Permalink
Cannot retrieve contributors at this time
2841 lines (2492 sloc)
65.3 KB
/* | |
rational.c: Coded by Tadayoshi Funaba 2008-2012 | |
This implementation is based on Keiju Ishitsuka's Rational library | |
which is written in ruby. | |
*/ | |
#include "ruby/internal/config.h" | |
#include <ctype.h> | |
#include <float.h> | |
#include <math.h> | |
#ifdef HAVE_IEEEFP_H | |
#include <ieeefp.h> | |
#endif | |
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H) | |
#define USE_GMP | |
#include <gmp.h> | |
#endif | |
#include "id.h" | |
#include "internal.h" | |
#include "internal/array.h" | |
#include "internal/complex.h" | |
#include "internal/gc.h" | |
#include "internal/numeric.h" | |
#include "internal/object.h" | |
#include "internal/rational.h" | |
#include "ruby_assert.h" | |
#define ZERO INT2FIX(0) | |
#define ONE INT2FIX(1) | |
#define TWO INT2FIX(2) | |
#define GMP_GCD_DIGITS 1 | |
#define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x)) | |
VALUE rb_cRational; | |
static ID id_abs, id_integer_p, | |
id_i_num, id_i_den; | |
#define id_idiv idDiv | |
#define id_to_i idTo_i | |
#define f_inspect rb_inspect | |
#define f_to_s rb_obj_as_string | |
static VALUE nurat_to_f(VALUE self); | |
static VALUE float_to_r(VALUE self); | |
inline static VALUE | |
f_add(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_ZERO_P(y)) | |
return x; | |
if (FIXNUM_ZERO_P(x)) | |
return y; | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_plus(x, y); | |
return rb_funcall(x, '+', 1, y); | |
} | |
inline static VALUE | |
f_div(VALUE x, VALUE y) | |
{ | |
if (y == ONE) | |
return x; | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_div(x, y); | |
return rb_funcall(x, '/', 1, y); | |
} | |
inline static int | |
f_lt_p(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x) && FIXNUM_P(y)) | |
return (SIGNED_VALUE)x < (SIGNED_VALUE)y; | |
if (RB_INTEGER_TYPE_P(x)) { | |
VALUE r = rb_int_cmp(x, y); | |
if (!NIL_P(r)) return rb_int_negative_p(r); | |
} | |
return RTEST(rb_funcall(x, '<', 1, y)); | |
} | |
#ifndef NDEBUG | |
/* f_mod is used only in f_gcd defined when NDEBUG is not defined */ | |
inline static VALUE | |
f_mod(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_modulo(x, y); | |
return rb_funcall(x, '%', 1, y); | |
} | |
#endif | |
inline static VALUE | |
f_mul(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x)) | |
return ZERO; | |
if (y == ONE) return x; | |
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y)) | |
return ZERO; | |
if (x == ONE) return y; | |
else if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_mul(x, y); | |
return rb_funcall(x, '*', 1, y); | |
} | |
inline static VALUE | |
f_sub(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(y) && FIXNUM_ZERO_P(y)) | |
return x; | |
return rb_funcall(x, '-', 1, y); | |
} | |
inline static VALUE | |
f_abs(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_abs(x); | |
return rb_funcall(x, id_abs, 0); | |
} | |
inline static int | |
f_integer_p(VALUE x) | |
{ | |
return RB_INTEGER_TYPE_P(x); | |
} | |
inline static VALUE | |
f_to_i(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_STRING)) | |
return rb_str_to_inum(x, 10, 0); | |
return rb_funcall(x, id_to_i, 0); | |
} | |
inline static int | |
f_eqeq_p(VALUE x, VALUE y) | |
{ | |
if (FIXNUM_P(x) && FIXNUM_P(y)) | |
return x == y; | |
if (RB_INTEGER_TYPE_P(x)) | |
return RTEST(rb_int_equal(x, y)); | |
return (int)rb_equal(x, y); | |
} | |
inline static VALUE | |
f_idiv(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_idiv(x, y); | |
return rb_funcall(x, id_idiv, 1, y); | |
} | |
#define f_expt10(x) rb_int_pow(INT2FIX(10), x) | |
inline static int | |
f_zero_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return FIXNUM_ZERO_P(x); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
VALUE num = RRATIONAL(x)->num; | |
return FIXNUM_ZERO_P(num); | |
} | |
return (int)rb_equal(x, ZERO); | |
} | |
#define f_nonzero_p(x) (!f_zero_p(x)) | |
inline static int | |
f_one_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return x == LONG2FIX(1); | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
VALUE num = RRATIONAL(x)->num; | |
VALUE den = RRATIONAL(x)->den; | |
return num == LONG2FIX(1) && den == LONG2FIX(1); | |
} | |
return (int)rb_equal(x, ONE); | |
} | |
inline static int | |
f_minus_one_p(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) { | |
return x == LONG2FIX(-1); | |
} | |
else if (RB_BIGNUM_TYPE_P(x)) { | |
return Qfalse; | |
} | |
else if (RB_TYPE_P(x, T_RATIONAL)) { | |
VALUE num = RRATIONAL(x)->num; | |
VALUE den = RRATIONAL(x)->den; | |
return num == LONG2FIX(-1) && den == LONG2FIX(1); | |
} | |
return (int)rb_equal(x, INT2FIX(-1)); | |
} | |
inline static int | |
f_kind_of_p(VALUE x, VALUE c) | |
{ | |
return (int)rb_obj_is_kind_of(x, c); | |
} | |
inline static int | |
k_numeric_p(VALUE x) | |
{ | |
return f_kind_of_p(x, rb_cNumeric); | |
} | |
inline static int | |
k_integer_p(VALUE x) | |
{ | |
return RB_INTEGER_TYPE_P(x); | |
} | |
inline static int | |
k_float_p(VALUE x) | |
{ | |
return RB_FLOAT_TYPE_P(x); | |
} | |
inline static int | |
k_rational_p(VALUE x) | |
{ | |
return RB_TYPE_P(x, T_RATIONAL); | |
} | |
#define k_exact_p(x) (!k_float_p(x)) | |
#define k_inexact_p(x) k_float_p(x) | |
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) | |
#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x)) | |
#ifdef USE_GMP | |
VALUE | |
rb_gcd_gmp(VALUE x, VALUE y) | |
{ | |
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT; | |
mpz_t mx, my, mz; | |
size_t count; | |
VALUE z; | |
long zn; | |
mpz_init(mx); | |
mpz_init(my); | |
mpz_init(mz); | |
mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x)); | |
mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y)); | |
mpz_gcd(mz, mx, my); | |
mpz_clear(mx); | |
mpz_clear(my); | |
zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2); | |
z = rb_big_new(zn, 1); | |
mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz); | |
mpz_clear(mz); | |
return rb_big_norm(z); | |
} | |
#endif | |
#ifndef NDEBUG | |
#define f_gcd f_gcd_orig | |
#endif | |
inline static long | |
i_gcd(long x, long y) | |
{ | |
unsigned long u, v, t; | |
int shift; | |
if (x < 0) | |
x = -x; | |
if (y < 0) | |
y = -y; | |
if (x == 0) | |
return y; | |
if (y == 0) | |
return x; | |
u = (unsigned long)x; | |
v = (unsigned long)y; | |
for (shift = 0; ((u | v) & 1) == 0; ++shift) { | |
u >>= 1; | |
v >>= 1; | |
} | |
while ((u & 1) == 0) | |
u >>= 1; | |
do { | |
while ((v & 1) == 0) | |
v >>= 1; | |
if (u > v) { | |
t = v; | |
v = u; | |
u = t; | |
} | |
v = v - u; | |
} while (v != 0); | |
return (long)(u << shift); | |
} | |
inline static VALUE | |
f_gcd_normal(VALUE x, VALUE y) | |
{ | |
VALUE z; | |
if (FIXNUM_P(x) && FIXNUM_P(y)) | |
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); | |
if (INT_NEGATIVE_P(x)) | |
x = rb_int_uminus(x); | |
if (INT_NEGATIVE_P(y)) | |
y = rb_int_uminus(y); | |
if (INT_ZERO_P(x)) | |
return y; | |
if (INT_ZERO_P(y)) | |
return x; | |
for (;;) { | |
if (FIXNUM_P(x)) { | |
if (FIXNUM_ZERO_P(x)) | |
return y; | |
if (FIXNUM_P(y)) | |
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y))); | |
} | |
z = x; | |
x = rb_int_modulo(y, x); | |
y = z; | |
} | |
/* NOTREACHED */ | |
} | |
VALUE | |
rb_gcd_normal(VALUE x, VALUE y) | |
{ | |
return f_gcd_normal(x, y); | |
} | |
inline static VALUE | |
f_gcd(VALUE x, VALUE y) | |
{ | |
#ifdef USE_GMP | |
if (RB_BIGNUM_TYPE_P(x) && RB_BIGNUM_TYPE_P(y)) { | |
size_t xn = BIGNUM_LEN(x); | |
size_t yn = BIGNUM_LEN(y); | |
if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn) | |
return rb_gcd_gmp(x, y); | |
} | |
#endif | |
return f_gcd_normal(x, y); | |
} | |
#ifndef NDEBUG | |
#undef f_gcd | |
inline static VALUE | |
f_gcd(VALUE x, VALUE y) | |
{ | |
VALUE r = f_gcd_orig(x, y); | |
if (f_nonzero_p(r)) { | |
assert(f_zero_p(f_mod(x, r))); | |
assert(f_zero_p(f_mod(y, r))); | |
} | |
return r; | |
} | |
#endif | |
inline static VALUE | |
f_lcm(VALUE x, VALUE y) | |
{ | |
if (INT_ZERO_P(x) || INT_ZERO_P(y)) | |
return ZERO; | |
return f_abs(f_mul(f_div(x, f_gcd(x, y)), y)); | |
} | |
#define get_dat1(x) \ | |
struct RRational *dat = RRATIONAL(x) | |
#define get_dat2(x,y) \ | |
struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y) | |
inline static VALUE | |
