb_str_cat2(str, ": "); | |
RSTRING_PTR(str)[0] = '#'; | |
} | |
k = SPECIAL_CONST_P(k) ? rb_inspect(k) : rb_any_to_s(k); | |
rb_str_append(str, k); | |
rb_str_cat2(str, " => "); | |
v = SPECIAL_CONST_P(v) ? rb_inspect(v) : rb_any_to_s(v); | |
rb_str_append(str, v); | |
return ST_CONTINUE; | |
} | |
static VALUE | |
wmap_inspect(VALUE self) | |
{ | |
VALUE str; | |
VALUE c = rb_class_name(CLASS_OF(self)); | |
struct weakmap *w; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self); | |
if (w->wmap2obj) { | |
st_foreach(w->wmap2obj, wmap_inspect_i, str); | |
} | |
RSTRING_PTR(str)[0] = '#'; | |
rb_str_cat2(str, ">"); | |
return str; | |
} | |
static int | |
wmap_each_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)arg; | |
VALUE obj = (VALUE)val; | |
if (wmap_live_p(objspace, obj)) { | |
rb_yield_values(2, (VALUE)key, obj); | |
} | |
return ST_CONTINUE; | |
} | |
/* Iterates over keys and objects in a weakly referenced object */ | |
static VALUE | |
wmap_each(VALUE self) | |
{ | |
struct weakmap *w; | |
rb_objspace_t *objspace = &rb_objspace; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace); | |
return self; | |
} | |
static int | |
wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)arg; | |
VALUE obj = (VALUE)val; | |
if (wmap_live_p(objspace, obj)) { | |
rb_yield((VALUE)key); | |
} | |
return ST_CONTINUE; | |
} | |
/* Iterates over keys and objects in a weakly referenced object */ | |
static VALUE | |
wmap_each_key(VALUE self) | |
{ | |
struct weakmap *w; | |
rb_objspace_t *objspace = &rb_objspace; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace); | |
return self; | |
} | |
static int | |
wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
rb_objspace_t *objspace = (rb_objspace_t *)arg; | |
VALUE obj = (VALUE)val; | |
if (wmap_live_p(objspace, obj)) { | |
rb_yield(obj); | |
} | |
return ST_CONTINUE; | |
} | |
/* Iterates over keys and objects in a weakly referenced object */ | |
static VALUE | |
wmap_each_value(VALUE self) | |
{ | |
struct weakmap *w; | |
rb_objspace_t *objspace = &rb_objspace; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace); | |
return self; | |
} | |
static int | |
wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; | |
rb_objspace_t *objspace = argp->objspace; | |
VALUE ary = argp->value; | |
VALUE obj = (VALUE)val; | |
if (wmap_live_p(objspace, obj)) { | |
rb_ary_push(ary, (VALUE)key); | |
} | |
return ST_CONTINUE; | |
} | |
/* Iterates over keys and objects in a weakly referenced object */ | |
static VALUE | |
wmap_keys(VALUE self) | |
{ | |
struct weakmap *w; | |
struct wmap_iter_arg args; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
args.objspace = &rb_objspace; | |
args.value = rb_ary_new(); | |
st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args); | |
return args.value; | |
} | |
static int | |
wmap_values_i(st_data_t key, st_data_t val, st_data_t arg) | |
{ | |
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; | |
rb_objspace_t *objspace = argp->objspace; | |
VALUE ary = argp->value; | |
VALUE obj = (VALUE)val; | |
if (wmap_live_p(objspace, obj)) { | |
rb_ary_push(ary, obj); | |
} | |
return ST_CONTINUE; | |
} | |
/* Iterates over values and objects in a weakly referenced object */ | |
static VALUE | |
wmap_values(VALUE self) | |
{ | |
struct weakmap *w; | |
struct wmap_iter_arg args; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
args.objspace = &rb_objspace; | |
args.value = rb_ary_new(); | |
st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args); | |
return args.value; | |
} | |
static int | |
wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing) | |
{ | |
VALUE size, *ptr, *optr; | |
if (existing) { | |
size = (ptr = optr = (VALUE *)*val)[0]; | |
++size; | |
SIZED_REALLOC_N(ptr, VALUE, size + 1, size); | |
} | |
else { | |
optr = 0; | |
size = 1; | |
ptr = ruby_xmalloc0(2 * sizeof(VALUE)); | |
} | |
ptr[0] = size; | |
ptr[size] = (VALUE)arg; | |
if (ptr == optr) return ST_STOP; | |
*val = (st_data_t)ptr; | |
return ST_CONTINUE; | |
} | |
/* Creates a weak reference from the given key to the given value */ | |
static VALUE | |
wmap_aset(VALUE self, VALUE key, VALUE value) | |
{ | |
struct weakmap *w; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
if (FL_ABLE(value)) { | |
define_final0(value, w->final); | |
} | |
if (FL_ABLE(key)) { | |
define_final0(key, w->final); | |
} | |
st_update(w->obj2wmap, (st_data_t)value, wmap_aset_update, key); | |
st_insert(w->wmap2obj, (st_data_t)key, (st_data_t)value); | |
return nonspecial_obj_id(value); | |
} | |
/* Retrieves a weakly referenced object with the given key */ | |
static VALUE | |
wmap_lookup(VALUE self, VALUE key) | |
{ | |
st_data_t data; | |
VALUE obj; | |
struct weakmap *w; | |
rb_objspace_t *objspace = &rb_objspace; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
if (!st_lookup(w->wmap2obj, (st_data_t)key, &data)) return Qundef; | |
obj = (VALUE)data; | |
if (!wmap_live_p(objspace, obj)) return Qundef; | |
return obj; | |
} | |
/* Retrieves a weakly referenced object with the given key */ | |
static VALUE | |
wmap_aref(VALUE self, VALUE key) | |
{ | |
