Permalink
Cannot retrieve contributors at this time
4732 lines (3913 sloc)
162 KB
// This file is a fragment of the yjit.o compilation unit. See yjit.c. | |
#include "internal.h" | |
#include "gc.h" | |
#include "internal/compile.h" | |
#include "internal/class.h" | |
#include "internal/object.h" | |
#include "internal/sanitizers.h" | |
#include "internal/string.h" | |
#include "internal/variable.h" | |
#include "internal/re.h" | |
#include "probes.h" | |
#include "probes_helper.h" | |
#include "yjit.h" | |
#include "yjit_iface.h" | |
#include "yjit_core.h" | |
#include "yjit_codegen.h" | |
#include "yjit_asm.h" | |
// Map from YARV opcodes to code generation functions | |
static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL }; | |
// Map from method entries to code generation functions | |
static st_table *yjit_method_codegen_table = NULL; | |
// Code for exiting back to the interpreter from the leave insn | |
static void *leave_exit_code; | |
// Code for full logic of returning from C method and exiting to the interpreter | |
static uint32_t outline_full_cfunc_return_pos; | |
// For implementing global code invalidation | |
struct codepage_patch { | |
uint32_t inline_patch_pos; | |
uint32_t outlined_target_pos; | |
}; | |
typedef rb_darray(struct codepage_patch) patch_array_t; | |
static patch_array_t global_inval_patches = NULL; | |
// Print the current source location for debugging purposes | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static void | |
jit_print_loc(jitstate_t *jit, const char *msg) | |
{ | |
char *ptr; | |
long len; | |
VALUE path = rb_iseq_path(jit->iseq); | |
RSTRING_GETMEM(path, ptr, len); | |
fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx)); | |
} | |
// dump an object for debugging purposes | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static void | |
jit_obj_info_dump(codeblock_t *cb, x86opnd_t opnd) { | |
push_regs(cb); | |
mov(cb, C_ARG_REGS[0], opnd); | |
call_ptr(cb, REG0, (void *)rb_obj_info_dump); | |
pop_regs(cb); | |
} | |
// Get the current instruction's opcode | |
static int | |
jit_get_opcode(jitstate_t *jit) | |
{ | |
return jit->opcode; | |
} | |
// Get the index of the next instruction | |
static uint32_t | |
jit_next_insn_idx(jitstate_t *jit) | |
{ | |
return jit->insn_idx + insn_len(jit_get_opcode(jit)); | |
} | |
// Get an instruction argument by index | |
static VALUE | |
jit_get_arg(jitstate_t *jit, size_t arg_idx) | |
{ | |
RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit))); | |
return *(jit->pc + arg_idx + 1); | |
} | |
// Load a VALUE into a register and keep track of the reference if it is on the GC heap. | |
static void | |
jit_mov_gc_ptr(jitstate_t *jit, codeblock_t *cb, x86opnd_t reg, VALUE ptr) | |
{ | |
RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64); | |
// Load the pointer constant into the specified register | |
mov(cb, reg, const_ptr_opnd((void*)ptr)); | |
// The pointer immediate is encoded as the last part of the mov written out | |
uint32_t ptr_offset = cb->write_pos - sizeof(VALUE); | |
if (!SPECIAL_CONST_P(ptr)) { | |
if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) { | |
rb_bug("allocation failed"); | |
} | |
} | |
} | |
// Check if we are compiling the instruction at the stub PC | |
// Meaning we are compiling the instruction that is next to execute | |
static bool | |
jit_at_current_insn(jitstate_t *jit) | |
{ | |
const VALUE *ec_pc = jit->ec->cfp->pc; | |
return (ec_pc == jit->pc); | |
} | |
// Peek at the nth topmost value on the Ruby stack. | |
// Returns the topmost value when n == 0. | |
static VALUE | |
jit_peek_at_stack(jitstate_t *jit, ctx_t *ctx, int n) | |
{ | |
RUBY_ASSERT(jit_at_current_insn(jit)); | |
// Note: this does not account for ctx->sp_offset because | |
// this is only available when hitting a stub, and while | |
// hitting a stub, cfp->sp needs to be up to date in case | |
// codegen functions trigger GC. See :stub-sp-flush:. | |
VALUE *sp = jit->ec->cfp->sp; | |
return *(sp - 1 - n); | |
} | |
static VALUE | |
jit_peek_at_self(jitstate_t *jit, ctx_t *ctx) | |
{ | |
return jit->ec->cfp->self; | |
} | |
RBIMPL_ATTR_MAYBE_UNUSED() | |
static VALUE | |
jit_peek_at_local(jitstate_t *jit, ctx_t *ctx, int n) | |
{ | |
RUBY_ASSERT(jit_at_current_insn(jit)); | |
int32_t local_table_size = jit->iseq->body->local_table_size; | |
RUBY_ASSERT(n < (int)jit->iseq->body->local_table_size); | |
const VALUE *ep = jit->ec->cfp->ep; | |
return ep[-VM_ENV_DATA_SIZE - local_table_size + n + 1]; | |
} | |
// Save the incremented PC on the CFP | |
// This is necessary when calleees can raise or allocate | |
static void | |
jit_save_pc(jitstate_t *jit, x86opnd_t scratch_reg) | |
{ | |
codeblock_t *cb = jit->cb; | |
mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode))); | |
mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg); | |
} | |
// Save the current SP on the CFP | |
// This realigns the interpreter SP with the JIT SP | |
// Note: this will change the current value of REG_SP, | |
// which could invalidate memory operands | |
static void | |
jit_save_sp(jitstate_t *jit, ctx_t *ctx) | |
{ | |
if (ctx->sp_offset != 0) { | |
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0); | |
codeblock_t *cb = jit->cb; | |
lea(cb, REG_SP, stack_pointer); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP); | |
ctx->sp_offset = 0; | |
} | |
} | |
// jit_save_pc() + jit_save_sp(). Should be used before calling a routine that | |
// could: | |
// - Perform GC allocation | |
// - Take the VM lock through RB_VM_LOCK_ENTER() | |
// - Perform Ruby method call | |
static void | |
jit_prepare_routine_call(jitstate_t *jit, ctx_t *ctx, x86opnd_t scratch_reg) | |
{ | |
jit->record_boundary_patch_point = true; | |
jit_save_pc(jit, scratch_reg); | |
jit_save_sp(jit, ctx); | |
} | |
// Record the current codeblock write position for rewriting into a jump into | |
// the outlined block later. Used to implement global code invalidation. | |
static void | |
record_global_inval_patch(const codeblock_t *cb, uint32_t outline_block_target_pos) | |
{ | |
struct codepage_patch patch_point = { cb->write_pos, outline_block_target_pos }; | |
if (!rb_darray_append(&global_inval_patches, patch_point)) rb_bug("allocation failed"); | |
} | |
static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit); | |
#if YJIT_STATS | |
// Add a comment at the current position in the code block | |
static void | |
_add_comment(codeblock_t *cb, const char *comment_str) | |
{ | |
// We can't add comments to the outlined code block | |
if (cb == ocb) | |
return; | |
// Avoid adding duplicate comment strings (can happen due to deferred codegen) | |
size_t num_comments = rb_darray_size(yjit_code_comments); | |
if (num_comments > 0) { | |
struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1); | |
if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) { | |
return; | |
} | |
} | |
struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str }; | |
rb_darray_append(&yjit_code_comments, new_comment); | |
} | |
// Comments for generated machine code | |