nurat_s_new_internal(VALUE klass, VALUE num, VALUE den) | |
{ | |
NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0)); | |
RATIONAL_SET_NUM((VALUE)obj, num); | |
RATIONAL_SET_DEN((VALUE)obj, den); | |
OBJ_FREEZE_RAW((VALUE)obj); | |
return (VALUE)obj; | |
} | |
static VALUE | |
nurat_s_alloc(VALUE klass) | |
{ | |
return nurat_s_new_internal(klass, ZERO, ONE); | |
} | |
inline static VALUE | |
f_rational_new_bang1(VALUE klass, VALUE x) | |
{ | |
return nurat_s_new_internal(klass, x, ONE); | |
} | |
inline static void | |
nurat_int_check(VALUE num) | |
{ | |
if (!RB_INTEGER_TYPE_P(num)) { | |
if (!k_numeric_p(num) || !f_integer_p(num)) | |
rb_raise(rb_eTypeError, "not an integer"); | |
} | |
} | |
inline static VALUE | |
nurat_int_value(VALUE num) | |
{ | |
nurat_int_check(num); | |
if (!k_integer_p(num)) | |
num = f_to_i(num); | |
return num; | |
} | |
static void | |
nurat_canonicalize(VALUE *num, VALUE *den) | |
{ | |
assert(num); assert(RB_INTEGER_TYPE_P(*num)); | |
assert(den); assert(RB_INTEGER_TYPE_P(*den)); | |
if (INT_NEGATIVE_P(*den)) { | |
*num = rb_int_uminus(*num); | |
*den = rb_int_uminus(*den); | |
} | |
else if (INT_ZERO_P(*den)) { | |
rb_num_zerodiv(); | |
} | |
} | |
static void | |
nurat_reduce(VALUE *x, VALUE *y) | |
{ | |
VALUE gcd; | |
if (*x == ONE || *y == ONE) return; | |
gcd = f_gcd(*x, *y); | |
*x = f_idiv(*x, gcd); | |
*y = f_idiv(*y, gcd); | |
} | |
inline static VALUE | |
nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den) | |
{ | |
nurat_canonicalize(&num, &den); | |
nurat_reduce(&num, &den); | |
return nurat_s_new_internal(klass, num, den); | |
} | |
inline static VALUE | |
nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den) | |
{ | |
nurat_canonicalize(&num, &den); | |
return nurat_s_new_internal(klass, num, den); | |
} | |
inline static VALUE | |
f_rational_new2(VALUE klass, VALUE x, VALUE y) | |
{ | |
assert(!k_rational_p(x)); | |
assert(!k_rational_p(y)); | |
return nurat_s_canonicalize_internal(klass, x, y); | |
} | |
inline static VALUE | |
f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y) | |
{ | |
assert(!k_rational_p(x)); | |
assert(!k_rational_p(y)); | |
return nurat_s_canonicalize_internal_no_reduce(klass, x, y); | |
} | |
static VALUE nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise); | |
static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass); | |
/* | |
* call-seq: | |
* Rational(x, y, exception: true) -> rational or nil | |
* Rational(arg, exception: true) -> rational or nil | |
* | |
* Returns +x/y+ or +arg+ as a Rational. | |
* | |
* Rational(2, 3) #=> (2/3) | |
* Rational(5) #=> (5/1) | |
* Rational(0.5) #=> (1/2) | |
* Rational(0.3) #=> (5404319552844595/18014398509481984) | |
* | |
* Rational("2/3") #=> (2/3) | |
* Rational("0.3") #=> (3/10) | |
* | |
* Rational("10 cents") #=> ArgumentError | |
* Rational(nil) #=> TypeError | |
* Rational(1, nil) #=> TypeError | |
* | |
* Rational("10 cents", exception: false) #=> nil | |
* | |
* Syntax of the string form: | |
* | |
* string form = extra spaces , rational , extra spaces ; | |
* rational = [ sign ] , unsigned rational ; | |
* unsigned rational = numerator | numerator , "/" , denominator ; | |
* numerator = integer part | fractional part | integer part , fractional part ; | |
* denominator = digits ; | |
* integer part = digits ; | |
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ; | |
* sign = "-" | "+" ; | |
* digits = digit , { digit | "_" , digit } ; | |
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; | |
* extra spaces = ? \s* ? ; | |
* | |
* See also String#to_r. | |
*/ | |
static VALUE | |
nurat_f_rational(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE a1, a2, opts = Qnil; | |
int raise = TRUE; | |
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { | |
a2 = Qundef; | |
} | |
if (!NIL_P(opts)) { | |
raise = rb_opts_exception_p(opts, raise); | |
} | |
return nurat_convert(rb_cRational, a1, a2, raise); | |
} | |
/* | |
* call-seq: | |
* rat.numerator -> integer | |
* | |
* Returns the numerator. | |
* | |
* Rational(7).numerator #=> 7 | |
* Rational(7, 1).numerator #=> 7 | |
* Rational(9, -4).numerator #=> -9 | |
* Rational(-2, -10).numerator #=> 1 | |
*/ | |
static VALUE | |
nurat_numerator(VALUE self) | |
{ | |
get_dat1(self); | |
return dat->num; | |
} | |
/* | |
* call-seq: | |
* rat.denominator -> integer | |
* | |
* Returns the denominator (always positive). | |
* | |
* Rational(7).denominator #=> 1 | |
* Rational(7, 1).denominator #=> 1 | |
* Rational(9, -4).denominator #=> 4 | |
* Rational(-2, -10).denominator #=> 5 | |
*/ | |
static VALUE | |
nurat_denominator(VALUE self) | |
{ | |
get_dat1(self); | |
return dat->den; | |
} | |
/* | |
* call-seq: | |
* -rat -> rational | |
* | |
* Negates +rat+. | |
*/ | |
VALUE | |
rb_rational_uminus(VALUE self) | |
{ | |
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0); | |
get_dat1(self); | |
(void)unused; | |
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den); | |
} | |
#ifndef NDEBUG | |
#define f_imul f_imul_orig | |
#endif | |
inline static VALUE | |
f_imul(long a, long b) | |
{ | |
VALUE r; | |
if (a == 0 || b == 0) | |
return ZERO; | |
else if (a == 1) | |
return LONG2NUM(b); | |
else if (b == 1) | |
return LONG2NUM(a); | |
if (MUL_OVERFLOW_LONG_P(a, b)) | |
r = rb_big_mul(rb_int2big(a), rb_int2big(b)); | |
else | |
r = LONG2NUM(a * b); | |
return r; | |
} | |
#ifndef NDEBUG | |
#undef f_imul | |
inline static VALUE | |
f_imul(long x, long y) | |
{ | |
VALUE r = f_imul_orig(x, y); | |
assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y)))); | |
return r; | |
} | |
#endif | |
inline static VALUE | |
f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) | |
{ | |
VALUE num, den; | |
if (FIXNUM_P(anum) && FIXNUM_P(aden) && | |
FIXNUM_P(bnum) && FIXNUM_P(bden)) { | |
long an = FIX2LONG(anum); | |
long ad = FIX2LONG(aden); | |
long bn = FIX2LONG(bnum); | |
long bd = FIX2LONG(bden); | |
long ig = i_gcd(ad, bd); | |
VALUE g = LONG2NUM(ig); | |
VALUE a = f_imul(an, bd / ig); | |
VALUE b = f_imul(bn, ad / ig); | |
VALUE c; | |
if (k == '+') | |
c = rb_int_plus(a, b); | |
else | |
c = rb_int_minus(a, b); | |
b = rb_int_idiv(aden, g); | |
g = f_gcd(c, g); | |
num = rb_int_idiv(c, g); | |
a = rb_int_idiv(bden, g); | |
den = rb_int_mul(a, b); | |
} | |
else if (RB_INTEGER_TYPE_P(anum) && RB_INTEGER_TYPE_P(aden) && | |
RB_INTEGER_TYPE_P(bnum) && RB_INTEGER_TYPE_P(bden)) { | |
VALUE g = f_gcd(aden, bden); | |
VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g)); | |
VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g)); | |
VALUE c; | |
if (k == '+') | |
c = rb_int_plus(a, b); | |
else | |
c = rb_int_minus(a, b); | |
b = rb_int_idiv(aden, g); | |
g = f_gcd(c, g); | |
num = rb_int_idiv(c, g); | |
a = rb_int_idiv(bden, g); | |
den = rb_int_mul(a, b); | |
} | |
else { | |
double a = NUM2DBL(anum) / NUM2DBL(aden); | |
double b = NUM2DBL(bnum) / NUM2DBL(bden); | |
double c = k == '+' ? a + b : a - b; | |
return DBL2NUM(c); | |
} | |
return f_rational_new_no_reduce2(CLASS_OF(self), num, den); | |
} | |
static double nurat_to_double(VALUE self); | |
/* | |
* call-seq: | |
* rat + numeric -> numeric | |
* | |
* Performs addition. | |
* | |
* Rational(2, 3) + Rational(2, 3) #=> (4/3) | |
* Rational(900) + Rational(1) #=> (901/1) | |
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18) | |
* Rational(9, 8) + 4 #=> (41/8) | |
* Rational(20, 9) + 9.8 #=> 12.022222222222222 | |
*/ | |
VALUE | |
rb_rational_plus(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
{ | |
get_dat1(self); | |
return f_rational_new_no_reduce2(CLASS_OF(self), | |
rb_int_plus(dat->num, rb_int_mul(other, dat->den)), | |
dat->den); | |
} | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other)); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
{ | |
get_dat2(self, other); | |
return f_addsub(self, | |
adat->num, adat->den, | |
bdat->num, bdat->den, '+'); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(self, other, '+'); | |
} | |
} | |
/* | |
* call-seq: | |
* rat - numeric -> numeric | |
* | |
* Performs subtraction. | |
* | |
* Rational(2, 3) - Rational(2, 3) #=> (0/1) | |
* Rational(900) - Rational(1) #=> (899/1) | |
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18) | |
* Rational(9, 8) - 4 #=> (-23/8) | |
* Rational(20, 9) - 9.8 #=> -7.577777777777778 | |
*/ | |
VALUE | |