VALUE obj = wmap_lookup(self, key); | |
return obj != Qundef ? obj : Qnil; | |
} | |
/* Returns +true+ if +key+ is registered */ | |
static VALUE | |
wmap_has_key(VALUE self, VALUE key) | |
{ | |
return wmap_lookup(self, key) == Qundef ? Qfalse : Qtrue; | |
} | |
/* Returns the number of referenced objects */ | |
static VALUE | |
wmap_size(VALUE self) | |
{ | |
struct weakmap *w; | |
st_index_t n; | |
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); | |
n = w->wmap2obj->num_entries; | |
#if SIZEOF_ST_INDEX_T <= SIZEOF_LONG | |
return ULONG2NUM(n); | |
#else | |
return ULL2NUM(n); | |
#endif | |
} | |
/* | |
------------------------------ GC profiler ------------------------------ | |
*/ | |
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100 | |
/* return sec in user time */ | |
static double | |
getrusage_time(void) | |
{ | |
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) | |
{ | |
static int try_clock_gettime = 1; | |
struct timespec ts; | |
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) { | |
return ts.tv_sec + ts.tv_nsec * 1e-9; | |
} | |
else { | |
try_clock_gettime = 0; | |
} | |
} | |
#endif | |
#ifdef RUSAGE_SELF | |
{ | |
struct rusage usage; | |
struct timeval time; | |
if (getrusage(RUSAGE_SELF, &usage) == 0) { | |
time = usage.ru_utime; | |
return time.tv_sec + time.tv_usec * 1e-6; | |
} | |
} | |
#endif | |
#ifdef _WIN32 | |
{ | |
FILETIME creation_time, exit_time, kernel_time, user_time; | |
ULARGE_INTEGER ui; | |
LONG_LONG q; | |
double t; | |
if (GetProcessTimes(GetCurrentProcess(), | |
&creation_time, &exit_time, &kernel_time, &user_time) != 0) { | |
memcpy(&ui, &user_time, sizeof(FILETIME)); | |
q = ui.QuadPart / 10L; | |
t = (DWORD)(q % 1000000L) * 1e-6; | |
q /= 1000000L; | |
#ifdef __GNUC__ | |
t += q; | |
#else | |
t += (double)(DWORD)(q >> 16) * (1 << 16); | |
t += (DWORD)q & ~(~0 << 16); | |
#endif | |
return t; | |
} | |
} | |
#endif | |
return 0.0; | |
} | |
static inline void | |
gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason) | |
{ | |
if (objspace->profile.run) { | |
size_t index = objspace->profile.next_index; | |
gc_profile_record *record; | |
/* create new record */ | |
objspace->profile.next_index++; | |
if (!objspace->profile.records) { | |
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE; | |
objspace->profile.records = malloc(xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size)); | |
} | |
if (index >= objspace->profile.size) { | |
void *ptr; | |
objspace->profile.size += 1000; | |
ptr = realloc(objspace->profile.records, xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size)); | |
if (!ptr) rb_memerror(); | |
objspace->profile.records = ptr; | |
} | |
if (!objspace->profile.records) { | |
rb_bug("gc_profile malloc or realloc miss"); | |
} | |
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1]; | |
MEMZERO(record, gc_profile_record, 1); | |
/* setup before-GC parameter */ | |
record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0); | |
#if MALLOC_ALLOCATED_SIZE | |
record->allocated_size = malloc_allocated_size; | |
#endif | |
#if GC_PROFILE_MORE_DETAIL && GC_PROFILE_DETAIL_MEMORY | |
#ifdef RUSAGE_SELF | |
{ | |
struct rusage usage; | |
if (getrusage(RUSAGE_SELF, &usage) == 0) { | |
record->maxrss = usage.ru_maxrss; | |
record->minflt = usage.ru_minflt; | |
record->majflt = usage.ru_majflt; | |
} | |
} | |
#endif | |
#endif | |
} | |
} | |
static inline void | |
gc_prof_timer_start(rb_objspace_t *objspace) | |
{ | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
#if GC_PROFILE_MORE_DETAIL | |
record->prepare_time = objspace->profile.prepare_time; | |
#endif | |
record->gc_time = 0; | |
record->gc_invoke_time = getrusage_time(); | |
} | |
} | |
static double | |
elapsed_time_from(double time) | |
{ | |
double now = getrusage_time(); | |
if (now > time) { | |
return now - time; | |
} | |
else { | |
return 0; | |
} | |
} | |
static inline void | |
gc_prof_timer_stop(rb_objspace_t *objspace) | |
{ | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->gc_time = elapsed_time_from(record->gc_invoke_time); | |
record->gc_invoke_time -= objspace->profile.invoke_time; | |
} | |
} | |
#define RUBY_DTRACE_GC_HOOK(name) \ | |
do {if (RUBY_DTRACE_GC_##name##_ENABLED()) RUBY_DTRACE_GC_##name();} while (0) | |
static inline void | |
gc_prof_mark_timer_start(rb_objspace_t *objspace) | |
{ | |
RUBY_DTRACE_GC_HOOK(MARK_BEGIN); | |
#if GC_PROFILE_MORE_DETAIL | |
if (gc_prof_enabled(objspace)) { | |
gc_prof_record(objspace)->gc_mark_time = getrusage_time(); | |
} | |
#endif | |
} | |
static inline void | |
gc_prof_mark_timer_stop(rb_objspace_t *objspace) | |
{ | |
RUBY_DTRACE_GC_HOOK(MARK_END); | |
#if GC_PROFILE_MORE_DETAIL | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->gc_mark_time = elapsed_time_from(record->gc_mark_time); | |
} | |
#endif | |
} | |
static inline void | |
gc_prof_sweep_timer_start(rb_objspace_t *objspace) | |
{ | |
RUBY_DTRACE_GC_HOOK(SWEEP_BEGIN); | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) { | |
objspace->profile.gc_sweep_start_time = getrusage_time(); | |
} | |
} | |
} | |
static inline void | |