#define ADD_COMMENT(cb, comment) _add_comment((cb), (comment)) | |
// Verify the ctx's types and mappings against the compile-time stack, self, | |
// and locals. | |
static void | |
verify_ctx(jitstate_t *jit, ctx_t *ctx) | |
{ | |
// Only able to check types when at current insn | |
RUBY_ASSERT(jit_at_current_insn(jit)); | |
VALUE self_val = jit_peek_at_self(jit, ctx); | |
if (type_diff(yjit_type_of_value(self_val), ctx->self_type) == INT_MAX) { | |
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of self: %s", yjit_type_name(ctx->self_type), rb_obj_info(self_val)); | |
} | |
for (int i = 0; i < ctx->stack_size && i < MAX_TEMP_TYPES; i++) { | |
temp_type_mapping_t learned = ctx_get_opnd_mapping(ctx, OPND_STACK(i)); | |
VALUE val = jit_peek_at_stack(jit, ctx, i); | |
val_type_t detected = yjit_type_of_value(val); | |
if (learned.mapping.kind == TEMP_SELF) { | |
if (self_val != val) { | |
rb_bug("verify_ctx: stack value was mapped to self, but values did not match\n" | |
" stack: %s\n" | |
" self: %s", | |
rb_obj_info(val), | |
rb_obj_info(self_val)); | |
} | |
} | |
if (learned.mapping.kind == TEMP_LOCAL) { | |
int local_idx = learned.mapping.idx; | |
VALUE local_val = jit_peek_at_local(jit, ctx, local_idx); | |
if (local_val != val) { | |
rb_bug("verify_ctx: stack value was mapped to local, but values did not match\n" | |
" stack: %s\n" | |
" local %i: %s", | |
rb_obj_info(val), | |
local_idx, | |
rb_obj_info(local_val)); | |
} | |
} | |
if (type_diff(detected, learned.type) == INT_MAX) { | |
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value on stack: %s", yjit_type_name(learned.type), rb_obj_info(val)); | |
} | |
} | |
int32_t local_table_size = jit->iseq->body->local_table_size; | |
for (int i = 0; i < local_table_size && i < MAX_TEMP_TYPES; i++) { | |
val_type_t learned = ctx->local_types[i]; | |
VALUE val = jit_peek_at_local(jit, ctx, i); | |
val_type_t detected = yjit_type_of_value(val); | |
if (type_diff(detected, learned) == INT_MAX) { | |
rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of local: %s", yjit_type_name(learned), rb_obj_info(val)); | |
} | |
} | |
} | |
#else | |
#define ADD_COMMENT(cb, comment) ((void)0) | |
#define verify_ctx(jit, ctx) ((void)0) | |
#endif // if YJIT_STATS | |
#if YJIT_STATS | |
// Increment a profiling counter with counter_name | |
#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name)) | |
static void | |
_gen_counter_inc(codeblock_t *cb, int64_t *counter) | |
{ | |
if (!rb_yjit_opts.gen_stats) return; | |
// Use REG1 because there might be return value in REG0 | |
mov(cb, REG1, const_ptr_opnd(counter)); | |
cb_write_lock_prefix(cb); // for ractors. | |
add(cb, mem_opnd(64, REG1, 0), imm_opnd(1)); | |
} | |
// Increment a counter then take an existing side exit. | |
#define COUNTED_EXIT(side_exit, counter_name) _counted_side_exit(side_exit, &(yjit_runtime_counters . counter_name)) | |
static uint8_t * | |
_counted_side_exit(uint8_t *existing_side_exit, int64_t *counter) | |
{ | |
if (!rb_yjit_opts.gen_stats) return existing_side_exit; | |
uint8_t *start = cb_get_ptr(ocb, ocb->write_pos); | |
_gen_counter_inc(ocb, counter); | |
jmp_ptr(ocb, existing_side_exit); | |
return start; | |
} | |
#else | |
#define GEN_COUNTER_INC(cb, counter_name) ((void)0) | |
#define COUNTED_EXIT(side_exit, counter_name) side_exit | |
#endif // if YJIT_STATS | |
// Generate an exit to return to the interpreter | |
static uint32_t | |
yjit_gen_exit(VALUE *exit_pc, ctx_t *ctx, codeblock_t *cb) | |
{ | |
const uint32_t code_pos = cb->write_pos; | |
ADD_COMMENT(cb, "exit to interpreter"); | |
// Generate the code to exit to the interpreters | |
// Write the adjusted SP back into the CFP | |
if (ctx->sp_offset != 0) { | |
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0); | |
lea(cb, REG_SP, stack_pointer); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP); | |
} | |
// Update CFP->PC | |
mov(cb, RAX, const_ptr_opnd(exit_pc)); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX); | |
// Accumulate stats about interpreter exits | |
#if YJIT_STATS | |
if (rb_yjit_opts.gen_stats) { | |
mov(cb, RDI, const_ptr_opnd(exit_pc)); | |
call_ptr(cb, RSI, (void *)&yjit_count_side_exit_op); | |
} | |
#endif | |
pop(cb, REG_SP); | |
pop(cb, REG_EC); | |
pop(cb, REG_CFP); | |
mov(cb, RAX, imm_opnd(Qundef)); | |
ret(cb); | |
return code_pos; | |
} | |
// Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc. | |
static uint8_t * | |
yjit_gen_leave_exit(codeblock_t *cb) | |
{ | |
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos); | |
// Note, gen_leave() fully reconstructs interpreter state and leaves the | |
// return value in RAX before coming here. | |
// Every exit to the interpreter should be counted | |
GEN_COUNTER_INC(cb, leave_interp_return); | |
pop(cb, REG_SP); | |
pop(cb, REG_EC); | |
pop(cb, REG_CFP); | |
ret(cb); | |
return code_ptr; | |
} | |
// :side-exit: | |
// Get an exit for the current instruction in the outlined block. The code | |
// for each instruction often begins with several guards before proceeding | |
// to do work. When guards fail, an option we have is to exit to the | |
// interpreter at an instruction boundary. The piece of code that takes | |
// care of reconstructing interpreter state and exiting out of generated | |
// code is called the side exit. | |
// | |
// No guards change the logic for reconstructing interpreter state at the | |
// moment, so there is one unique side exit for each context. Note that | |
// it's incorrect to jump to the side exit after any ctx stack push/pop operations | |
// since they change the logic required for reconstructing interpreter state. | |
static uint8_t * | |
yjit_side_exit(jitstate_t *jit, ctx_t *ctx) | |
{ | |
if (!jit->side_exit_for_pc) { | |
codeblock_t *ocb = jit->ocb; | |
uint32_t pos = yjit_gen_exit(jit->pc, ctx, ocb); | |
jit->side_exit_for_pc = cb_get_ptr(ocb, pos); | |
} | |
return jit->side_exit_for_pc; | |
} | |
// Generate a runtime guard that ensures the PC is at the start of the iseq, | |
// otherwise take a side exit. This is to handle the situation of optional | |
// parameters. When a function with optional parameters is called, the entry | |
// PC for the method isn't necessarily 0, but we always generated code that | |
// assumes the entry point is 0. | |
static void | |
yjit_pc_guard(codeblock_t *cb, const rb_iseq_t *iseq) | |
{ | |
RUBY_ASSERT(cb != NULL); | |
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, pc)); | |
mov(cb, REG1, const_ptr_opnd(iseq->body->iseq_encoded)); | |
xor(cb, REG0, REG1); | |
// xor should impact ZF, so we can jz here | |
uint32_t pc_is_zero = cb_new_label(cb, "pc_is_zero"); | |
jz_label(cb, pc_is_zero); | |
// We're not starting at the first PC, so we need to exit. | |
GEN_COUNTER_INC(cb, leave_start_pc_non_zero); | |
pop(cb, REG_SP); | |
pop(cb, REG_EC); | |
pop(cb, REG_CFP); | |
mov(cb, RAX, imm_opnd(Qundef)); | |
ret(cb); | |
// PC should be at the beginning | |
cb_write_label(cb, pc_is_zero); | |
cb_link_labels(cb); | |
} | |
// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event | |