rb_rational_minus(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
{ | |
get_dat1(self); | |
return f_rational_new_no_reduce2(CLASS_OF(self), | |
rb_int_minus(dat->num, rb_int_mul(other, dat->den)), | |
dat->den); | |
} | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other)); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
{ | |
get_dat2(self, other); | |
return f_addsub(self, | |
adat->num, adat->den, | |
bdat->num, bdat->den, '-'); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(self, other, '-'); | |
} | |
} | |
inline static VALUE | |
f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k) | |
{ | |
VALUE num, den; | |
assert(RB_TYPE_P(self, T_RATIONAL)); | |
/* Integer#** can return Rational with Float right now */ | |
if (RB_FLOAT_TYPE_P(anum) || RB_FLOAT_TYPE_P(aden) || | |
RB_FLOAT_TYPE_P(bnum) || RB_FLOAT_TYPE_P(bden)) { | |
double an = NUM2DBL(anum), ad = NUM2DBL(aden); | |
double bn = NUM2DBL(bnum), bd = NUM2DBL(bden); | |
double x = (an * bn) / (ad * bd); | |
return DBL2NUM(x); | |
} | |
assert(RB_INTEGER_TYPE_P(anum)); | |
assert(RB_INTEGER_TYPE_P(aden)); | |
assert(RB_INTEGER_TYPE_P(bnum)); | |
assert(RB_INTEGER_TYPE_P(bden)); | |
if (k == '/') { | |
VALUE t; | |
if (INT_NEGATIVE_P(bnum)) { | |
anum = rb_int_uminus(anum); | |
bnum = rb_int_uminus(bnum); | |
} | |
t = bnum; | |
bnum = bden; | |
bden = t; | |
} | |
if (FIXNUM_P(anum) && FIXNUM_P(aden) && | |
FIXNUM_P(bnum) && FIXNUM_P(bden)) { | |
long an = FIX2LONG(anum); | |
long ad = FIX2LONG(aden); | |
long bn = FIX2LONG(bnum); | |
long bd = FIX2LONG(bden); | |
long g1 = i_gcd(an, bd); | |
long g2 = i_gcd(ad, bn); | |
num = f_imul(an / g1, bn / g2); | |
den = f_imul(ad / g2, bd / g1); | |
} | |
else { | |
VALUE g1 = f_gcd(anum, bden); | |
VALUE g2 = f_gcd(aden, bnum); | |
num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2)); | |
den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1)); | |
} | |
return f_rational_new_no_reduce2(CLASS_OF(self), num, den); | |
} | |
/* | |
* call-seq: | |
* rat * numeric -> numeric | |
* | |
* Performs multiplication. | |
* | |
* Rational(2, 3) * Rational(2, 3) #=> (4/9) | |
* Rational(900) * Rational(1) #=> (900/1) | |
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1) | |
* Rational(9, 8) * 4 #=> (9/2) | |
* Rational(20, 9) * 9.8 #=> 21.77777777777778 | |
*/ | |
VALUE | |
rb_rational_mul(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
{ | |
get_dat1(self); | |
return f_muldiv(self, | |
dat->num, dat->den, | |
other, ONE, '*'); | |
} | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other)); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
{ | |
get_dat2(self, other); | |
return f_muldiv(self, | |
adat->num, adat->den, | |
bdat->num, bdat->den, '*'); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(self, other, '*'); | |
} | |
} | |
/* | |
* call-seq: | |
* rat / numeric -> numeric | |
* rat.quo(numeric) -> numeric | |
* | |
* Performs division. | |
* | |
* Rational(2, 3) / Rational(2, 3) #=> (1/1) | |
* Rational(900) / Rational(1) #=> (900/1) | |
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81) | |
* Rational(9, 8) / 4 #=> (9/32) | |
* Rational(20, 9) / 9.8 #=> 0.22675736961451246 | |
*/ | |
VALUE | |
rb_rational_div(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
if (f_zero_p(other)) | |
rb_num_zerodiv(); | |
{ | |
get_dat1(self); | |
return f_muldiv(self, | |
dat->num, dat->den, | |
other, ONE, '/'); | |
} | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
VALUE v = nurat_to_f(self); | |
return rb_flo_div_flo(v, other); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
if (f_zero_p(other)) | |
rb_num_zerodiv(); | |
{ | |
get_dat2(self, other); | |
if (f_one_p(self)) | |
return f_rational_new_no_reduce2(CLASS_OF(self), | |
bdat->den, bdat->num); | |
return f_muldiv(self, | |
adat->num, adat->den, | |
bdat->num, bdat->den, '/'); | |
} | |
} | |
else { | |
return rb_num_coerce_bin(self, other, '/'); | |
} | |
} | |
/* | |
* call-seq: | |
* rat.fdiv(numeric) -> float | |
* | |
* Performs division and returns the value as a Float. | |
* | |
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666 | |
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333 | |
* Rational(2).fdiv(3) #=> 0.6666666666666666 | |
*/ | |
static VALUE | |
nurat_fdiv(VALUE self, VALUE other) | |
{ | |
VALUE div; | |
if (f_zero_p(other)) | |
return rb_rational_div(self, rb_float_new(0.0)); | |
if (FIXNUM_P(other) && other == LONG2FIX(1)) | |
return nurat_to_f(self); | |
div = rb_rational_div(self, other); | |
if (RB_TYPE_P(div, T_RATIONAL)) | |
return nurat_to_f(div); | |
if (RB_FLOAT_TYPE_P(div)) | |
return div; | |
return rb_funcall(div, idTo_f, 0); | |
} | |
/* | |
* call-seq: | |
* rat ** numeric -> numeric | |
* | |
* Performs exponentiation. | |
* | |
* Rational(2) ** Rational(3) #=> (8/1) | |
* Rational(10) ** -2 #=> (1/100) | |
* Rational(10) ** -2.0 #=> 0.01 | |
* Rational(-4) ** Rational(1, 2) #=> (0.0+2.0i) | |
* Rational(1, 2) ** 0 #=> (1/1) | |
* Rational(1, 2) ** 0.0 #=> 1.0 | |
*/ | |
VALUE | |
rb_rational_pow(VALUE self, VALUE other) | |
{ | |
if (k_numeric_p(other) && k_exact_zero_p(other)) | |
return f_rational_new_bang1(CLASS_OF(self), ONE); | |
if (k_rational_p(other)) { | |
get_dat1(other); | |
if (f_one_p(dat->den)) | |
other = dat->num; /* c14n */ | |
} | |
/* Deal with special cases of 0**n and 1**n */ | |
if (k_numeric_p(other) && k_exact_p(other)) { | |
get_dat1(self); | |
if (f_one_p(dat->den)) { | |
if (f_one_p(dat->num)) { | |
return f_rational_new_bang1(CLASS_OF(self), ONE); | |
} | |
else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) { | |
return f_rational_new_bang1(CLASS_OF(self), INT2FIX(rb_int_odd_p(other) ? -1 : 1)); | |
} | |
else if (INT_ZERO_P(dat->num)) { | |
if (rb_num_negative_p(other)) { | |
rb_num_zerodiv(); | |
} | |
else { | |
return f_rational_new_bang1(CLASS_OF(self), ZERO); | |
} | |
} | |
} | |
} | |
/* General case */ | |
if (FIXNUM_P(other)) { | |
{ | |
VALUE num, den; | |
get_dat1(self); | |
if (INT_POSITIVE_P(other)) { | |
num = rb_int_pow(dat->num, other); | |
den = rb_int_pow(dat->den, other); | |
} | |
else if (INT_NEGATIVE_P(other)) { | |
num = rb_int_pow(dat->den, rb_int_uminus(other)); | |
den = rb_int_pow(dat->num, rb_int_uminus(other)); | |
} | |
else { | |
num = ONE; | |
den = ONE; | |
} | |
if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */ | |
if (RB_FLOAT_TYPE_P(den)) | |
return DBL2NUM(nan("")); | |
return num; | |
} | |
if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */ | |
num = ZERO; | |
den = ONE; | |
} | |
return f_rational_new2(CLASS_OF(self), num, den); | |
} | |
} | |
else if (RB_BIGNUM_TYPE_P(other)) { | |
rb_warn("in a**b, b may be too big"); | |
return rb_float_pow(nurat_to_f(self), other); | |
} | |
else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) { | |
return rb_float_pow(nurat_to_f(self), other); | |
} | |
else { | |
return rb_num_coerce_bin(self, other, idPow); | |
} | |
} | |
#define nurat_expt rb_rational_pow | |
/* | |
* call-seq: | |
* rational <=> numeric -> -1, 0, +1, or nil | |
* | |
* Returns -1, 0, or +1 depending on whether +rational+ is | |
* less than, equal to, or greater than +numeric+. | |
* | |
* +nil+ is returned if the two values are incomparable. | |
* | |
* Rational(2, 3) <=> Rational(2, 3) #=> 0 | |
* Rational(5) <=> 5 #=> 0 | |
* Rational(2, 3) <=> Rational(1, 3) #=> 1 | |
* Rational(1, 3) <=> 1 #=> -1 | |
* Rational(1, 3) <=> 0.3 #=> 1 | |
* | |
* Rational(1, 3) <=> "0.3" #=> nil | |
*/ | |
VALUE | |
rb_rational_cmp(VALUE self, VALUE other) | |
{ | |
switch (TYPE(other)) { | |
case T_FIXNUM: | |
case T_BIGNUM: | |
{ | |
get_dat1(self); | |
if (dat->den == LONG2FIX(1)) | |
return rb_int_cmp(dat->num, other); /* c14n */ | |
other = f_rational_new_bang1(CLASS_OF(self), other); | |
/* FALLTHROUGH */ | |
} | |
case T_RATIONAL: | |
{ | |
VALUE num1, num2; | |
get_dat2(self, other); | |
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && | |
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { | |
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); | |
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); | |
} | |
else { | |
num1 = rb_int_mul(adat->num, bdat->den); | |
num2 = rb_int_mul(bdat->num, adat->den); | |
} | |
return rb_int_cmp(rb_int_minus(num1, num2), ZERO); | |
} | |
case T_FLOAT: | |