gc_prof_sweep_timer_stop(rb_objspace_t *objspace) | |
{ | |
RUBY_DTRACE_GC_HOOK(SWEEP_END); | |
if (gc_prof_enabled(objspace)) { | |
double sweep_time; | |
gc_profile_record *record = gc_prof_record(objspace); | |
if (record->gc_time > 0) { | |
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); | |
/* need to accumulate GC time for lazy sweep after gc() */ | |
record->gc_time += sweep_time; | |
} | |
else if (GC_PROFILE_MORE_DETAIL) { | |
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); | |
} | |
#if GC_PROFILE_MORE_DETAIL | |
record->gc_sweep_time += sweep_time; | |
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE; | |
#endif | |
if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE; | |
} | |
} | |
static inline void | |
gc_prof_set_malloc_info(rb_objspace_t *objspace) | |
{ | |
#if GC_PROFILE_MORE_DETAIL | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
record->allocate_increase = malloc_increase; | |
record->allocate_limit = malloc_limit; | |
} | |
#endif | |
} | |
static inline void | |
gc_prof_set_heap_info(rb_objspace_t *objspace) | |
{ | |
if (gc_prof_enabled(objspace)) { | |
gc_profile_record *record = gc_prof_record(objspace); | |
size_t live = objspace->profile.total_allocated_objects_at_gc_start - objspace->profile.total_freed_objects; | |
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_PAGE_OBJ_LIMIT; | |
#if GC_PROFILE_MORE_DETAIL | |
record->heap_use_pages = objspace->profile.heap_used_at_gc_start; | |
record->heap_live_objects = live; | |
record->heap_free_objects = total - live; | |
#endif | |
record->heap_total_objects = total; | |
record->heap_use_size = live * sizeof(RVALUE); | |
record->heap_total_size = total * sizeof(RVALUE); | |
} | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.clear -> nil | |
* | |
* Clears the GC profiler data. | |
* | |
*/ | |
static VALUE | |
gc_profile_clear(VALUE _) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
void *p = objspace->profile.records; | |
objspace->profile.records = NULL; | |
objspace->profile.size = 0; | |
objspace->profile.next_index = 0; | |
objspace->profile.current_record = 0; | |
if (p) { | |
free(p); | |
} | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.raw_data -> [Hash, ...] | |
* | |
* Returns an Array of individual raw profile data Hashes ordered | |
* from earliest to latest by +:GC_INVOKE_TIME+. | |
* | |
* For example: | |
* | |
* [ | |
* { | |
* :GC_TIME=>1.3000000000000858e-05, | |
* :GC_INVOKE_TIME=>0.010634999999999999, | |
* :HEAP_USE_SIZE=>289640, | |
* :HEAP_TOTAL_SIZE=>588960, | |
* :HEAP_TOTAL_OBJECTS=>14724, | |
* :GC_IS_MARKED=>false | |
* }, | |
* # ... | |
* ] | |
* | |
* The keys mean: | |
* | |
* +:GC_TIME+:: | |
* Time elapsed in seconds for this GC run | |
* +:GC_INVOKE_TIME+:: | |
* Time elapsed in seconds from startup to when the GC was invoked | |
* +:HEAP_USE_SIZE+:: | |
* Total bytes of heap used | |
* +:HEAP_TOTAL_SIZE+:: | |
* Total size of heap in bytes | |
* +:HEAP_TOTAL_OBJECTS+:: | |
* Total number of objects | |
* +:GC_IS_MARKED+:: | |
* Returns +true+ if the GC is in mark phase | |
* | |
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access | |
* to the following hash keys: | |
* | |
* +:GC_MARK_TIME+:: | |
* +:GC_SWEEP_TIME+:: | |
* +:ALLOCATE_INCREASE+:: | |
* +:ALLOCATE_LIMIT+:: | |
* +:HEAP_USE_PAGES+:: | |
* +:HEAP_LIVE_OBJECTS+:: | |
* +:HEAP_FREE_OBJECTS+:: | |
* +:HAVE_FINALIZE+:: | |
* | |
*/ | |
static VALUE | |
gc_profile_record_get(VALUE _) | |
{ | |
VALUE prof; | |
VALUE gc_profile = rb_ary_new(); | |
size_t i; | |
rb_objspace_t *objspace = (&rb_objspace); | |
if (!objspace->profile.run) { | |
return Qnil; | |
} | |
for (i =0; i < objspace->profile.next_index; i++) { | |
gc_profile_record *record = &objspace->profile.records[i]; | |
prof = rb_hash_new(); | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(0, rb_hash_new(), record->flags)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("MOVED_OBJECTS")), SIZET2NUM(record->moved_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue); | |
#if GC_PROFILE_MORE_DETAIL | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), RBOOL(record->flags & GPR_FLAG_HAVE_FINALIZE)); | |
#endif | |
#if RGENGC_PROFILE > 0 | |
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects)); | |
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects)); | |
#endif | |
rb_ary_push(gc_profile, prof); | |
} | |
return gc_profile; | |
} | |
#if GC_PROFILE_MORE_DETAIL | |
#define MAJOR_REASON_MAX 0x10 | |
static char * | |
gc_profile_dump_major_reason(unsigned int flags, char *buff) | |
{ | |
unsigned int reason = flags & GPR_FLAG_MAJOR_MASK; | |
int i = 0; | |
if (reason == GPR_FLAG_NONE) { | |
buff[0] = '-'; | |
buff[1] = 0; | |
} | |
else { | |
#define C(x, s) \ | |
if (reason & GPR_FLAG_MAJOR_BY_##x) { \ | |
buff[i++] = #x[0]; \ | |
if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \ | |
buff[i] = 0; \ | |
} | |
C(NOFREE, N); | |
C(OLDGEN, O); | |
C(SHADY, S); | |
#if RGENGC_ESTIMATE_OLDMALLOC | |
C(OLDMALLOC, M); | |
#endif | |
#undef C | |
} | |
return buff; | |
} | |
#endif | |
static void | |