// like the interpreter. When tracing for c_return is enabled, we patch the code after | |
// the C method return to call into this to fire the event. | |
static void | |
full_cfunc_return(rb_execution_context_t *ec, VALUE return_value) | |
{ | |
rb_control_frame_t *cfp = ec->cfp; | |
RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp); | |
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); | |
RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp)); | |
RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC); | |
// CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this | |
// Pop the C func's frame and fire the c_return TracePoint event | |
// Note that this is the same order as vm_call_cfunc_with_frame(). | |
rb_vm_pop_frame(ec); | |
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value); | |
// Note, this deviates from the interpreter in that users need to enable | |
// a c_return TracePoint for this DTrace hook to work. A reasonable change | |
// since the Ruby return event works this way as well. | |
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id); | |
// Push return value into the caller's stack. We know that it's a frame that | |
// uses cfp->sp because we are patching a call done with gen_send_cfunc(). | |
ec->cfp->sp[0] = return_value; | |
ec->cfp->sp++; | |
} | |
// Landing code for when c_return tracing is enabled. See full_cfunc_return(). | |
static void | |
gen_full_cfunc_return(void) | |
{ | |
codeblock_t *cb = ocb; | |
outline_full_cfunc_return_pos = ocb->write_pos; | |
// This chunk of code expect REG_EC to be filled properly and | |
// RAX to contain the return value of the C method. | |
// Call full_cfunc_return() | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
mov(cb, C_ARG_REGS[1], RAX); | |
call_ptr(cb, REG0, (void *)full_cfunc_return); | |
// Count the exit | |
GEN_COUNTER_INC(cb, traced_cfunc_return); | |
// Return to the interpreter | |
pop(cb, REG_SP); | |
pop(cb, REG_EC); | |
pop(cb, REG_CFP); | |
mov(cb, RAX, imm_opnd(Qundef)); | |
ret(cb); | |
} | |
/* | |
Compile an interpreter entry block to be inserted into an iseq | |
Returns `NULL` if compilation fails. | |
*/ | |
static uint8_t * | |
yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq) | |
{ | |
RUBY_ASSERT(cb != NULL); | |
if (cb->write_pos + 1024 >= cb->mem_size) { | |
rb_bug("out of executable memory"); | |
} | |
// Align the current write positon to cache line boundaries | |
cb_align_pos(cb, 64); | |
uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos); | |
ADD_COMMENT(cb, "yjit prolog"); | |
push(cb, REG_CFP); | |
push(cb, REG_EC); | |
push(cb, REG_SP); | |
// We are passed EC and CFP | |
mov(cb, REG_EC, C_ARG_REGS[0]); | |
mov(cb, REG_CFP, C_ARG_REGS[1]); | |
// Load the current SP from the CFP into REG_SP | |
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp)); | |
// Setup cfp->jit_return | |
// TODO: this could use an IP relative LEA instead of an 8 byte immediate | |
mov(cb, REG0, const_ptr_opnd(leave_exit_code)); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0); | |
// We're compiling iseqs that we *expect* to start at `insn_idx`. But in | |
// the case of optional parameters, the interpreter can set the pc to a | |
// different location depending on the optional parameters. If an iseq | |
// has optional parameters, we'll add a runtime check that the PC we've | |
// compiled for is the same PC that the interpreter wants us to run with. | |
// If they don't match, then we'll take a side exit. | |
if (iseq->body->param.flags.has_opt) { | |
yjit_pc_guard(cb, iseq); | |
} | |
return code_ptr; | |
} | |
// Generate code to check for interrupts and take a side-exit. | |
// Warning: this function clobbers REG0 | |
static void | |
yjit_check_ints(codeblock_t *cb, uint8_t *side_exit) | |
{ | |
// Check for interrupts | |
// see RUBY_VM_CHECK_INTS(ec) macro | |
ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)"); | |
mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask)); | |
not(cb, REG0_32); | |
test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32); | |
jnz_ptr(cb, side_exit); | |
} | |
// Generate a stubbed unconditional jump to the next bytecode instruction. | |
// Blocks that are part of a guard chain can use this to share the same successor. | |
static void | |
jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context) | |
{ | |
// Reset the depth since in current usages we only ever jump to to | |
// chain_depth > 0 from the same instruction. | |
ctx_t reset_depth = *current_context; | |
reset_depth.chain_depth = 0; | |
blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) }; | |
// We are at the end of the current instruction. Record the boundary. | |
if (jit->record_boundary_patch_point) { | |
uint32_t exit_pos = yjit_gen_exit(jit->pc + insn_len(jit->opcode), &reset_depth, ocb); | |
record_global_inval_patch(cb, exit_pos); | |
jit->record_boundary_patch_point = false; | |
} | |
// Generate the jump instruction | |
gen_direct_jump( | |
jit, | |
&reset_depth, | |
jump_block | |
); | |
} | |
// Compile a sequence of bytecode instructions for a given basic block version | |
static void | |
yjit_gen_block(block_t *block, rb_execution_context_t *ec) | |
{ | |
RUBY_ASSERT(cb != NULL); | |
RUBY_ASSERT(block != NULL); | |
RUBY_ASSERT(!(block->blockid.idx == 0 && block->ctx.stack_size > 0)); | |
// Copy the block's context to avoid mutating it | |
ctx_t ctx_copy = block->ctx; | |
ctx_t *ctx = &ctx_copy; | |
const rb_iseq_t *iseq = block->blockid.iseq; | |
uint32_t insn_idx = block->blockid.idx; | |
const uint32_t starting_insn_idx = insn_idx; | |
// NOTE: if we are ever deployed in production, we | |
// should probably just log an error and return NULL here, | |
// so we can fail more gracefully | |
if (cb->write_pos + 1024 >= cb->mem_size) { | |
rb_bug("out of executable memory"); | |
} | |
if (ocb->write_pos + 1024 >= ocb->mem_size) { | |
rb_bug("out of executable memory (outlined block)"); | |
} | |
// Initialize a JIT state object | |
jitstate_t jit = { | |
.cb = cb, | |
.ocb = ocb, | |
.block = block, | |
.iseq = iseq, | |
.ec = ec | |
}; | |
// Mark the start position of the block | |
block->start_pos = cb->write_pos; | |
// For each instruction to compile | |
for (;;) { | |
// Get the current pc and opcode | |
VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx); | |
int opcode = yjit_opcode_at_pc(iseq, pc); | |
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE); | |
// opt_getinlinecache wants to be in a block all on its own. Cut the block short | |
// if we run into it. See gen_opt_getinlinecache for details. | |
if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) { | |
jit_jump_to_next_insn(&jit, ctx); | |
break; | |
} | |
// Set the current instruction | |
jit.insn_idx = insn_idx; | |
jit.opcode = opcode; | |
jit.pc = pc; | |
jit.side_exit_for_pc = NULL; | |
// If previous instruction requested to record the boundary | |
if (jit.record_boundary_patch_point) { | |
// Generate an exit to this instruction and record it | |