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other)); | |
default: | |
return rb_num_coerce_cmp(self, other, idCmp); | |
} | |
} | |
/* | |
* call-seq: | |
* rat == object -> true or false | |
* | |
* Returns +true+ if +rat+ equals +object+ numerically. | |
* | |
* Rational(2, 3) == Rational(2, 3) #=> true | |
* Rational(5) == 5 #=> true | |
* Rational(0) == 0.0 #=> true | |
* Rational('1/3') == 0.33 #=> false | |
* Rational('1/2') == '1/2' #=> false | |
*/ | |
static VALUE | |
nurat_eqeq_p(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
get_dat1(self); | |
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) { | |
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other)) | |
return Qtrue; | |
if (!FIXNUM_P(dat->den)) | |
return Qfalse; | |
if (FIX2LONG(dat->den) != 1) | |
return Qfalse; | |
return rb_int_equal(dat->num, other); | |
} | |
else { | |
const double d = nurat_to_double(self); | |
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other)))); | |
} | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
const double d = nurat_to_double(self); | |
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other)))); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
{ | |
get_dat2(self, other); | |
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num)) | |
return Qtrue; | |
return RBOOL(rb_int_equal(adat->num, bdat->num) && | |
rb_int_equal(adat->den, bdat->den)); | |
} | |
} | |
else { | |
return rb_equal(other, self); | |
} | |
} | |
/* :nodoc: */ | |
static VALUE | |
nurat_coerce(VALUE self, VALUE other) | |
{ | |
if (RB_INTEGER_TYPE_P(other)) { | |
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self); | |
} | |
else if (RB_FLOAT_TYPE_P(other)) { | |
return rb_assoc_new(other, nurat_to_f(self)); | |
} | |
else if (RB_TYPE_P(other, T_RATIONAL)) { | |
return rb_assoc_new(other, self); | |
} | |
else if (RB_TYPE_P(other, T_COMPLEX)) { | |
if (!k_exact_zero_p(RCOMPLEX(other)->imag)) | |
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0))); | |
other = RCOMPLEX(other)->real; | |
if (RB_FLOAT_TYPE_P(other)) { | |
other = float_to_r(other); | |
RBASIC_SET_CLASS(other, CLASS_OF(self)); | |
} | |
else { | |
other = f_rational_new_bang1(CLASS_OF(self), other); | |
} | |
return rb_assoc_new(other, self); | |
} | |
rb_raise(rb_eTypeError, "%s can't be coerced into %s", | |
rb_obj_classname(other), rb_obj_classname(self)); | |
return Qnil; | |
} | |
/* | |
* call-seq: | |
* rat.positive? -> true or false | |
* | |
* Returns +true+ if +rat+ is greater than 0. | |
*/ | |
static VALUE | |
nurat_positive_p(VALUE self) | |
{ | |
get_dat1(self); | |
return RBOOL(INT_POSITIVE_P(dat->num)); | |
} | |
/* | |
* call-seq: | |
* rat.negative? -> true or false | |
* | |
* Returns +true+ if +rat+ is less than 0. | |
*/ | |
static VALUE | |
nurat_negative_p(VALUE self) | |
{ | |
get_dat1(self); | |
return RBOOL(INT_NEGATIVE_P(dat->num)); | |
} | |
/* | |
* call-seq: | |
* rat.abs -> rational | |
* rat.magnitude -> rational | |
* | |
* Returns the absolute value of +rat+. | |
* | |
* (1/2r).abs #=> (1/2) | |
* (-1/2r).abs #=> (1/2) | |
* | |
* Rational#magnitude is an alias for Rational#abs. | |
*/ | |
VALUE | |
rb_rational_abs(VALUE self) | |
{ | |
get_dat1(self); | |
if (INT_NEGATIVE_P(dat->num)) { | |
VALUE num = rb_int_abs(dat->num); | |
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den); | |
} | |
return self; | |
} | |
static VALUE | |
nurat_floor(VALUE self) | |
{ | |
get_dat1(self); | |
return rb_int_idiv(dat->num, dat->den); | |
} | |
static VALUE | |
nurat_ceil(VALUE self) | |
{ | |
get_dat1(self); | |
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); | |
} | |
/* | |
* call-seq: | |
* rat.to_i -> integer | |
* | |
* Returns the truncated value as an integer. | |
* | |
* Equivalent to Rational#truncate. | |
* | |
* Rational(2, 3).to_i #=> 0 | |
* Rational(3).to_i #=> 3 | |
* Rational(300.6).to_i #=> 300 | |
* Rational(98, 71).to_i #=> 1 | |
* Rational(-31, 2).to_i #=> -15 | |
*/ | |
static VALUE | |
nurat_truncate(VALUE self) | |
{ | |
get_dat1(self); | |
if (INT_NEGATIVE_P(dat->num)) | |
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); | |
return rb_int_idiv(dat->num, dat->den); | |
} | |
static VALUE | |
nurat_round_half_up(VALUE self) | |
{ | |
VALUE num, den, neg; | |
get_dat1(self); | |
num = dat->num; | |
den = dat->den; | |
neg = INT_NEGATIVE_P(num); | |
if (neg) | |
num = rb_int_uminus(num); | |
num = rb_int_plus(rb_int_mul(num, TWO), den); | |
den = rb_int_mul(den, TWO); | |
num = rb_int_idiv(num, den); | |
if (neg) | |
num = rb_int_uminus(num); | |
return num; | |
} | |
static VALUE | |
nurat_round_half_down(VALUE self) | |
{ | |
VALUE num, den, neg; | |
get_dat1(self); | |
num = dat->num; | |
den = dat->den; | |
neg = INT_NEGATIVE_P(num); | |
if (neg) | |
num = rb_int_uminus(num); | |
num = rb_int_plus(rb_int_mul(num, TWO), den); | |
num = rb_int_minus(num, ONE); | |
den = rb_int_mul(den, TWO); | |
num = rb_int_idiv(num, den); | |
if (neg) | |
num = rb_int_uminus(num); | |
return num; | |
} | |
static VALUE | |
nurat_round_half_even(VALUE self) | |
{ | |
VALUE num, den, neg, qr; | |
get_dat1(self); | |
num = dat->num; | |
den = dat->den; | |
neg = INT_NEGATIVE_P(num); | |
if (neg) | |
num = rb_int_uminus(num); | |
num = rb_int_plus(rb_int_mul(num, TWO), den); | |
den = rb_int_mul(den, TWO); | |
qr = rb_int_divmod(num, den); | |
num = RARRAY_AREF(qr, 0); | |
if (INT_ZERO_P(RARRAY_AREF(qr, 1))) | |
num = rb_int_and(num, LONG2FIX(((int)~1))); | |
if (neg) | |
num = rb_int_uminus(num); | |
return num; | |
} | |
static VALUE | |
f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE)) | |
{ | |
VALUE n, b, s; | |
if (rb_check_arity(argc, 0, 1) == 0) | |
return (*func)(self); | |
n = argv[0]; | |
if (!k_integer_p(n)) | |
rb_raise(rb_eTypeError, "not an integer"); | |
b = f_expt10(n); | |
s = rb_rational_mul(self, b); | |
if (k_float_p(s)) { | |
if (INT_NEGATIVE_P(n)) | |
return ZERO; | |
return self; | |
} | |
if (!k_rational_p(s)) { | |
s = f_rational_new_bang1(CLASS_OF(self), s); | |
} | |
s = (*func)(s); | |
s = rb_rational_div(f_rational_new_bang1(CLASS_OF(self), s), b); | |
if (RB_TYPE_P(s, T_RATIONAL) && FIX2INT(rb_int_cmp(n, ONE)) < 0) | |
s = nurat_truncate(s); | |
return s; | |
} | |
VALUE | |
rb_rational_floor(VALUE self, int ndigits) | |
{ | |
if (ndigits == 0) { | |
return nurat_floor(self); | |
} | |
else { | |
VALUE n = INT2NUM(ndigits); | |
return f_round_common(1, &n, self, nurat_floor); | |
} | |
} | |
/* | |
* call-seq: | |
* rat.floor([ndigits]) -> integer or rational | |
* | |
* Returns the largest number less than or equal to +rat+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a rational when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* Rational(3).floor #=> 3 | |
* Rational(2, 3).floor #=> 0 | |
* Rational(-3, 2).floor #=> -2 | |
* | |
* # decimal - 1 2 3 . 4 5 6 | |
* # ^ ^ ^ ^ ^ ^ | |
* # precision -3 -2 -1 0 +1 +2 | |
* | |
* Rational('-123.456').floor(+1).to_f #=> -123.5 | |
* Rational('-123.456').floor(-1) #=> -130 | |
*/ | |
static VALUE | |
nurat_floor_n(int argc, VALUE *argv, VALUE self) | |
{ | |
return f_round_common(argc, argv, self, nurat_floor); | |
} | |
/* | |
* call-seq: | |
* rat.ceil([ndigits]) -> integer or rational | |
* | |
* Returns the smallest number greater than or equal to +rat+ with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a rational when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* Rational(3).ceil #=> 3 | |
* Rational(2, 3).ceil #=> 1 | |
* Rational(-3, 2).ceil #=> -1 | |
* | |
* # decimal - 1 2 3 . 4 5 6 | |
* # ^ ^ ^ ^ ^ ^ | |
* # precision -3 -2 -1 0 +1 +2 | |
* | |
* Rational('-123.456').ceil(+1).to_f #=> -123.4 | |
* Rational('-123.456').ceil(-1) #=> -120 | |
*/ | |
static VALUE | |
nurat_ceil_n(int argc, VALUE *argv, VALUE self) | |
{ | |
return f_round_common(argc, argv, self, nurat_ceil); | |
} | |
/* | |
* call-seq: | |
* rat.truncate([ndigits]) -> integer or rational | |
* | |
* Returns +rat+ truncated (toward zero) to | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a rational when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* Rational(3).truncate #=> 3 | |
* Rational(2, 3).truncate #=> 0 | |
* Rational(-3, 2).truncate #=> -1 | |
* | |
* # decimal - 1 2 3 . 4 5 6 | |
* # ^ ^ ^ ^ ^ ^ | |
* # precision -3 -2 -1 0 +1 +2 | |