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE)) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
size_t count = objspace->profile.next_index; | |
#ifdef MAJOR_REASON_MAX | |
char reason_str[MAJOR_REASON_MAX]; | |
#endif | |
if (objspace->profile.run && count /* > 1 */) { | |
size_t i; | |
const gc_profile_record *record; | |
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count)); | |
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n")); | |
for (i = 0; i < count; i++) { | |
record = &objspace->profile.records[i]; | |
append(out, rb_sprintf("%5"PRIuSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n", | |
i+1, record->gc_invoke_time, record->heap_use_size, | |
record->heap_total_size, record->heap_total_objects, record->gc_time*1000)); | |
} | |
#if GC_PROFILE_MORE_DETAIL | |
const char *str = "\n\n" \ | |
"More detail.\n" \ | |
"Prepare Time = Previously GC's rest sweep time\n" | |
"Index Flags Allocate Inc. Allocate Limit" | |
#if CALC_EXACT_MALLOC_SIZE | |
" Allocated Size" | |
#endif | |
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj" | |
#if RGENGC_PROFILE | |
" OldgenObj RemNormObj RemShadObj" | |
#endif | |
#if GC_PROFILE_DETAIL_MEMORY | |
" MaxRSS(KB) MinorFLT MajorFLT" | |
#endif | |
"\n"; | |
append(out, rb_str_new_cstr(str)); | |
for (i = 0; i < count; i++) { | |
record = &objspace->profile.records[i]; | |
append(out, rb_sprintf("%5"PRIuSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE | |
#if CALC_EXACT_MALLOC_SIZE | |
" %15"PRIuSIZE | |
#endif | |
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE | |
#if RGENGC_PROFILE | |
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE | |
#endif | |
#if GC_PROFILE_DETAIL_MEMORY | |
"%11ld %8ld %8ld" | |
#endif | |
"\n", | |
i+1, | |
gc_profile_dump_major_reason(record->flags, reason_str), | |
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.', | |
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" : | |
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" : | |
(record->flags & GPR_FLAG_METHOD) ? "METHOD" : | |
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????", | |
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ', | |
record->allocate_increase, record->allocate_limit, | |
#if CALC_EXACT_MALLOC_SIZE | |
record->allocated_size, | |
#endif | |
record->heap_use_pages, | |
record->gc_mark_time*1000, | |
record->gc_sweep_time*1000, | |
record->prepare_time*1000, | |
record->heap_live_objects, | |
record->heap_free_objects, | |
record->removing_objects, | |
record->empty_objects | |
#if RGENGC_PROFILE | |
, | |
record->old_objects, | |
record->remembered_normal_objects, | |
record->remembered_shady_objects | |
#endif | |
#if GC_PROFILE_DETAIL_MEMORY | |
, | |
record->maxrss / 1024, | |
record->minflt, | |
record->majflt | |
#endif | |
)); | |
} | |
#endif | |
} | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.result -> String | |
* | |
* Returns a profile data report such as: | |
* | |
* GC 1 invokes. | |
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) | |
* 1 0.012 159240 212940 10647 0.00000000000001530000 | |
*/ | |
static VALUE | |
gc_profile_result(VALUE _) | |
{ | |
VALUE str = rb_str_buf_new(0); | |
gc_profile_dump_on(str, rb_str_buf_append); | |
return str; | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.report | |
* GC::Profiler.report(io) | |
* | |
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object. | |
* | |
*/ | |
static VALUE | |
gc_profile_report(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE out; | |
out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]); | |
gc_profile_dump_on(out, rb_io_write); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.total_time -> float | |
* | |
* The total time used for garbage collection in seconds | |
*/ | |
static VALUE | |
gc_profile_total_time(VALUE self) | |
{ | |
double time = 0; | |
rb_objspace_t *objspace = &rb_objspace; | |
if (objspace->profile.run && objspace->profile.next_index > 0) { | |
size_t i; | |
size_t count = objspace->profile.next_index; | |
for (i = 0; i < count; i++) { | |
time += objspace->profile.records[i].gc_time; | |
} | |
} | |
return DBL2NUM(time); | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.enabled? -> true or false | |
* | |
* The current status of GC profile mode. | |
*/ | |
static VALUE | |
gc_profile_enable_get(VALUE self) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
return RBOOL(objspace->profile.run); | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.enable -> nil | |
* | |
* Starts the GC profiler. | |
* | |
*/ | |
static VALUE | |
gc_profile_enable(VALUE _) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
objspace->profile.run = TRUE; | |
objspace->profile.current_record = 0; | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* GC::Profiler.disable -> nil | |
* | |
* Stops the GC profiler. | |
* | |
*/ | |
static VALUE | |
gc_profile_disable(VALUE _) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
objspace->profile.run = FALSE; | |
objspace->profile.current_record = 0; | |
return Qnil; | |
} | |
/* | |
------------------------------ DEBUG ------------------------------ | |
*/ | |