uint32_t exit_pos = yjit_gen_exit(jit.pc, ctx, ocb); | |
record_global_inval_patch(cb, exit_pos); | |
jit.record_boundary_patch_point = false; | |
} | |
// Verify our existing assumption (DEBUG) | |
if (jit_at_current_insn(&jit)) { | |
verify_ctx(&jit, ctx); | |
} | |
// Lookup the codegen function for this instruction | |
codegen_fn gen_fn = gen_fns[opcode]; | |
if (!gen_fn) { | |
// If we reach an unknown instruction, | |
// exit to the interpreter and stop compiling | |
yjit_gen_exit(jit.pc, ctx, cb); | |
break; | |
} | |
if (0) { | |
fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode)); | |
print_str(cb, insn_name(opcode)); | |
} | |
// :count-placement: | |
// Count bytecode instructions that execute in generated code. | |
// Note that the increment happens even when the output takes side exit. | |
GEN_COUNTER_INC(cb, exec_instruction); | |
// Add a comment for the name of the YARV instruction | |
ADD_COMMENT(cb, insn_name(opcode)); | |
// Call the code generation function | |
codegen_status_t status = gen_fn(&jit, ctx, cb); | |
// For now, reset the chain depth after each instruction as only the | |
// first instruction in the block can concern itself with the depth. | |
ctx->chain_depth = 0; | |
// If we can't compile this instruction | |
// exit to the interpreter and stop compiling | |
if (status == YJIT_CANT_COMPILE) { | |
// TODO: if the codegen function makes changes to ctx and then return YJIT_CANT_COMPILE, | |
// the exit this generates would be wrong. We could save a copy of the entry context | |
// and assert that ctx is the same here. | |
yjit_gen_exit(jit.pc, ctx, cb); | |
break; | |
} | |
// Move to the next instruction to compile | |
insn_idx += insn_len(opcode); | |
// If the instruction terminates this block | |
if (status == YJIT_END_BLOCK) { | |
break; | |
} | |
} | |
// Mark the end position of the block | |
block->end_pos = cb->write_pos; | |
// Store the index of the last instruction in the block | |
block->end_idx = insn_idx; | |
// We currently can't handle cases where the request is for a block that | |
// doesn't go to the next instruction. | |
RUBY_ASSERT(!jit.record_boundary_patch_point); | |
if (YJIT_DUMP_MODE >= 2) { | |
// Dump list of compiled instrutions | |
fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq); | |
for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) { | |
int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx)); | |
fprintf(stderr, " %04d %s\n", idx, insn_name(opcode)); | |
idx += insn_len(opcode); | |
} | |
} | |
} | |
static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb); | |
static codegen_status_t | |
gen_nop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Do nothing | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_dup(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Get the top value and its type | |
x86opnd_t dup_val = ctx_stack_pop(ctx, 0); | |
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); | |
// Push the same value on top | |
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping); | |
mov(cb, REG0, dup_val); | |
mov(cb, loc0, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
// duplicate stack top n elements | |
static codegen_status_t | |
gen_dupn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
// In practice, seems to be only used for n==2 | |
if (n != 2) { | |
return YJIT_CANT_COMPILE; | |
} | |
x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1); | |
x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0); | |
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(1)); | |
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); | |
x86opnd_t dst1 = ctx_stack_push_mapping(ctx, mapping1); | |
mov(cb, REG0, opnd1); | |
mov(cb, dst1, REG0); | |
x86opnd_t dst0 = ctx_stack_push_mapping(ctx, mapping0); | |
mov(cb, REG0, opnd0); | |
mov(cb, dst0, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static void | |
stack_swap(ctx_t *ctx, codeblock_t *cb, int offset0, int offset1, x86opnd_t reg0, x86opnd_t reg1) | |
{ | |
x86opnd_t opnd0 = ctx_stack_opnd(ctx, offset0); | |
x86opnd_t opnd1 = ctx_stack_opnd(ctx, offset1); | |
temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset0)); | |
temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset1)); | |
mov(cb, reg0, opnd0); | |
mov(cb, reg1, opnd1); | |
mov(cb, opnd0, reg1); | |
mov(cb, opnd1, reg0); | |
ctx_set_opnd_mapping(ctx, OPND_STACK(offset0), mapping1); | |
ctx_set_opnd_mapping(ctx, OPND_STACK(offset1), mapping0); | |
} | |
// Swap top 2 stack entries | |
static codegen_status_t | |
gen_swap(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
stack_swap(ctx , cb, 0, 1, REG0, REG1); | |
return YJIT_KEEP_COMPILING; | |
} | |
// set Nth stack entry to stack top | |
static codegen_status_t | |
gen_setn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
// Set the destination | |
x86opnd_t top_val = ctx_stack_pop(ctx, 0); | |
x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n); | |
mov(cb, REG0, top_val); | |
mov(cb, dst_opnd, REG0); | |
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); | |
ctx_set_opnd_mapping(ctx, OPND_STACK(n), mapping); | |
return YJIT_KEEP_COMPILING; | |
} | |
// get nth stack value, then push it | |
static codegen_status_t | |
gen_topn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t n = (int32_t)jit_get_arg(jit, 0); | |
// Get top n type / operand | |
x86opnd_t top_n_val = ctx_stack_opnd(ctx, n); | |
temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(n)); | |
x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping); | |
mov(cb, REG0, top_n_val); | |
mov(cb, loc0, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_pop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Decrement SP | |
ctx_stack_pop(ctx, 1); | |
return YJIT_KEEP_COMPILING; | |
} | |
// Pop n values off the stack | |
static codegen_status_t | |
gen_adjuststack(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
ctx_stack_pop(ctx, n); | |
return YJIT_KEEP_COMPILING; | |
} | |
// new array initialized from top N values | |
static codegen_status_t | |
gen_newarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
// Save the PC and SP because we are allocating | |
jit_prepare_routine_call(jit, ctx, REG0); | |
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n)); | |
// call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts); | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
mov(cb, C_ARG_REGS[1], imm_opnd(n)); | |
lea(cb, C_ARG_REGS[2], values_ptr); | |
call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values); | |
ctx_stack_pop(ctx, n); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
// dup array | |
static codegen_status_t | |
gen_duparray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
VALUE ary = jit_get_arg(jit, 0); | |
// Save the PC and SP because we are allocating | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// call rb_ary_resurrect(VALUE ary); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary); | |
call_ptr(cb, REG0, (void *)rb_ary_resurrect); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