* | |
* Rational('-123.456').truncate(+1).to_f #=> -123.4 | |
* Rational('-123.456').truncate(-1) #=> -120 | |
*/ | |
static VALUE | |
nurat_truncate_n(int argc, VALUE *argv, VALUE self) | |
{ | |
return f_round_common(argc, argv, self, nurat_truncate); | |
} | |
/* | |
* call-seq: | |
* rat.round([ndigits] [, half: mode]) -> integer or rational | |
* | |
* Returns +rat+ rounded to the nearest value with | |
* a precision of +ndigits+ decimal digits (default: 0). | |
* | |
* When the precision is negative, the returned value is an integer | |
* with at least <code>ndigits.abs</code> trailing zeros. | |
* | |
* Returns a rational when +ndigits+ is positive, | |
* otherwise returns an integer. | |
* | |
* Rational(3).round #=> 3 | |
* Rational(2, 3).round #=> 1 | |
* Rational(-3, 2).round #=> -2 | |
* | |
* # decimal - 1 2 3 . 4 5 6 | |
* # ^ ^ ^ ^ ^ ^ | |
* # precision -3 -2 -1 0 +1 +2 | |
* | |
* Rational('-123.456').round(+1).to_f #=> -123.5 | |
* Rational('-123.456').round(-1) #=> -120 | |
* | |
* The optional +half+ keyword argument is available | |
* similar to Float#round. | |
* | |
* Rational(25, 100).round(1, half: :up) #=> (3/10) | |
* Rational(25, 100).round(1, half: :down) #=> (1/5) | |
* Rational(25, 100).round(1, half: :even) #=> (1/5) | |
* Rational(35, 100).round(1, half: :up) #=> (2/5) | |
* Rational(35, 100).round(1, half: :down) #=> (3/10) | |
* Rational(35, 100).round(1, half: :even) #=> (2/5) | |
* Rational(-25, 100).round(1, half: :up) #=> (-3/10) | |
* Rational(-25, 100).round(1, half: :down) #=> (-1/5) | |
* Rational(-25, 100).round(1, half: :even) #=> (-1/5) | |
*/ | |
static VALUE | |
nurat_round_n(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE opt; | |
enum ruby_num_rounding_mode mode = ( | |
argc = rb_scan_args(argc, argv, "*:", NULL, &opt), | |
rb_num_get_rounding_option(opt)); | |
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round); | |
return f_round_common(argc, argv, self, round_func); | |
} | |
VALUE | |
rb_flo_round_by_rational(int argc, VALUE *argv, VALUE num) | |
{ | |
return nurat_to_f(nurat_round_n(argc, argv, float_to_r(num))); | |
} | |
static double | |
nurat_to_double(VALUE self) | |
{ | |
get_dat1(self); | |
if (!RB_INTEGER_TYPE_P(dat->num) || !RB_INTEGER_TYPE_P(dat->den)) { | |
return NUM2DBL(dat->num) / NUM2DBL(dat->den); | |
} | |
return rb_int_fdiv_double(dat->num, dat->den); | |
} | |
/* | |
* call-seq: | |
* rat.to_f -> float | |
* | |
* Returns the value as a Float. | |
* | |
* Rational(2).to_f #=> 2.0 | |
* Rational(9, 4).to_f #=> 2.25 | |
* Rational(-3, 4).to_f #=> -0.75 | |
* Rational(20, 3).to_f #=> 6.666666666666667 | |
*/ | |
static VALUE | |
nurat_to_f(VALUE self) | |
{ | |
return DBL2NUM(nurat_to_double(self)); | |
} | |
/* | |
* call-seq: | |
* rat.to_r -> self | |
* | |
* Returns self. | |
* | |
* Rational(2).to_r #=> (2/1) | |
* Rational(-8, 6).to_r #=> (-4/3) | |
*/ | |
static VALUE | |
nurat_to_r(VALUE self) | |
{ | |
return self; | |
} | |
#define id_ceil rb_intern("ceil") | |
static VALUE | |
f_ceil(VALUE x) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return x; | |
if (RB_FLOAT_TYPE_P(x)) | |
return rb_float_ceil(x, 0); | |
return rb_funcall(x, id_ceil, 0); | |
} | |
#define id_quo idQuo | |
static VALUE | |
f_quo(VALUE x, VALUE y) | |
{ | |
if (RB_INTEGER_TYPE_P(x)) | |
return rb_int_div(x, y); | |
if (RB_FLOAT_TYPE_P(x)) | |
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y)); | |
return rb_funcallv(x, id_quo, 1, &y); | |
} | |
#define f_reciprocal(x) f_quo(ONE, (x)) | |
/* | |
The algorithm here is the method described in CLISP. Bruno Haible has | |
graciously given permission to use this algorithm. He says, "You can use | |
it, if you present the following explanation of the algorithm." | |
Algorithm (recursively presented): | |
If x is a rational number, return x. | |
If x = 0.0, return 0. | |
If x < 0.0, return (- (rationalize (- x))). | |
If x > 0.0: | |
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, | |
exponent, sign). | |
If m = 0 or e >= 0: return x = m*2^e. | |
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e | |
with smallest possible numerator and denominator. | |
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. | |
But in this case the result will be x itself anyway, regardless of | |
the choice of a. Therefore we can simply ignore this case. | |
Note 2: At first, we need to consider the closed interval [a,b]. | |
but since a and b have the denominator 2^(|e|+1) whereas x itself | |
has a denominator <= 2^|e|, we can restrict the search to the open | |
interval (a,b). | |
So, for given a and b (0 < a < b) we are searching a rational number | |
y with a <= y <= b. | |
Recursive algorithm fraction_between(a,b): | |
c := (ceiling a) | |
if c < b | |
then return c ; because a <= c < b, c integer | |
else | |
; a is not integer (otherwise we would have had c = a < b) | |
k := c-1 ; k = floor(a), k < a < b <= k+1 | |
return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) | |
; note 1 <= 1/(b-k) < 1/(a-k) | |
You can see that we are actually computing a continued fraction expansion. | |
Algorithm (iterative): | |
If x is rational, return x. | |
Call (integer-decode-float x). It returns a m,e,s (mantissa, | |
exponent, sign). | |
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) | |
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) | |
(positive and already in lowest terms because the denominator is a | |
power of two and the numerator is odd). | |
Start a continued fraction expansion | |
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. | |
Loop | |
c := (ceiling a) | |
if c >= b | |
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), | |
goto Loop | |
finally partial_quotient(c). | |
Here partial_quotient(c) denotes the iteration | |
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. | |
At the end, return s * (p[i]/q[i]). | |
This rational number is already in lowest terms because | |
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. | |
*/ | |
static void | |
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q) | |
{ | |
VALUE c, k, t, p0, p1, p2, q0, q1, q2; | |
p0 = ZERO; | |
p1 = ONE; | |
q0 = ONE; | |
q1 = ZERO; | |
while (1) { | |
c = f_ceil(a); | |
if (f_lt_p(c, b)) | |
break; | |
k = f_sub(c, ONE); | |
p2 = f_add(f_mul(k, p1), p0); | |
q2 = f_add(f_mul(k, q1), q0); | |
t = f_reciprocal(f_sub(b, k)); | |
b = f_reciprocal(f_sub(a, k)); | |
a = t; | |
p0 = p1; | |
q0 = q1; | |
p1 = p2; | |
q1 = q2; | |
} | |
*p = f_add(f_mul(c, p1), p0); | |
*q = f_add(f_mul(c, q1), q0); | |
} | |
/* | |
* call-seq: | |
* rat.rationalize -> self | |
* rat.rationalize(eps) -> rational | |
* | |
* Returns a simpler approximation of the value if the optional | |
* argument +eps+ is given (rat-|eps| <= result <= rat+|eps|), | |
* self otherwise. | |
* | |
* r = Rational(5033165, 16777216) | |
* r.rationalize #=> (5033165/16777216) | |
* r.rationalize(Rational('0.01')) #=> (3/10) | |
* r.rationalize(Rational('0.1')) #=> (1/3) | |
*/ | |
static VALUE | |
nurat_rationalize(int argc, VALUE *argv, VALUE self) | |
{ | |
VALUE e, a, b, p, q; | |
VALUE rat = self; | |
get_dat1(self); | |
if (rb_check_arity(argc, 0, 1) == 0) | |
return self; | |
e = f_abs(argv[0]); | |
if (INT_NEGATIVE_P(dat->num)) { | |
rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den); | |
} | |
a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e); | |
b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e); | |
if (f_eqeq_p(a, b)) | |
return self; | |
nurat_rationalize_internal(a, b, &p, &q); | |
if (rat != self) { | |
RATIONAL_SET_NUM(rat, rb_int_uminus(p)); | |
RATIONAL_SET_DEN(rat, q); | |
return rat; | |
} | |
return f_rational_new2(CLASS_OF(self), p, q); | |
} | |
/* :nodoc: */ | |
st_index_t | |
rb_rational_hash(VALUE self) | |
{ | |
st_index_t v, h[2]; | |
VALUE n; | |
get_dat1(self); | |
n = rb_hash(dat->num); | |
h[0] = NUM2LONG(n); | |
n = rb_hash(dat->den); | |
h[1] = NUM2LONG(n); | |
v = rb_memhash(h, sizeof(h)); | |
return v; | |
} | |
static VALUE | |
nurat_hash(VALUE self) | |
{ | |
return ST2FIX(rb_rational_hash(self)); | |
} | |
static VALUE | |
f_format(VALUE self, VALUE (*func)(VALUE)) | |
{ | |
VALUE s; | |
get_dat1(self); | |
s = (*func)(dat->num); | |
rb_str_cat2(s, "/"); | |
rb_str_concat(s, (*func)(dat->den)); | |
return s; | |
} | |