static const char * | |
type_name(int type, VALUE obj) | |
{ | |
switch (type) { | |
#define TYPE_NAME(t) case (t): return #t; | |
TYPE_NAME(T_NONE); | |
TYPE_NAME(T_OBJECT); | |
TYPE_NAME(T_CLASS); | |
TYPE_NAME(T_MODULE); | |
TYPE_NAME(T_FLOAT); | |
TYPE_NAME(T_STRING); | |
TYPE_NAME(T_REGEXP); | |
TYPE_NAME(T_ARRAY); | |
TYPE_NAME(T_HASH); | |
TYPE_NAME(T_STRUCT); | |
TYPE_NAME(T_BIGNUM); | |
TYPE_NAME(T_FILE); | |
TYPE_NAME(T_MATCH); | |
TYPE_NAME(T_COMPLEX); | |
TYPE_NAME(T_RATIONAL); | |
TYPE_NAME(T_NIL); | |
TYPE_NAME(T_TRUE); | |
TYPE_NAME(T_FALSE); | |
TYPE_NAME(T_SYMBOL); | |
TYPE_NAME(T_FIXNUM); | |
TYPE_NAME(T_UNDEF); | |
TYPE_NAME(T_IMEMO); | |
TYPE_NAME(T_ICLASS); | |
TYPE_NAME(T_MOVED); | |
TYPE_NAME(T_ZOMBIE); | |
case T_DATA: | |
if (obj && rb_objspace_data_type_name(obj)) { | |
return rb_objspace_data_type_name(obj); | |
} | |
return "T_DATA"; | |
#undef TYPE_NAME | |
} | |
return "unknown"; | |
} | |
static const char * | |
obj_type_name(VALUE obj) | |
{ | |
return type_name(TYPE(obj), obj); | |
} | |
const char * | |
rb_method_type_name(rb_method_type_t type) | |
{ | |
switch (type) { | |
case VM_METHOD_TYPE_ISEQ: return "iseq"; | |
case VM_METHOD_TYPE_ATTRSET: return "attrest"; | |
case VM_METHOD_TYPE_IVAR: return "ivar"; | |
case VM_METHOD_TYPE_BMETHOD: return "bmethod"; | |
case VM_METHOD_TYPE_ALIAS: return "alias"; | |
case VM_METHOD_TYPE_REFINED: return "refined"; | |
case VM_METHOD_TYPE_CFUNC: return "cfunc"; | |
case VM_METHOD_TYPE_ZSUPER: return "zsuper"; | |
case VM_METHOD_TYPE_MISSING: return "missing"; | |
case VM_METHOD_TYPE_OPTIMIZED: return "optimized"; | |
case VM_METHOD_TYPE_UNDEF: return "undef"; | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented"; | |
} | |
rb_bug("rb_method_type_name: unreachable (type: %d)", type); | |
} | |
/* from array.c */ | |
# define ARY_SHARED_P(ary) \ | |
(GC_ASSERT(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ | |
FL_TEST((ary),ELTS_SHARED)!=0) | |
# define ARY_EMBED_P(ary) \ | |
(GC_ASSERT(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ | |
FL_TEST((ary), RARRAY_EMBED_FLAG)!=0) | |
static void | |
rb_raw_iseq_info(char *buff, const int buff_size, const rb_iseq_t *iseq) | |
{ | |
if (buff_size > 0 && iseq->body && iseq->body->location.label && !RB_TYPE_P(iseq->body->location.pathobj, T_MOVED)) { | |
VALUE path = rb_iseq_path(iseq); | |
VALUE n = iseq->body->location.first_lineno; | |
snprintf(buff, buff_size, " %s@%s:%d", | |
RSTRING_PTR(iseq->body->location.label), | |
RSTRING_PTR(path), | |
n ? FIX2INT(n) : 0 ); | |
} | |
} | |
static int | |
str_len_no_raise(VALUE str) | |
{ | |
long len = RSTRING_LEN(str); | |
if (len < 0) return 0; | |
if (len > INT_MAX) return INT_MAX; | |
return (int)len; | |
} | |
const char * | |
rb_raw_obj_info(char *buff, const int buff_size, VALUE obj) | |
{ | |
int pos = 0; | |
void *poisoned = asan_poisoned_object_p(obj); | |
asan_unpoison_object(obj, false); | |
#define BUFF_ARGS buff + pos, buff_size - pos | |
#define APPENDF(f) if ((pos += snprintf f) >= buff_size) goto end | |
if (SPECIAL_CONST_P(obj)) { | |
APPENDF((BUFF_ARGS, "%s", obj_type_name(obj))); | |
if (FIXNUM_P(obj)) { | |
APPENDF((BUFF_ARGS, " %ld", FIX2LONG(obj))); | |
} | |
else if (SYMBOL_P(obj)) { | |
APPENDF((BUFF_ARGS, " %s", rb_id2name(SYM2ID(obj)))); | |
} | |
} | |
else { | |
#define TF(c) ((c) != 0 ? "true" : "false") | |
#define C(c, s) ((c) != 0 ? (s) : " ") | |
const int type = BUILTIN_TYPE(obj); | |
const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags); | |
if (is_pointer_to_heap(&rb_objspace, (void *)obj)) { | |
APPENDF((BUFF_ARGS, "%p [%d%s%s%s%s%s] %s ", | |
(void *)obj, age, | |
C(RVALUE_UNCOLLECTIBLE_BITMAP(obj), "L"), | |
C(RVALUE_MARK_BITMAP(obj), "M"), | |
C(RVALUE_PIN_BITMAP(obj), "P"), | |
C(RVALUE_MARKING_BITMAP(obj), "R"), | |
C(RVALUE_WB_UNPROTECTED_BITMAP(obj), "U"), | |
obj_type_name(obj))); | |
} | |
else { | |
/* fake */ | |
APPENDF((BUFF_ARGS, "%p [%dXXXX] %s", | |
(void *)obj, age, | |
obj_type_name(obj))); | |
} | |
if (internal_object_p(obj)) { | |
/* ignore */ | |
} | |
else if (RBASIC(obj)->klass == 0) { | |
APPENDF((BUFF_ARGS, "(temporary internal)")); | |
} | |
else { | |
if (RTEST(RBASIC(obj)->klass)) { | |
VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass); | |
if (!NIL_P(class_path)) { | |
APPENDF((BUFF_ARGS, "(%s)", RSTRING_PTR(class_path))); | |
} | |
} | |
} | |
#if GC_DEBUG | |
APPENDF((BUFF_ARGS, "@%s:%d", RANY(obj)->file, RANY(obj)->line)); | |
#endif | |
switch (type) { | |
case T_NODE: | |
UNEXPECTED_NODE(rb_raw_obj_info); | |
break; | |
case T_ARRAY: | |
if (FL_TEST(obj, ELTS_SHARED)) { | |
APPENDF((BUFF_ARGS, "shared -> %s", | |
rb_obj_info(RARRAY(obj)->as.heap.aux.shared_root))); | |
} | |
else if (FL_TEST(obj, RARRAY_EMBED_FLAG)) { | |
APPENDF((BUFF_ARGS, "[%s%s] len: %ld (embed)", | |
C(ARY_EMBED_P(obj), "E"), | |
C(ARY_SHARED_P(obj), "S"), | |
RARRAY_LEN(obj))); | |
} | |
else { | |
APPENDF((BUFF_ARGS, "[%s%s%s] len: %ld, capa:%ld ptr:%p", | |
C(ARY_EMBED_P(obj), "E"), | |
C(ARY_SHARED_P(obj), "S"), | |
C(RARRAY_TRANSIENT_P(obj), "T"), | |
RARRAY_LEN(obj), | |