VALUE rb_vm_splat_array(VALUE flag, VALUE ary); | |
// call to_a on the array on the stack | |
static codegen_status_t | |
gen_splatarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
VALUE flag = (VALUE) jit_get_arg(jit, 0); | |
// Save the PC and SP because the callee may allocate | |
// Note that this modifies REG_SP, which is why we do it first | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// Get the operands from the stack | |
x86opnd_t ary_opnd = ctx_stack_pop(ctx, 1); | |
// Call rb_vm_splat_array(flag, ary) | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], flag); | |
mov(cb, C_ARG_REGS[1], ary_opnd); | |
call_ptr(cb, REG1, (void *) rb_vm_splat_array); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
// new range initialized from top 2 values | |
static codegen_status_t | |
gen_newrange(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t flag = (rb_num_t)jit_get_arg(jit, 0); | |
// rb_range_new() allocates and can raise | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// val = rb_range_new(low, high, (int)flag); | |
mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, 1)); | |
mov(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, 0)); | |
mov(cb, C_ARG_REGS[2], imm_opnd(flag)); | |
call_ptr(cb, REG0, (void *)rb_range_new); | |
ctx_stack_pop(ctx, 2); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static void | |
guard_object_is_heap(codeblock_t *cb, x86opnd_t object_opnd, ctx_t *ctx, uint8_t *side_exit) | |
{ | |
ADD_COMMENT(cb, "guard object is heap"); | |
// Test that the object is not an immediate | |
test(cb, object_opnd, imm_opnd(RUBY_IMMEDIATE_MASK)); | |
jnz_ptr(cb, side_exit); | |
// Test that the object is not false or nil | |
cmp(cb, object_opnd, imm_opnd(Qnil)); | |
RUBY_ASSERT(Qfalse < Qnil); | |
jbe_ptr(cb, side_exit); | |
} | |
static inline void | |
guard_object_is_array(codeblock_t *cb, x86opnd_t object_opnd, x86opnd_t flags_opnd, ctx_t *ctx, uint8_t *side_exit) | |
{ | |
ADD_COMMENT(cb, "guard object is array"); | |
// Pull out the type mask | |
mov(cb, flags_opnd, member_opnd(object_opnd, struct RBasic, flags)); | |
and(cb, flags_opnd, imm_opnd(RUBY_T_MASK)); | |
// Compare the result with T_ARRAY | |
cmp(cb, flags_opnd, imm_opnd(T_ARRAY)); | |
jne_ptr(cb, side_exit); | |
} | |
// push enough nils onto the stack to fill out an array | |
static codegen_status_t | |
gen_expandarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int flag = (int) jit_get_arg(jit, 1); | |
// If this instruction has the splat flag, then bail out. | |
if (flag & 0x01) { | |
GEN_COUNTER_INC(cb, expandarray_splat); | |
return YJIT_CANT_COMPILE; | |
} | |
// If this instruction has the postarg flag, then bail out. | |
if (flag & 0x02) { | |
GEN_COUNTER_INC(cb, expandarray_postarg); | |
return YJIT_CANT_COMPILE; | |
} | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// num is the number of requested values. If there aren't enough in the | |
// array then we're going to push on nils. | |
int num = (int)jit_get_arg(jit, 0); | |
val_type_t array_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); | |
x86opnd_t array_opnd = ctx_stack_pop(ctx, 1); | |
if (array_type.type == ETYPE_NIL) { | |
// special case for a, b = nil pattern | |
// push N nils onto the stack | |
for (int i = 0; i < num; i++) { | |
x86opnd_t push = ctx_stack_push(ctx, TYPE_NIL); | |
mov(cb, push, imm_opnd(Qnil)); | |
} | |
return YJIT_KEEP_COMPILING; | |
} | |
// Move the array from the stack into REG0 and check that it's an array. | |
mov(cb, REG0, array_opnd); | |
guard_object_is_heap(cb, REG0, ctx, COUNTED_EXIT(side_exit, expandarray_not_array)); | |
guard_object_is_array(cb, REG0, REG1, ctx, COUNTED_EXIT(side_exit, expandarray_not_array)); | |
// If we don't actually want any values, then just return. | |
if (num == 0) { | |
return YJIT_KEEP_COMPILING; | |
} | |
// Pull out the embed flag to check if it's an embedded array. | |
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); | |
mov(cb, REG1, flags_opnd); | |
// Move the length of the embedded array into REG1. | |
and(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_MASK)); | |
shr(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_SHIFT)); | |
// Conditionally move the length of the heap array into REG1. | |
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG)); | |
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.len)); | |
// Only handle the case where the number of values in the array is greater | |
// than or equal to the number of values requested. | |
cmp(cb, REG1, imm_opnd(num)); | |
jl_ptr(cb, COUNTED_EXIT(side_exit, expandarray_rhs_too_small)); | |
// Load the address of the embedded array into REG1. | |
// (struct RArray *)(obj)->as.ary | |
lea(cb, REG1, member_opnd(REG0, struct RArray, as.ary)); | |
// Conditionally load the address of the heap array into REG1. | |
// (struct RArray *)(obj)->as.heap.ptr | |
test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG)); | |
cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.ptr)); | |
// Loop backward through the array and push each element onto the stack. | |
for (int32_t i = (int32_t) num - 1; i >= 0; i--) { | |
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, REG0, mem_opnd(64, REG1, i * SIZEOF_VALUE)); | |
mov(cb, top, REG0); | |
} | |
return YJIT_KEEP_COMPILING; | |
} | |
// new hash initialized from top N values | |
static codegen_status_t | |
gen_newhash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
if (n == 0) { | |
// Save the PC and SP because we are allocating | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// val = rb_hash_new(); | |
call_ptr(cb, REG0, (void *)rb_hash_new); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
static codegen_status_t | |
gen_putnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Write constant at SP | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_NIL); | |
mov(cb, stack_top, imm_opnd(Qnil)); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_putobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
VALUE arg = jit_get_arg(jit, 0); | |
if (FIXNUM_P(arg)) | |
{ | |
// Keep track of the fixnum type tag | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM); | |
x86opnd_t imm = imm_opnd((int64_t)arg); | |
// 64-bit immediates can't be directly written to memory | |
if (imm.num_bits <= 32) | |
{ | |
mov(cb, stack_top, imm); | |
} | |
else | |
{ | |
mov(cb, REG0, imm); | |
mov(cb, stack_top, REG0); | |
} | |
} | |
else if (arg == Qtrue || arg == Qfalse) | |
{ | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_IMM); | |
mov(cb, stack_top, imm_opnd((int64_t)arg)); | |
} | |
else | |
{ | |
// Load the value to push into REG0 | |
// Note that this value may get moved by the GC | |
VALUE put_val = jit_get_arg(jit, 0); | |
jit_mov_gc_ptr(jit, cb, REG0, put_val); | |
val_type_t val_type = yjit_type_of_value(put_val); | |
// Write argument at SP | |
x86opnd_t stack_top = ctx_stack_push(ctx, val_type); | |
mov(cb, stack_top, REG0); | |
} | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_putstring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