/* | |
* call-seq: | |
* rat.to_s -> string | |
* | |
* Returns the value as a string. | |
* | |
* Rational(2).to_s #=> "2/1" | |
* Rational(-8, 6).to_s #=> "-4/3" | |
* Rational('1/2').to_s #=> "1/2" | |
*/ | |
static VALUE | |
nurat_to_s(VALUE self) | |
{ | |
return f_format(self, f_to_s); | |
} | |
/* | |
* call-seq: | |
* rat.inspect -> string | |
* | |
* Returns the value as a string for inspection. | |
* | |
* Rational(2).inspect #=> "(2/1)" | |
* Rational(-8, 6).inspect #=> "(-4/3)" | |
* Rational('1/2').inspect #=> "(1/2)" | |
*/ | |
static VALUE | |
nurat_inspect(VALUE self) | |
{ | |
VALUE s; | |
s = rb_usascii_str_new2("("); | |
rb_str_concat(s, f_format(self, f_inspect)); | |
rb_str_cat2(s, ")"); | |
return s; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nurat_dumper(VALUE self) | |
{ | |
return self; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nurat_loader(VALUE self, VALUE a) | |
{ | |
VALUE num, den; | |
get_dat1(self); | |
num = rb_ivar_get(a, id_i_num); | |
den = rb_ivar_get(a, id_i_den); | |
nurat_int_check(num); | |
nurat_int_check(den); | |
nurat_canonicalize(&num, &den); | |
RATIONAL_SET_NUM((VALUE)dat, num); | |
RATIONAL_SET_DEN((VALUE)dat, den); | |
OBJ_FREEZE_RAW(self); | |
return self; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nurat_marshal_dump(VALUE self) | |
{ | |
VALUE a; | |
get_dat1(self); | |
a = rb_assoc_new(dat->num, dat->den); | |
rb_copy_generic_ivar(a, self); | |
return a; | |
} | |
/* :nodoc: */ | |
static VALUE | |
nurat_marshal_load(VALUE self, VALUE a) | |
{ | |
VALUE num, den; | |
rb_check_frozen(self); | |
Check_Type(a, T_ARRAY); | |
if (RARRAY_LEN(a) != 2) | |
rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a)); | |
num = RARRAY_AREF(a, 0); | |
den = RARRAY_AREF(a, 1); | |
nurat_int_check(num); | |
nurat_int_check(den); | |
nurat_canonicalize(&num, &den); | |
rb_ivar_set(self, id_i_num, num); | |
rb_ivar_set(self, id_i_den, den); | |
return self; | |
} | |
VALUE | |
rb_rational_reciprocal(VALUE x) | |
{ | |
get_dat1(x); | |
return nurat_convert(CLASS_OF(x), dat->den, dat->num, FALSE); | |
} | |
/* | |
* call-seq: | |
* int.gcd(other_int) -> integer | |
* | |
* Returns the greatest common divisor of the two integers. | |
* The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs. | |
* | |
* 36.gcd(60) #=> 12 | |
* 2.gcd(2) #=> 2 | |
* 3.gcd(-7) #=> 1 | |
* ((1<<31)-1).gcd((1<<61)-1) #=> 1 | |
*/ | |
VALUE | |
rb_gcd(VALUE self, VALUE other) | |
{ | |
other = nurat_int_value(other); | |
return f_gcd(self, other); | |
} | |
/* | |
* call-seq: | |
* int.lcm(other_int) -> integer | |
* | |
* Returns the least common multiple of the two integers. | |
* The result is always positive. 0.lcm(x) and x.lcm(0) return zero. | |
* | |
* 36.lcm(60) #=> 180 | |
* 2.lcm(2) #=> 2 | |
* 3.lcm(-7) #=> 21 | |
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297 | |
*/ | |
VALUE | |
rb_lcm(VALUE self, VALUE other) | |
{ | |
other = nurat_int_value(other); | |
return f_lcm(self, other); | |
} | |
/* | |
* call-seq: | |
* int.gcdlcm(other_int) -> array | |
* | |
* Returns an array with the greatest common divisor and | |
* the least common multiple of the two integers, [gcd, lcm]. | |
* | |
* 36.gcdlcm(60) #=> [12, 180] | |
* 2.gcdlcm(2) #=> [2, 2] | |
* 3.gcdlcm(-7) #=> [1, 21] | |
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297] | |
*/ | |
VALUE | |
rb_gcdlcm(VALUE self, VALUE other) | |
{ | |
other = nurat_int_value(other); | |
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); | |
} | |
VALUE | |
rb_rational_raw(VALUE x, VALUE y) | |
{ | |
if (! RB_INTEGER_TYPE_P(x)) | |
x = rb_to_int(x); | |
if (! RB_INTEGER_TYPE_P(y)) | |
y = rb_to_int(y); | |
if (INT_NEGATIVE_P(y)) { | |
x = rb_int_uminus(x); | |
y = rb_int_uminus(y); | |
} | |
return nurat_s_new_internal(rb_cRational, x, y); | |
} | |
VALUE | |
rb_rational_new(VALUE x, VALUE y) | |
{ | |
return nurat_s_canonicalize_internal(rb_cRational, x, y); | |
} | |
VALUE | |
rb_Rational(VALUE x, VALUE y) | |
{ | |
VALUE a[2]; | |
a[0] = x; | |
a[1] = y; | |
return nurat_s_convert(2, a, rb_cRational); | |
} | |
VALUE | |
rb_rational_num(VALUE rat) | |
{ | |
return nurat_numerator(rat); | |
} | |
VALUE | |
rb_rational_den(VALUE rat) | |
{ | |
return nurat_denominator(rat); | |
} | |
#define id_numerator rb_intern("numerator") | |
#define f_numerator(x) rb_funcall((x), id_numerator, 0) | |
#define id_denominator rb_intern("denominator") | |
#define f_denominator(x) rb_funcall((x), id_denominator, 0) | |
#define id_to_r idTo_r | |
#define f_to_r(x) rb_funcall((x), id_to_r, 0) | |
/* | |
* call-seq: | |
* num.numerator -> integer | |
* | |
* Returns the numerator. | |
*/ | |
static VALUE | |
numeric_numerator(VALUE self) | |
{ | |
return f_numerator(f_to_r(self)); | |
} | |
/* | |
* call-seq: | |
* num.denominator -> integer | |
* | |
* Returns the denominator (always positive). | |
*/ | |
static VALUE | |
numeric_denominator(VALUE self) | |
{ | |
return f_denominator(f_to_r(self)); | |
} | |
/* | |
* call-seq: | |
* num.quo(int_or_rat) -> rat | |
* num.quo(flo) -> flo | |
* | |
* Returns the most exact division (rational for integers, float for floats). | |
*/ | |
VALUE | |
rb_numeric_quo(VALUE x, VALUE y) | |
{ | |
if (RB_TYPE_P(x, T_COMPLEX)) { | |
return rb_complex_div(x, y); | |
} | |
if (RB_FLOAT_TYPE_P(y)) { | |
return rb_funcallv(x, idFdiv, 1, &y); | |
} | |
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r"); | |
return rb_rational_div(x, y); | |
} | |
VALUE | |
rb_rational_canonicalize(VALUE x) | |
{ | |
if (RB_TYPE_P(x, T_RATIONAL)) { | |
get_dat1(x); | |
if (f_one_p(dat->den)) return dat->num; | |
} | |
return x; | |
} | |
/* | |
* call-seq: | |
* int.numerator -> self | |
* | |
* Returns self. | |
*/ | |
static VALUE | |
integer_numerator(VALUE self) | |
{ | |
return self; | |
} | |
/* | |
* call-seq: | |
* int.denominator -> 1 | |
* | |
* Returns 1. | |
*/ | |
static VALUE | |
integer_denominator(VALUE self) | |
{ | |
return INT2FIX(1); | |
} | |
/* | |
* call-seq: | |
* flo.numerator -> integer | |
* | |
* Returns the numerator. The result is machine dependent. | |
* | |
* n = 0.3.numerator #=> 5404319552844595 | |
* d = 0.3.denominator #=> 18014398509481984 | |
* n.fdiv(d) #=> 0.3 | |
* | |
* See also Float#denominator. | |
*/ | |
VALUE | |
rb_float_numerator(VALUE self) | |
{ | |
double d = RFLOAT_VALUE(self); | |
VALUE r; | |
if (!isfinite(d)) | |
return self; | |
r = float_to_r(self); | |
return nurat_numerator(r); | |
} | |
/* | |
* call-seq: | |
* flo.denominator -> integer | |
* | |
* Returns the denominator (always positive). The result is machine | |
* dependent. | |
* | |
* See also Float#numerator. | |
*/ | |
VALUE | |
rb_float_denominator(VALUE self) | |
{ | |
double d = RFLOAT_VALUE(self); | |
VALUE r; | |
if (!isfinite(d)) | |
return INT2FIX(1); | |
r = float_to_r(self); | |
return nurat_denominator(r); | |
} | |
/* | |
* call-seq: | |
* nil.to_r -> (0/1) | |
* | |
* Returns zero as a rational. | |
*/ | |
static VALUE | |
nilclass_to_r(VALUE self) | |
{ | |
return rb_rational_new1(INT2FIX(0)); | |
} | |
/* | |
* call-seq: | |
* nil.rationalize([eps]) -> (0/1) | |
* | |
* Returns zero as a rational. The optional argument +eps+ is always | |
* ignored. | |
*/ | |
static VALUE | |
nilclass_rationalize(int argc, VALUE *argv, VALUE self) | |
{ | |
rb_check_arity(argc, 0, 1); | |
return nilclass_to_r(self); | |
} | |
/* | |
* call-seq: | |
* int.to_r -> rational | |
* | |
* Returns the value as a rational. | |
* | |
* 1.to_r #=> (1/1) | |
* (1<<64).to_r #=> (18446744073709551616/1) | |
*/ | |
static VALUE | |
integer_to_r(VALUE self) | |
{ | |
return rb_rational_new1(self); | |
} | |
/* | |
* call-seq: | |
* int.rationalize([eps]) -> rational | |
* | |
* Returns the value as a rational. The optional argument +eps+ is | |
* always ignored. | |
*/ | |
static VALUE | |
integer_rationalize(int argc, VALUE *argv, VALUE self) | |
{ | |
rb_check_arity(argc, 0, 1); | |
return integer_to_r(self); | |
} | |
static void | |
float_decode_internal(VALUE self, VALUE *rf, int *n) | |
{ | |
double f; | |
f = frexp(RFLOAT_VALUE(self), n); | |
f = ldexp(f, DBL_MANT_DIG); | |
*n -= DBL_MANT_DIG; | |
*rf = rb_dbl2big(f); | |
} | |
/* | |
* call-seq: | |
* flt.to_r -> rational | |
* | |
* Returns the value as a rational. | |
* | |
* 2.0.to_r #=> (2/1) | |