ARY_EMBED_P(obj) ? -1L : RARRAY(obj)->as.heap.aux.capa, | |
(void *)RARRAY_CONST_PTR_TRANSIENT(obj))); | |
} | |
break; | |
case T_STRING: { | |
if (STR_SHARED_P(obj)) APPENDF((BUFF_ARGS, " [shared] ")); | |
APPENDF((BUFF_ARGS, "%.*s", str_len_no_raise(obj), RSTRING_PTR(obj))); | |
break; | |
} | |
case T_SYMBOL: { | |
VALUE fstr = RSYMBOL(obj)->fstr; | |
ID id = RSYMBOL(obj)->id; | |
if (RB_TYPE_P(fstr, T_STRING)) { | |
APPENDF((BUFF_ARGS, ":%s id:%d", RSTRING_PTR(fstr), (unsigned int)id)); | |
} | |
else { | |
APPENDF((BUFF_ARGS, "(%p) id:%d", (void *)fstr, (unsigned int)id)); | |
} | |
break; | |
} | |
case T_MOVED: { | |
APPENDF((BUFF_ARGS, "-> %p", (void*)rb_gc_location(obj))); | |
break; | |
} | |
case T_HASH: { | |
APPENDF((BUFF_ARGS, "[%c%c] %"PRIdSIZE, | |
RHASH_AR_TABLE_P(obj) ? 'A' : 'S', | |
RHASH_TRANSIENT_P(obj) ? 'T' : ' ', | |
RHASH_SIZE(obj))); | |
break; | |
} | |
case T_CLASS: | |
case T_MODULE: | |
{ | |
VALUE class_path = rb_class_path_cached(obj); | |
if (!NIL_P(class_path)) { | |
APPENDF((BUFF_ARGS, "%s", RSTRING_PTR(class_path))); | |
} | |
else { | |
APPENDF((BUFF_ARGS, "(annon)")); | |
} | |
break; | |
} | |
case T_ICLASS: | |
{ | |
VALUE class_path = rb_class_path_cached(RBASIC_CLASS(obj)); | |
if (!NIL_P(class_path)) { | |
APPENDF((BUFF_ARGS, "src:%s", RSTRING_PTR(class_path))); | |
} | |
break; | |
} | |
case T_OBJECT: | |
{ | |
uint32_t len = ROBJECT_NUMIV(obj); | |
if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) { | |
APPENDF((BUFF_ARGS, "(embed) len:%d", len)); | |
} | |
else { | |
VALUE *ptr = ROBJECT_IVPTR(obj); | |
APPENDF((BUFF_ARGS, "len:%d ptr:%p", len, (void *)ptr)); | |
} | |
} | |
break; | |
case T_DATA: { | |
const struct rb_block *block; | |
const rb_iseq_t *iseq; | |
if (rb_obj_is_proc(obj) && | |
(block = vm_proc_block(obj)) != NULL && | |
(vm_block_type(block) == block_type_iseq) && | |
(iseq = vm_block_iseq(block)) != NULL) { | |
rb_raw_iseq_info(BUFF_ARGS, iseq); | |
} | |
else if (rb_ractor_p(obj)) { | |
rb_ractor_t *r = (void *)DATA_PTR(obj); | |
if (r) { | |
APPENDF((BUFF_ARGS, "r:%d", r->pub.id)); | |
} | |
} | |
else { | |
const char * const type_name = rb_objspace_data_type_name(obj); | |
if (type_name) { | |
APPENDF((BUFF_ARGS, "%s", type_name)); | |
} | |
} | |
break; | |
} | |
case T_IMEMO: { | |
APPENDF((BUFF_ARGS, "<%s> ", rb_imemo_name(imemo_type(obj)))); | |
switch (imemo_type(obj)) { | |
case imemo_ment: | |
{ | |
const rb_method_entry_t *me = &RANY(obj)->as.imemo.ment; | |
APPENDF((BUFF_ARGS, ":%s (%s%s%s%s) type:%s alias:%d owner:%p defined_class:%p", | |
rb_id2name(me->called_id), | |
METHOD_ENTRY_VISI(me) == METHOD_VISI_PUBLIC ? "pub" : | |
METHOD_ENTRY_VISI(me) == METHOD_VISI_PRIVATE ? "pri" : "pro", | |
METHOD_ENTRY_COMPLEMENTED(me) ? ",cmp" : "", | |
METHOD_ENTRY_CACHED(me) ? ",cc" : "", | |
METHOD_ENTRY_INVALIDATED(me) ? ",inv" : "", | |
me->def ? rb_method_type_name(me->def->type) : "NULL", | |
me->def ? me->def->alias_count : -1, | |
(void *)me->owner, // obj_info(me->owner), | |
(void *)me->defined_class)); //obj_info(me->defined_class))); | |
if (me->def) { | |
switch (me->def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
APPENDF((BUFF_ARGS, " (iseq:%s)", obj_info((VALUE)me->def->body.iseq.iseqptr))); | |
break; | |
default: | |
break; | |
} | |
} | |
break; | |
} | |
case imemo_iseq: { | |
const rb_iseq_t *iseq = (const rb_iseq_t *)obj; | |
rb_raw_iseq_info(BUFF_ARGS, iseq); | |
break; | |
} | |
case imemo_callinfo: | |
{ | |
const struct rb_callinfo *ci = (const struct rb_callinfo *)obj; | |
APPENDF((BUFF_ARGS, "(mid:%s, flag:%x argc:%d, kwarg:%s)", | |
rb_id2name(vm_ci_mid(ci)), | |
vm_ci_flag(ci), | |
vm_ci_argc(ci), | |
vm_ci_kwarg(ci) ? "available" : "NULL")); | |
break; | |
} | |
case imemo_callcache: | |
{ | |
const struct rb_callcache *cc = (const struct rb_callcache *)obj; | |
VALUE class_path = cc->klass ? rb_class_path_cached(cc->klass) : Qnil; | |
const rb_callable_method_entry_t *cme = vm_cc_cme(cc); | |
APPENDF((BUFF_ARGS, "(klass:%s cme:%s%s (%p) call:%p", | |
NIL_P(class_path) ? (cc->klass ? "??" : "<NULL>") : RSTRING_PTR(class_path), | |
cme ? rb_id2name(cme->called_id) : "<NULL>", | |
cme ? (METHOD_ENTRY_INVALIDATED(cme) ? " [inv]" : "") : "", | |
(void *)cme, | |
(void *)vm_cc_call(cc))); | |
break; | |
} | |
default: | |
break; | |
} | |
} | |
default: | |
break; | |
} | |
#undef TF | |
#undef C | |
} | |
end: | |
if (poisoned) { | |
asan_poison_object(obj); | |
} | |
return buff; | |
#undef APPENDF | |
#undef BUFF_ARGS | |
} | |
#if RGENGC_OBJ_INFO | |
#define OBJ_INFO_BUFFERS_NUM 10 | |
#define OBJ_INFO_BUFFERS_SIZE 0x100 | |
static int obj_info_buffers_index = 0; | |
static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE]; | |
static const char * | |
obj_info(VALUE obj) | |
{ | |
const int index = obj_info_buffers_index++; | |
char *const buff = &obj_info_buffers[index][0]; | |
if (obj_info_buffers_index >= OBJ_INFO_BUFFERS_NUM) { | |
obj_info_buffers_index = 0; | |
} | |
return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj); | |
} | |
#else | |
static const char * | |
obj_info(VALUE obj) | |
{ | |
return obj_type_name(obj); | |