VALUE put_val = jit_get_arg(jit, 0); | |
// Save the PC and SP because the callee will allocate | |
jit_prepare_routine_call(jit, ctx, REG0); | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], put_val); | |
call_ptr(cb, REG0, (void *)rb_ec_str_resurrect); | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_STRING); | |
mov(cb, stack_top, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_putobject_int2fix(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int opcode = jit_get_opcode(jit); | |
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1; | |
// Write constant at SP | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val))); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_putself(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Load self from CFP | |
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); | |
// Write it on the stack | |
x86opnd_t stack_top = ctx_stack_push_self(ctx); | |
mov(cb, stack_top, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_putspecialobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
enum vm_special_object_type type = (enum vm_special_object_type)jit_get_arg(jit, 0); | |
if (type == VM_SPECIAL_OBJECT_VMCORE) { | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_HEAP); | |
jit_mov_gc_ptr(jit, cb, REG0, rb_mRubyVMFrozenCore); | |
mov(cb, stack_top, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// TODO: implement for VM_SPECIAL_OBJECT_CBASE and | |
// VM_SPECIAL_OBJECT_CONST_BASE | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
// Get EP at level from CFP | |
static void | |
gen_get_ep(codeblock_t *cb, x86opnd_t reg, uint32_t level) | |
{ | |
// Load environment pointer EP from CFP | |
mov(cb, reg, member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
while (level--) { | |
// Get the previous EP from the current EP | |
// See GET_PREV_EP(ep) macro | |
// VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03)) | |
mov(cb, reg, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL)); | |
and(cb, reg, imm_opnd(~0x03)); | |
} | |
} | |
// Compute the index of a local variable from its slot index | |
static uint32_t | |
slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx) | |
{ | |
// Convoluted rules from local_var_name() in iseq.c | |
int32_t local_table_size = iseq->body->local_table_size; | |
int32_t op = slot_idx - VM_ENV_DATA_SIZE; | |
int32_t local_idx = local_idx = local_table_size - op - 1; | |
RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size); | |
return (uint32_t)local_idx; | |
} | |
static codegen_status_t | |
gen_getlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Compute the offset from BP to the local | |
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0); | |
const int32_t offs = -(SIZEOF_VALUE * slot_idx); | |
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx); | |
// Load environment pointer EP (level 0) from CFP | |
gen_get_ep(cb, REG0, 0); | |
// Load the local from the EP | |
mov(cb, REG0, mem_opnd(64, REG0, offs)); | |
// Write the local at SP | |
x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx); | |
mov(cb, stack_top, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_getlocal_generic(ctx_t *ctx, uint32_t local_idx, uint32_t level) | |
{ | |
gen_get_ep(cb, REG0, level); | |
// Load the local from the block | |
// val = *(vm_get_ep(GET_EP(), level) - idx); | |
const int32_t offs = -(SIZEOF_VALUE * local_idx); | |
mov(cb, REG0, mem_opnd(64, REG0, offs)); | |
// Write the local at SP | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_top, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_getlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t idx = (int32_t)jit_get_arg(jit, 0); | |
int32_t level = (int32_t)jit_get_arg(jit, 1); | |
return gen_getlocal_generic(ctx, idx, level); | |
} | |
static codegen_status_t | |
gen_getlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t idx = (int32_t)jit_get_arg(jit, 0); | |
return gen_getlocal_generic(ctx, idx, 1); | |
} | |
static codegen_status_t | |
gen_setlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
/* | |
vm_env_write(const VALUE *ep, int index, VALUE v) | |
{ | |
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS]; | |
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) { | |
VM_STACK_ENV_WRITE(ep, index, v); | |
} | |
else { | |
vm_env_write_slowpath(ep, index, v); | |
} | |
} | |
*/ | |
int32_t slot_idx = (int32_t)jit_get_arg(jit, 0); | |
uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx); | |
// Load environment pointer EP (level 0) from CFP | |
gen_get_ep(cb, REG0, 0); | |
// flags & VM_ENV_FLAG_WB_REQUIRED | |
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS); | |
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED)); | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 | |
jnz_ptr(cb, side_exit); | |
// Set the type of the local variable in the context | |
val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); | |
ctx_set_local_type(ctx, local_idx, temp_type); | |
// Pop the value to write from the stack | |
x86opnd_t stack_top = ctx_stack_pop(ctx, 1); | |
mov(cb, REG1, stack_top); | |
// Write the value at the environment pointer | |
const int32_t offs = -8 * slot_idx; | |
mov(cb, mem_opnd(64, REG0, offs), REG1); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_setlocal_generic(jitstate_t *jit, ctx_t *ctx, uint32_t local_idx, uint32_t level) | |
{ | |
// Load environment pointer EP at level | |
gen_get_ep(cb, REG0, level); | |
// flags & VM_ENV_FLAG_WB_REQUIRED | |
x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS); | |
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED)); | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 | |
jnz_ptr(cb, side_exit); | |
// Pop the value to write from the stack | |
x86opnd_t stack_top = ctx_stack_pop(ctx, 1); | |
mov(cb, REG1, stack_top); | |
// Write the value at the environment pointer | |
const int32_t offs = -(SIZEOF_VALUE * local_idx); | |
mov(cb, mem_opnd(64, REG0, offs), REG1); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_setlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t idx = (int32_t)jit_get_arg(jit, 0); | |
int32_t level = (int32_t)jit_get_arg(jit, 1); | |
return gen_setlocal_generic(jit, ctx, idx, level); | |
} | |
static codegen_status_t | |
gen_setlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t idx = (int32_t)jit_get_arg(jit, 0); | |
return gen_setlocal_generic(jit, ctx, idx, 1); | |
} | |
// Check that `self` is a pointer to an object on the GC heap | |
static void | |
guard_self_is_heap(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx) | |
{ | |
// `self` is constant throughout the entire region, so we only need to do this check once. | |
if (!ctx->self_type.is_heap) { | |
ADD_COMMENT(cb, "guard self is heap"); | |
RUBY_ASSERT(Qfalse < Qnil); | |
test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK)); | |
jnz_ptr(cb, side_exit); | |
cmp(cb, self_opnd, imm_opnd(Qnil)); | |
jbe_ptr(cb, side_exit); | |
ctx->self_type.is_heap = 1; | |
} | |
} | |
static void | |
gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
case SHAPE_NEXT1: | |
RUBY_ASSERT(false); | |
break; | |
case SHAPE_DEFAULT: | |
jnz_ptr(cb, target0); | |
break; | |
} | |
} | |
static void | |
gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
case SHAPE_NEXT1: | |
RUBY_ASSERT(false); | |
break; | |
case SHAPE_DEFAULT: | |
jz_ptr(cb, target0); | |
break; | |
} | |
} | |
static void | |
gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
case SHAPE_NEXT1: | |
RUBY_ASSERT(false); | |
break; | |
case SHAPE_DEFAULT: | |
jbe_ptr(cb, target0); | |
break; | |
} | |
} | |
enum jcc_kinds { | |
JCC_JNE, | |
JCC_JNZ, | |
JCC_JZ, | |
JCC_JE, | |
JCC_JBE, | |
JCC_JNA, | |
}; | |
// Generate a jump to a stub that recompiles the current YARV instruction on failure. | |
// When depth_limitk is exceeded, generate a jump to a side exit. | |
static void | |
jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit) | |
{ | |
branchgen_fn target0_gen_fn; | |
switch (jcc) { | |
case JCC_JNE: | |
case JCC_JNZ: | |
target0_gen_fn = gen_jnz_to_target0; | |
break; | |
case JCC_JZ: | |
case JCC_JE: | |
target0_gen_fn = gen_jz_to_target0; | |
break; | |
case JCC_JBE: | |
case JCC_JNA: | |
target0_gen_fn = gen_jbe_to_target0; | |
break; | |
default: | |
rb_bug("yjit: unimplemented jump kind"); | |
break; | |
}; | |
if (ctx->chain_depth < depth_limit) { | |
ctx_t deeper = *ctx; | |
deeper.chain_depth++; | |
gen_branch( | |
jit, | |
ctx, | |
(blockid_t) { jit->iseq, jit->insn_idx }, | |
&deeper, | |
BLOCKID_NULL, | |
NULL, | |
target0_gen_fn | |
); | |
} | |
else { | |
target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT); | |
} | |
} | |
enum { | |
GETIVAR_MAX_DEPTH = 10, // up to 5 different classes, and embedded or not for each | |
OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays | |
SEND_MAX_DEPTH = 5, // up to 5 different classes | |
}; | |
VALUE rb_vm_set_ivar_idx(VALUE obj, uint32_t idx, VALUE val); | |
// Codegen for setting an instance variable. | |
// Preconditions: | |
// - receiver is in REG0 | |
// - receiver has the same class as CLASS_OF(comptime_receiver) | |
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled | |
static codegen_status_t | |
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, VALUE recv, VALUE klass, ID ivar_name) | |
{ | |
// Save the PC and SP because the callee may allocate | |
// Note that this modifies REG_SP, which is why we do it first | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// Get the operands from the stack | |
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); | |
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1); | |
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(recv, ivar_name); | |
// Call rb_vm_set_ivar_idx with the receiver, the index of the ivar, and the value | |
mov(cb, C_ARG_REGS[0], recv_opnd); | |
mov(cb, C_ARG_REGS[1], imm_opnd(ivar_index)); | |
mov(cb, C_ARG_REGS[2], val_opnd); | |
call_ptr(cb, REG0, (void *)rb_vm_set_ivar_idx); | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, out_opnd, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
// Codegen for getting an instance variable. | |
// Preconditions: | |
// - receiver is in REG0 | |
// - receiver has the same class as CLASS_OF(comptime_receiver) | |
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled | |
static codegen_status_t | |
gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit) | |
{ | |
VALUE comptime_val_klass = CLASS_OF(comptime_receiver); | |
const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard | |
// If the class uses the default allocator, instances should all be T_OBJECT | |
// NOTE: This assumes nobody changes the allocator of the class after allocation. | |
// Eventually, we can encode whether an object is T_OBJECT or not | |
// inside object shapes. | |
if (!RB_TYPE_P(comptime_receiver, T_OBJECT) || | |
rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) { | |
// General case. Call rb_ivar_get(). | |
// VALUE rb_ivar_get(VALUE obj, ID id) | |
ADD_COMMENT(cb, "call rb_ivar_get()"); | |
// The function could raise exceptions. | |
jit_prepare_routine_call(jit, ctx, REG1); | |
mov(cb, C_ARG_REGS[0], REG0); | |
mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name)); | |
call_ptr(cb, REG1, (void *)rb_ivar_get); | |
if (!reg0_opnd.is_self) { | |
(void)ctx_stack_pop(ctx, 1); | |
} | |
// Push the ivar on the stack | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, out_opnd, RAX); | |
// Jump to next instruction. This allows guard chains to share the same successor. | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
/* | |
// FIXME: | |
// This check was added because of a failure in a test involving the | |
// Nokogiri Document class where we see a T_DATA that still has the default | |
// allocator. | |
// Aaron Patterson argues that this is a bug in the C extension, because | |
// people could call .allocate() on the class and still get a T_OBJECT | |
// For now I added an extra dynamic check that the receiver is T_OBJECT | |
// so we can safely pass all the tests in Shopify Core. | |
// | |
// Guard that the receiver is T_OBJECT | |
// #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK) | |
ADD_COMMENT(cb, "guard receiver is T_OBJECT"); | |
mov(cb, REG1, member_opnd(REG0, struct RBasic, flags)); | |
and(cb, REG1, imm_opnd(RUBY_T_MASK)); | |
cmp(cb, REG1, imm_opnd(T_OBJECT)); | |
jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit); | |
*/ | |
// FIXME: Mapping the index could fail when there is too many ivar names. If we're | |
// compiling for a branch stub that can cause the exception to be thrown from the | |
// wrong PC. | |
uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(comptime_receiver, ivar_name); | |
// Pop receiver if it's on the temp stack | |
if (!reg0_opnd.is_self) { | |
(void)ctx_stack_pop(ctx, 1); | |
} | |
// Compile time self is embedded and the ivar index lands within the object | |
if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) { | |
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h | |
// Guard that self is embedded | |
// TODO: BT and JC is shorter | |
ADD_COMMENT(cb, "guard embedded getivar"); | |
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); | |
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED)); | |
jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, side_exit); | |
// Load the variable | |
x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE); | |
mov(cb, REG1, ivar_opnd); | |
// Guard that the variable is not Qundef | |
cmp(cb, REG1, imm_opnd(Qundef)); | |
mov(cb, REG0, imm_opnd(Qnil)); | |
cmove(cb, REG1, REG0); | |
// Push the ivar on the stack | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, out_opnd, REG1); | |
} | |
else { | |
// Compile time value is *not* embeded. | |
// Guard that value is *not* embedded | |
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h | |
ADD_COMMENT(cb, "guard extended getivar"); | |
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); | |
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED)); | |
jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, side_exit); | |