* 2.5.to_r #=> (5/2) | |
* -0.75.to_r #=> (-3/4) | |
* 0.0.to_r #=> (0/1) | |
* 0.3.to_r #=> (5404319552844595/18014398509481984) | |
* | |
* NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is | |
* equivalent to "3/10".to_r, but the former isn't so. | |
* | |
* 0.3.to_r == 3/10r #=> false | |
* "0.3".to_r == 3/10r #=> true | |
* | |
* See also Float#rationalize. | |
*/ | |
static VALUE | |
float_to_r(VALUE self) | |
{ | |
VALUE f; | |
int n; | |
float_decode_internal(self, &f, &n); | |
#if FLT_RADIX == 2 | |
if (n == 0) | |
return rb_rational_new1(f); | |
if (n > 0) | |
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); | |
n = -n; | |
return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n))); | |
#else | |
f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n)); | |
if (RB_TYPE_P(f, T_RATIONAL)) | |
return f; | |
return rb_rational_new1(f); | |
#endif | |
} | |
VALUE | |
rb_flt_rationalize_with_prec(VALUE flt, VALUE prec) | |
{ | |
VALUE e, a, b, p, q; | |
e = f_abs(prec); | |
a = f_sub(flt, e); | |
b = f_add(flt, e); | |
if (f_eqeq_p(a, b)) | |
return float_to_r(flt); | |
nurat_rationalize_internal(a, b, &p, &q); | |
return rb_rational_new2(p, q); | |
} | |
VALUE | |
rb_flt_rationalize(VALUE flt) | |
{ | |
VALUE a, b, f, p, q, den; | |
int n; | |
float_decode_internal(flt, &f, &n); | |
if (INT_ZERO_P(f) || n >= 0) | |
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); | |
{ | |
VALUE radix_times_f; | |
radix_times_f = rb_int_mul(INT2FIX(FLT_RADIX), f); | |
#if FLT_RADIX == 2 && 0 | |
den = rb_int_lshift(ONE, INT2FIX(1-n)); | |
#else | |
den = rb_int_positive_pow(FLT_RADIX, 1-n); | |
#endif | |
a = rb_int_minus(radix_times_f, INT2FIX(FLT_RADIX - 1)); | |
b = rb_int_plus(radix_times_f, INT2FIX(FLT_RADIX - 1)); | |
} | |
if (f_eqeq_p(a, b)) | |
return float_to_r(flt); | |
a = rb_rational_new2(a, den); | |
b = rb_rational_new2(b, den); | |
nurat_rationalize_internal(a, b, &p, &q); | |
return rb_rational_new2(p, q); | |
} | |
/* | |
* call-seq: | |
* flt.rationalize([eps]) -> rational | |
* | |
* Returns a simpler approximation of the value (flt-|eps| <= result | |
* <= flt+|eps|). If the optional argument +eps+ is not given, | |
* it will be chosen automatically. | |
* | |
* 0.3.rationalize #=> (3/10) | |
* 1.333.rationalize #=> (1333/1000) | |
* 1.333.rationalize(0.01) #=> (4/3) | |
* | |
* See also Float#to_r. | |
*/ | |
static VALUE | |
float_rationalize(int argc, VALUE *argv, VALUE self) | |
{ | |
double d = RFLOAT_VALUE(self); | |
VALUE rat; | |
int neg = d < 0.0; | |
if (neg) self = DBL2NUM(-d); | |
if (rb_check_arity(argc, 0, 1)) { | |
rat = rb_flt_rationalize_with_prec(self, argv[0]); | |
} | |
else { | |
rat = rb_flt_rationalize(self); | |
} | |
if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num)); | |
return rat; | |
} | |
inline static int | |
issign(int c) | |
{ | |
return (c == '-' || c == '+'); | |
} | |
static int | |
read_sign(const char **s, const char *const e) | |
{ | |
int sign = '?'; | |
if (*s < e && issign(**s)) { | |
sign = **s; | |
(*s)++; | |
} | |
return sign; | |
} | |
inline static int | |
islettere(int c) | |
{ | |
return (c == 'e' || c == 'E'); | |
} | |
static VALUE | |
negate_num(VALUE num) | |
{ | |
if (FIXNUM_P(num)) { | |
return rb_int_uminus(num); | |
} | |
else { | |
BIGNUM_NEGATE(num); | |
return rb_big_norm(num); | |
} | |
} | |
static int | |
read_num(const char **s, const char *const end, VALUE *num, VALUE *nexp) | |
{ | |
VALUE fp = ONE, exp, fn = ZERO, n = ZERO; | |
int expsign = 0, ok = 0; | |
char *e; | |
*nexp = ZERO; | |
*num = ZERO; | |
if (*s < end && **s != '.') { | |
n = rb_int_parse_cstr(*s, end-*s, &e, NULL, | |
10, RB_INT_PARSE_UNDERSCORE); | |
if (NIL_P(n)) | |
return 0; | |
*s = e; | |
*num = n; | |
ok = 1; | |
} | |
if (*s < end && **s == '.') { | |
size_t count = 0; | |
(*s)++; | |
fp = rb_int_parse_cstr(*s, end-*s, &e, &count, | |
10, RB_INT_PARSE_UNDERSCORE); | |
if (NIL_P(fp)) | |
return 1; | |
*s = e; | |
{ | |
VALUE l = f_expt10(*nexp = SIZET2NUM(count)); | |
n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp); | |
*num = n; | |
fn = SIZET2NUM(count); | |
} | |
ok = 1; | |
} | |
if (ok && *s + 1 < end && islettere(**s)) { | |
(*s)++; | |
expsign = read_sign(s, end); | |
exp = rb_int_parse_cstr(*s, end-*s, &e, NULL, | |
10, RB_INT_PARSE_UNDERSCORE); | |
if (NIL_P(exp)) | |
return 1; | |
*s = e; | |
if (exp != ZERO) { | |
if (expsign == '-') { | |
if (fn != ZERO) exp = rb_int_plus(exp, fn); | |
} | |
else { | |
if (fn != ZERO) exp = rb_int_minus(exp, fn); | |
exp = negate_num(exp); | |
} | |
*nexp = exp; | |
} | |
} | |
return ok; | |
} | |
inline static const char * | |
skip_ws(const char *s, const char *e) | |
{ | |
while (s < e && isspace((unsigned char)*s)) | |
++s; | |
return s; | |
} | |
static VALUE | |
parse_rat(const char *s, const char *const e, int strict, int raise) | |
{ | |
int sign; | |
VALUE num, den, nexp, dexp; | |
s = skip_ws(s, e); | |
sign = read_sign(&s, e); | |
if (!read_num(&s, e, &num, &nexp)) { | |
if (strict) return Qnil; | |
return nurat_s_alloc(rb_cRational); | |
} | |
den = ONE; | |
if (s < e && *s == '/') { | |
s++; | |
if (!read_num(&s, e, &den, &dexp)) { | |
if (strict) return Qnil; | |
den = ONE; | |
} | |
else if (den == ZERO) { | |
if (!raise) return Qnil; | |
rb_num_zerodiv(); | |
} | |
else if (strict && skip_ws(s, e) != e) { | |
return Qnil; | |
} | |
else { | |
nexp = rb_int_minus(nexp, dexp); | |
nurat_reduce(&num, &den); | |
} | |
} | |
else if (strict && skip_ws(s, e) != e) { | |
return Qnil; | |
} | |
if (nexp != ZERO) { | |
if (INT_NEGATIVE_P(nexp)) { | |
VALUE mul; | |
if (FIXNUM_P(nexp)) { | |
mul = f_expt10(LONG2NUM(-FIX2LONG(nexp))); | |
if (! RB_FLOAT_TYPE_P(mul)) { | |
num = rb_int_mul(num, mul); | |
goto reduce; | |
} | |
} | |
return sign == '-' ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL); | |
} | |
else { | |
VALUE div; | |
if (FIXNUM_P(nexp)) { | |
div = f_expt10(nexp); | |
if (! RB_FLOAT_TYPE_P(div)) { | |
den = rb_int_mul(den, div); | |
goto reduce; | |
} | |
} | |
return sign == '-' ? DBL2NUM(-0.0) : DBL2NUM(+0.0); | |
} | |
reduce: | |
nurat_reduce(&num, &den); | |
} | |
if (sign == '-') { | |
num = negate_num(num); | |
} | |
return rb_rational_raw(num, den); | |
} | |
static VALUE | |
string_to_r_strict(VALUE self, int raise) | |
{ | |
VALUE num; | |
rb_must_asciicompat(self); | |
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 1, raise); | |
if (NIL_P(num)) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE, | |
self); | |
} | |
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eFloatDomainError, "Infinity"); | |
} | |
return num; | |
} | |
/* | |
* call-seq: | |
* str.to_r -> rational | |
* | |
* Returns the result of interpreting leading characters in +str+ | |
* as a rational. Leading whitespace and extraneous characters | |
* past the end of a valid number are ignored. | |
* Digit sequences can be separated by an underscore. | |
* If there is not a valid number at the start of +str+, | |
* zero is returned. This method never raises an exception. | |
* | |
* ' 2 '.to_r #=> (2/1) | |
* '300/2'.to_r #=> (150/1) | |
* '-9.2'.to_r #=> (-46/5) | |
* '-9.2e2'.to_r #=> (-920/1) | |
* '1_234_567'.to_r #=> (1234567/1) | |
* '21 June 09'.to_r #=> (21/1) | |
* '21/06/09'.to_r #=> (7/2) | |
* 'BWV 1079'.to_r #=> (0/1) | |
* | |
* NOTE: "0.3".to_r isn't the same as 0.3.to_r. The former is | |
* equivalent to "3/10".to_r, but the latter isn't so. | |
* | |
* "0.3".to_r == 3/10r #=> true | |
* 0.3.to_r == 3/10r #=> false | |
* | |
* See also Kernel#Rational. | |
*/ | |
static VALUE | |
string_to_r(VALUE self) | |
{ | |
VALUE num; | |
rb_must_asciicompat(self); | |
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE); | |
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) | |
rb_raise(rb_eFloatDomainError, "Infinity"); | |
return num; | |
} | |
VALUE | |
rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */ | |
{ | |
VALUE num; | |
num = parse_rat(s, s + strlen(s), strict, TRUE); | |
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) | |
rb_raise(rb_eFloatDomainError, "Infinity"); | |
return num; | |
} | |
static VALUE | |
to_rational(VALUE val) | |
{ | |
return rb_convert_type_with_id(val, T_RATIONAL, "Rational", idTo_r); | |
} | |
static VALUE | |
nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise) | |