} | |
#endif | |
MJIT_FUNC_EXPORTED const char * | |
rb_obj_info(VALUE obj) | |
{ | |
return obj_info(obj); | |
} | |
void | |
rb_obj_info_dump(VALUE obj) | |
{ | |
char buff[0x100]; | |
fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj)); | |
} | |
MJIT_FUNC_EXPORTED void | |
rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func) | |
{ | |
char buff[0x100]; | |
fprintf(stderr, "<OBJ_INFO:%s@%s:%d> %s\n", func, file, line, rb_raw_obj_info(buff, 0x100, obj)); | |
} | |
#if GC_DEBUG | |
void | |
rb_gcdebug_print_obj_condition(VALUE obj) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
fprintf(stderr, "created at: %s:%d\n", RANY(obj)->file, RANY(obj)->line); | |
if (BUILTIN_TYPE(obj) == T_MOVED) { | |
fprintf(stderr, "moved?: true\n"); | |
} | |
else { | |
fprintf(stderr, "moved?: false\n"); | |
} | |
if (is_pointer_to_heap(objspace, (void *)obj)) { | |
fprintf(stderr, "pointer to heap?: true\n"); | |
} | |
else { | |
fprintf(stderr, "pointer to heap?: false\n"); | |
return; | |
} | |
fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false"); | |
fprintf(stderr, "pinned? : %s\n", MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj) ? "true" : "false"); | |
fprintf(stderr, "age? : %d\n", RVALUE_AGE(obj)); | |
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false"); | |
fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_UNPROTECTED(obj) ? "false" : "true"); | |
fprintf(stderr, "remembered? : %s\n", RVALUE_REMEMBERED(obj) ? "true" : "false"); | |
if (is_lazy_sweeping(objspace)) { | |
fprintf(stderr, "lazy sweeping?: true\n"); | |
fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet"); | |
} | |
else { | |
fprintf(stderr, "lazy sweeping?: false\n"); | |
} | |
} | |
static VALUE | |
gcdebug_sentinel(RB_BLOCK_CALL_FUNC_ARGLIST(obj, name)) | |
{ | |
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj); | |
return Qnil; | |
} | |
void | |
rb_gcdebug_sentinel(VALUE obj, const char *name) | |
{ | |
rb_define_finalizer(obj, rb_proc_new(gcdebug_sentinel, (VALUE)name)); | |
} | |
#endif /* GC_DEBUG */ | |
#if GC_DEBUG_STRESS_TO_CLASS | |
/* | |
* call-seq: | |
* GC.add_stress_to_class(class[, ...]) | |
* | |
* Raises NoMemoryError when allocating an instance of the given classes. | |
* | |
*/ | |
static VALUE | |
rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
if (!stress_to_class) { | |
stress_to_class = rb_ary_tmp_new(argc); | |
} | |
rb_ary_cat(stress_to_class, argv, argc); | |
return self; | |
} | |
/* | |
* call-seq: | |
* GC.remove_stress_to_class(class[, ...]) | |
* | |
* No longer raises NoMemoryError when allocating an instance of the | |
* given classes. | |
* | |
*/ | |
static VALUE | |
rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self) | |
{ | |
rb_objspace_t *objspace = &rb_objspace; | |
int i; | |
if (stress_to_class) { | |
for (i = 0; i < argc; ++i) { | |
rb_ary_delete_same(stress_to_class, argv[i]); | |
} | |
if (RARRAY_LEN(stress_to_class) == 0) { | |
stress_to_class = 0; | |
} | |
} | |
return Qnil; | |
} | |
#endif | |
/* | |
* Document-module: ObjectSpace | |
* | |
* The ObjectSpace module contains a number of routines | |
* that interact with the garbage collection facility and allow you to | |
* traverse all living objects with an iterator. | |
* | |
* ObjectSpace also provides support for object finalizers, procs that will be | |
* called when a specific object is about to be destroyed by garbage | |
* collection. See the documentation for | |
* <code>ObjectSpace.define_finalizer</code> for important information on | |
* how to use this method correctly. | |
* | |
* a = "A" | |
* b = "B" | |
* | |
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) | |
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) | |
* | |
* a = nil | |
* b = nil | |
* | |
* _produces:_ | |
* | |
* Finalizer two on 537763470 | |
* Finalizer one on 537763480 | |
*/ | |
/* | |
* Document-class: ObjectSpace::WeakMap | |
* | |
* An ObjectSpace::WeakMap object holds references to | |
* any objects, but those objects can get garbage collected. | |
* | |
* This class is mostly used internally by WeakRef, please use | |
* +lib/weakref.rb+ for the public interface. | |
*/ | |
/* Document-class: GC::Profiler | |
* | |
* The GC profiler provides access to information on GC runs including time, | |
* length and object space size. | |
* | |
* Example: | |
* | |
* GC::Profiler.enable | |
* | |
* require 'rdoc/rdoc' | |
* | |
* GC::Profiler.report | |
* | |
* GC::Profiler.disable | |
* | |
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations | |
*/ | |
#include "gc.rbinc" | |
void | |
Init_GC(void) | |
{ | |
#undef rb_intern | |
VALUE rb_mObjSpace; | |
VALUE rb_mProfiler; | |
VALUE gc_constants; | |
rb_mGC = rb_define_module("GC"); | |
gc_constants = rb_hash_new(); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("DEBUG")), RBOOL(GC_DEBUG)); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE))); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_OBJ_LIMIT")), SIZET2NUM(HEAP_PAGE_OBJ_LIMIT)); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_SIZE")), SIZET2NUM(HEAP_PAGE_BITMAP_SIZE)); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_PLANES")), SIZET2NUM(HEAP_PAGE_BITMAP_PLANES)); | |
rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_SIZE")), SIZET2NUM(HEAP_PAGE_SIZE)); | |
OBJ_FREEZE(gc_constants); | |
/* internal constants */ | |
rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants); | |
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler"); | |
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0); | |
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0); | |
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0); | |
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0); | |
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0); | |
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0); | |
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1); | |
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0); | |
rb_mObjSpace = rb_define_module("ObjectSpace"); | |
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1); | |
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1); | |
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1); | |
rb_define_module_function(rb_mObjSpace, "_id2ref", os_id2ref, 1); | |
rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory"); | |
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0); | |
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); | |
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1); | |
{ | |
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject); | |
rb_define_alloc_func(rb_cWeakMap, wmap_allocate); | |
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2); | |
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1); | |
rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1); | |
rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1); | |
rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1); | |
rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0); | |
rb_define_method(rb_cWeakMap, "each", wmap_each, 0); | |
rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0); | |
rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0); | |
rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0); | |
rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0); | |
rb_define_method(rb_cWeakMap, "values", wmap_values, 0); | |
rb_define_method(rb_cWeakMap, "size", wmap_size, 0); | |
rb_define_method(rb_cWeakMap, "length", wmap_size, 0); | |
rb_include_module(rb_cWeakMap, rb_mEnumerable); | |
} | |
/* internal methods */ | |
rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency_m, 0); | |
rb_define_singleton_method(rb_mGC, "verify_transient_heap_internal_consistency", gc_verify_transient_heap_internal_consistency, 0); | |
#if MALLOC_ALLOCATED_SIZE | |
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0); | |
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0); | |
#endif | |
#if GC_DEBUG_STRESS_TO_CLASS | |
rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1); | |
rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1); | |
#endif | |
{ | |
VALUE opts; | |
/* GC build options */ | |
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new()); | |
#define OPT(o) if (o) rb_ary_push(opts, rb_fstring_lit(#o)) | |
OPT(GC_DEBUG); | |
OPT(USE_RGENGC); | |
OPT(RGENGC_DEBUG); | |
OPT(RGENGC_CHECK_MODE); | |
OPT(RGENGC_PROFILE); | |
OPT(RGENGC_ESTIMATE_OLDMALLOC); | |
OPT(GC_PROFILE_MORE_DETAIL); | |
OPT(GC_ENABLE_LAZY_SWEEP); | |
OPT(CALC_EXACT_MALLOC_SIZE); | |
OPT(MALLOC_ALLOCATED_SIZE); | |
OPT(MALLOC_ALLOCATED_SIZE_CHECK); | |
OPT(GC_PROFILE_DETAIL_MEMORY); | |
#undef OPT | |
OBJ_FREEZE(opts); | |
} | |
} | |
#ifdef ruby_xmalloc | |
#undef ruby_xmalloc | |
#endif | |
#ifdef ruby_xmalloc2 | |
#undef ruby_xmalloc2 | |
#endif | |
#ifdef ruby_xcalloc | |
#undef ruby_xcalloc | |
#endif | |
#ifdef ruby_xrealloc | |
#undef ruby_xrealloc | |
#endif | |
#ifdef ruby_xrealloc2 | |
#undef ruby_xrealloc2 | |
#endif | |
void * | |
ruby_xmalloc(size_t size) | |
{ | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
ruby_malloc_info_file = __FILE__; | |
ruby_malloc_info_line = __LINE__; | |
#endif | |
return ruby_xmalloc_body(size); | |
} | |
void * | |
ruby_xmalloc2(size_t n, size_t size) | |
{ | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
ruby_malloc_info_file = __FILE__; | |
ruby_malloc_info_line = __LINE__; | |
#endif | |
return ruby_xmalloc2_body(n, size); | |
} | |
void * | |
ruby_xcalloc(size_t n, size_t size) | |
{ | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
ruby_malloc_info_file = __FILE__; | |
ruby_malloc_info_line = __LINE__; | |
#endif | |
return ruby_xcalloc_body(n, size); | |
} | |
void * | |
ruby_xrealloc(void *ptr, size_t new_size) | |
{ | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
ruby_malloc_info_file = __FILE__; | |
ruby_malloc_info_line = __LINE__; | |
#endif | |
return ruby_xrealloc_body(ptr, new_size); | |
} | |
void * | |
ruby_xrealloc2(void *ptr, size_t n, size_t new_size) | |
{ | |
#if USE_GC_MALLOC_OBJ_INFO_DETAILS | |
ruby_malloc_info_file = __FILE__; | |
ruby_malloc_info_line = __LINE__; | |
#endif | |
return ruby_xrealloc2_body(ptr, n, new_size); | |
} |