{ | |
VALUE a1 = numv, a2 = denv; | |
int state; | |
assert(a1 != Qundef); | |
if (NIL_P(a1) || NIL_P(a2)) { | |
if (!raise) return Qnil; | |
rb_raise(rb_eTypeError, "can't convert nil into Rational"); | |
} | |
if (RB_TYPE_P(a1, T_COMPLEX)) { | |
if (k_exact_zero_p(RCOMPLEX(a1)->imag)) | |
a1 = RCOMPLEX(a1)->real; | |
} | |
if (RB_TYPE_P(a2, T_COMPLEX)) { | |
if (k_exact_zero_p(RCOMPLEX(a2)->imag)) | |
a2 = RCOMPLEX(a2)->real; | |
} | |
if (RB_INTEGER_TYPE_P(a1)) { | |
// nothing to do | |
} | |
else if (RB_FLOAT_TYPE_P(a1)) { | |
a1 = float_to_r(a1); | |
} | |
else if (RB_TYPE_P(a1, T_RATIONAL)) { | |
// nothing to do | |
} | |
else if (RB_TYPE_P(a1, T_STRING)) { | |
a1 = string_to_r_strict(a1, raise); | |
if (!raise && NIL_P(a1)) return Qnil; | |
} | |
else if (!rb_respond_to(a1, idTo_r)) { | |
VALUE tmp = rb_protect(rb_check_to_int, a1, NULL); | |
rb_set_errinfo(Qnil); | |
if (!NIL_P(tmp)) { | |
a1 = tmp; | |
} | |
} | |
if (RB_INTEGER_TYPE_P(a2)) { | |
// nothing to do | |
} | |
else if (RB_FLOAT_TYPE_P(a2)) { | |
a2 = float_to_r(a2); | |
} | |
else if (RB_TYPE_P(a2, T_RATIONAL)) { | |
// nothing to do | |
} | |
else if (RB_TYPE_P(a2, T_STRING)) { | |
a2 = string_to_r_strict(a2, raise); | |
if (!raise && NIL_P(a2)) return Qnil; | |
} | |
else if (a2 != Qundef && !rb_respond_to(a2, idTo_r)) { | |
VALUE tmp = rb_protect(rb_check_to_int, a2, NULL); | |
rb_set_errinfo(Qnil); | |
if (!NIL_P(tmp)) { | |
a2 = tmp; | |
} | |
} | |
if (RB_TYPE_P(a1, T_RATIONAL)) { | |
if (a2 == Qundef || (k_exact_one_p(a2))) | |
return a1; | |
} | |
if (a2 == Qundef) { | |
if (!RB_INTEGER_TYPE_P(a1)) { | |
if (!raise) { | |
VALUE result = rb_protect(to_rational, a1, NULL); | |
rb_set_errinfo(Qnil); | |
return result; | |
} | |
return to_rational(a1); | |
} | |
} | |
else { | |
if (!k_numeric_p(a1)) { | |
if (!raise) { | |
a1 = rb_protect(to_rational, a1, &state); | |
if (state) { | |
rb_set_errinfo(Qnil); | |
return Qnil; | |
} | |
} | |
else { | |
a1 = rb_check_convert_type_with_id(a1, T_RATIONAL, "Rational", idTo_r); | |
} | |
} | |
if (!k_numeric_p(a2)) { | |
if (!raise) { | |
a2 = rb_protect(to_rational, a2, &state); | |
if (state) { | |
rb_set_errinfo(Qnil); | |
return Qnil; | |
} | |
} | |
else { | |
a2 = rb_check_convert_type_with_id(a2, T_RATIONAL, "Rational", idTo_r); | |
} | |
} | |
if ((k_numeric_p(a1) && k_numeric_p(a2)) && | |
(!f_integer_p(a1) || !f_integer_p(a2))) { | |
VALUE tmp = rb_protect(to_rational, a1, &state); | |
if (!state) { | |
a1 = tmp; | |
} | |
else { | |
rb_set_errinfo(Qnil); | |
} | |
return f_div(a1, a2); | |
} | |
} | |
a1 = nurat_int_value(a1); | |
if (a2 == Qundef) { | |
a2 = ONE; | |
} | |
else if (!k_integer_p(a2) && !raise) { | |
return Qnil; | |
} | |
else { | |
a2 = nurat_int_value(a2); | |
} | |
return nurat_s_canonicalize_internal(klass, a1, a2); | |
} | |
static VALUE | |
nurat_s_convert(int argc, VALUE *argv, VALUE klass) | |
{ | |
VALUE a1, a2; | |
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) { | |
a2 = Qundef; | |
} | |
return nurat_convert(klass, a1, a2, TRUE); | |
} | |
/* | |
* A rational number can be represented as a pair of integer numbers: | |
* a/b (b>0), where a is the numerator and b is the denominator. | |
* Integer a equals rational a/1 mathematically. | |
* | |
* In Ruby, you can create rational objects with the Kernel#Rational, | |
* to_r, or rationalize methods or by suffixing +r+ to a literal. | |
* The return values will be irreducible fractions. | |
* | |
* Rational(1) #=> (1/1) | |
* Rational(2, 3) #=> (2/3) | |
* Rational(4, -6) #=> (-2/3) | |
* 3.to_r #=> (3/1) | |
* 2/3r #=> (2/3) | |
* | |
* You can also create rational objects from floating-point numbers or | |
* strings. | |
* | |
* Rational(0.3) #=> (5404319552844595/18014398509481984) | |
* Rational('0.3') #=> (3/10) | |
* Rational('2/3') #=> (2/3) | |
* | |
* 0.3.to_r #=> (5404319552844595/18014398509481984) | |
* '0.3'.to_r #=> (3/10) | |
* '2/3'.to_r #=> (2/3) | |
* 0.3.rationalize #=> (3/10) | |
* | |
* A rational object is an exact number, which helps you to write | |
* programs without any rounding errors. | |
* | |
* 10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999 | |
* 10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1) | |
* | |
* However, when an expression includes an inexact component (numerical value | |
* or operation), it will produce an inexact result. | |
* | |
* Rational(10) / 3 #=> (10/3) | |
* Rational(10) / 3.0 #=> 3.3333333333333335 | |
* | |
* Rational(-8) ** Rational(1, 3) | |
* #=> (1.0000000000000002+1.7320508075688772i) | |
*/ | |
void | |
Init_Rational(void) | |
{ | |
VALUE compat; | |
id_abs = rb_intern_const("abs"); | |
id_integer_p = rb_intern_const("integer?"); | |
id_i_num = rb_intern_const("@numerator"); | |
id_i_den = rb_intern_const("@denominator"); | |
rb_cRational = rb_define_class("Rational", rb_cNumeric); | |
rb_define_alloc_func(rb_cRational, nurat_s_alloc); | |
rb_undef_method(CLASS_OF(rb_cRational), "allocate"); | |
rb_undef_method(CLASS_OF(rb_cRational), "new"); | |
rb_define_global_function("Rational", nurat_f_rational, -1); | |
rb_define_method(rb_cRational, "numerator", nurat_numerator, 0); | |
rb_define_method(rb_cRational, "denominator", nurat_denominator, 0); | |
rb_define_method(rb_cRational, "-@", rb_rational_uminus, 0); | |
rb_define_method(rb_cRational, "+", rb_rational_plus, 1); | |
rb_define_method(rb_cRational, "-", rb_rational_minus, 1); | |
rb_define_method(rb_cRational, "*", rb_rational_mul, 1); | |
rb_define_method(rb_cRational, "/", rb_rational_div, 1); | |
rb_define_method(rb_cRational, "quo", rb_rational_div, 1); | |
rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1); | |
rb_define_method(rb_cRational, "**", nurat_expt, 1); | |
rb_define_method(rb_cRational, "<=>", rb_rational_cmp, 1); | |
rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1); | |
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1); | |
rb_define_method(rb_cRational, "positive?", nurat_positive_p, 0); | |
rb_define_method(rb_cRational, "negative?", nurat_negative_p, 0); | |
rb_define_method(rb_cRational, "abs", rb_rational_abs, 0); | |
rb_define_method(rb_cRational, "magnitude", rb_rational_abs, 0); | |
rb_define_method(rb_cRational, "floor", nurat_floor_n, -1); | |
rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1); | |
rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1); | |
rb_define_method(rb_cRational, "round", nurat_round_n, -1); | |
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0); | |
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0); | |
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0); | |
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1); | |
rb_define_method(rb_cRational, "hash", nurat_hash, 0); | |
rb_define_method(rb_cRational, "to_s", nurat_to_s, 0); | |
rb_define_method(rb_cRational, "inspect", nurat_inspect, 0); | |
rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0); | |
/* :nodoc: */ | |
compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject); | |
rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1); | |
rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader); | |
rb_define_method(rb_cInteger, "gcd", rb_gcd, 1); | |
rb_define_method(rb_cInteger, "lcm", rb_lcm, 1); | |
rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1); | |
rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0); | |
rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0); | |
rb_define_method(rb_cNumeric, "quo", rb_numeric_quo, 1); | |
rb_define_method(rb_cInteger, "numerator", integer_numerator, 0); | |
rb_define_method(rb_cInteger, "denominator", integer_denominator, 0); | |
rb_define_method(rb_cFloat, "numerator", rb_float_numerator, 0); | |
rb_define_method(rb_cFloat, "denominator", rb_float_denominator, 0); | |
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0); | |
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1); | |
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0); | |
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1); | |
rb_define_method(rb_cFloat, "to_r", float_to_r, 0); | |
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1); | |
rb_define_method(rb_cString, "to_r", string_to_r, 0); | |
rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1); | |
rb_provide("rational.so"); /* for backward compatibility */ | |
} |