// check that the extended table is big enough | |
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) { | |
// Check that the slot is inside the extended table (num_slots > index) | |
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv)); | |
cmp(cb, num_slots, imm_opnd(ivar_index)); | |
jle_ptr(cb, COUNTED_EXIT(side_exit, getivar_idx_out_of_range)); | |
} | |
// Get a pointer to the extended table | |
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr)); | |
mov(cb, REG0, tbl_opnd); | |
// Read the ivar from the extended table | |
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index); | |
mov(cb, REG0, ivar_opnd); | |
// Check that the ivar is not Qundef | |
cmp(cb, REG0, imm_opnd(Qundef)); | |
mov(cb, REG1, imm_opnd(Qnil)); | |
cmove(cb, REG0, REG1); | |
// Push the ivar on the stack | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, out_opnd, REG0); | |
} | |
// Jump to next instruction. This allows guard chains to share the same successor. | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
static codegen_status_t | |
gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
ID ivar_name = (ID)jit_get_arg(jit, 0); | |
VALUE comptime_val = jit_peek_at_self(jit, ctx); | |
VALUE comptime_val_klass = CLASS_OF(comptime_val); | |
// Generate a side exit | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Guard that the receiver has the same class as the one from compile time. | |
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); | |
guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, getivar_se_self_not_heap), ctx); | |
jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit); | |
return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit); | |
} | |
void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic); | |
static codegen_status_t | |
gen_setinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
ID id = (ID)jit_get_arg(jit, 0); | |
IVC ic = (IVC)jit_get_arg(jit, 1); | |
// Save the PC and SP because the callee may allocate | |
// Note that this modifies REG_SP, which is why we do it first | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// Get the operands from the stack | |
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); | |
// Call rb_vm_setinstancevariable(iseq, obj, id, val, ic); | |
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); | |
mov(cb, C_ARG_REGS[3], val_opnd); | |
mov(cb, C_ARG_REGS[2], imm_opnd(id)); | |
mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic)); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq); | |
call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable); | |
return YJIT_KEEP_COMPILING; | |
} | |
bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v); | |
static codegen_status_t | |
gen_defined(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0); | |
VALUE obj = (VALUE)jit_get_arg(jit, 1); | |
VALUE pushval = (VALUE)jit_get_arg(jit, 2); | |
// Save the PC and SP because the callee may allocate | |
// Note that this modifies REG_SP, which is why we do it first | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// Get the operands from the stack | |
x86opnd_t v_opnd = ctx_stack_pop(ctx, 1); | |
// Call vm_defined(ec, reg_cfp, op_type, obj, v) | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
mov(cb, C_ARG_REGS[1], REG_CFP); | |
mov(cb, C_ARG_REGS[2], imm_opnd(op_type)); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj); | |
mov(cb, C_ARG_REGS[4], v_opnd); | |
call_ptr(cb, REG0, (void *)rb_vm_defined); | |
// if (vm_defined(ec, GET_CFP(), op_type, obj, v)) { | |
// val = pushval; | |
// } | |
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval); | |
cmp(cb, AL, imm_opnd(0)); | |
mov(cb, RAX, imm_opnd(Qnil)); | |
cmovnz(cb, RAX, REG1); | |
// Push the return value onto the stack | |
val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN; | |
x86opnd_t stack_ret = ctx_stack_push(ctx, out_type); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_checktype(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0); | |
// Only three types are emitted by compile.c | |
if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) { | |
val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); | |
x86opnd_t val = ctx_stack_pop(ctx, 1); | |
x86opnd_t stack_ret; | |
// Check if we know from type information | |
if ((type_val == T_STRING && val_type.type == ETYPE_STRING) || | |
(type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) || | |
(type_val == T_HASH && val_type.type == ETYPE_HASH)) { | |
// guaranteed type match | |
stack_ret = ctx_stack_push(ctx, TYPE_TRUE); | |
mov(cb, stack_ret, imm_opnd(Qtrue)); | |
return YJIT_KEEP_COMPILING; | |
} | |
else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) { | |
// guaranteed not to match T_STRING/T_ARRAY/T_HASH | |
stack_ret = ctx_stack_push(ctx, TYPE_FALSE); | |
mov(cb, stack_ret, imm_opnd(Qfalse)); | |
return YJIT_KEEP_COMPILING; | |
} | |
mov(cb, REG0, val); | |
mov(cb, REG1, imm_opnd(Qfalse)); | |
uint32_t ret = cb_new_label(cb, "ret"); | |
if (!val_type.is_heap) { | |
// if (SPECIAL_CONST_P(val)) { | |
// Return Qfalse via REG1 if not on heap | |
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); | |
jnz_label(cb, ret); | |
cmp(cb, REG0, imm_opnd(Qnil)); | |
jbe_label(cb, ret); | |
} | |
// Check type on object | |
mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags))); | |
and(cb, REG0, imm_opnd(RUBY_T_MASK)); | |
cmp(cb, REG0, imm_opnd(type_val)); | |
mov(cb, REG0, imm_opnd(Qtrue)); | |
// REG1 contains Qfalse from above | |
cmove(cb, REG1, REG0); | |
cb_write_label(cb, ret); | |
stack_ret = ctx_stack_push(ctx, TYPE_IMM); | |
mov(cb, stack_ret, REG1); | |
cb_link_labels(cb); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
static codegen_status_t | |
gen_concatstrings(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); | |
// Save the PC and SP because we are allocating | |
jit_prepare_routine_call(jit, ctx, REG0); | |
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n)); | |
// call rb_str_concat_literals(long n, const VALUE *strings); | |
mov(cb, C_ARG_REGS[0], imm_opnd(n)); | |
lea(cb, C_ARG_REGS[1], values_ptr); | |
call_ptr(cb, REG0, (void *)rb_str_concat_literals); | |
ctx_stack_pop(ctx, n); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static void | |
guard_two_fixnums(ctx_t *ctx, uint8_t *side_exit) | |
{ | |
// Get the stack operand types | |
val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); | |
val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1)); | |
if (arg0_type.is_heap || arg1_type.is_heap) { | |
jmp_ptr(cb, side_exit); | |
return; | |
} | |
if (arg0_type.type != ETYPE_FIXNUM && arg0_type.type != ETYPE_UNKNOWN) { | |
jmp_ptr(cb, side_exit); | |
return; | |
} | |
if (arg1_type.type != ETYPE_FIXNUM && arg1_type.type != ETYPE_UNKNOWN) { | |
jmp_ptr(cb, side_exit); | |
return; | |
} | |
RUBY_ASSERT(!arg0_type.is_heap); | |
RUBY_ASSERT(!arg1_type.is_heap); | |
RUBY_ASSERT(arg0_type.type == ETYPE_FIXNUM || arg0_type.type == ETYPE_UNKNOWN); | |
RUBY_ASSERT(arg1_type.type == ETYPE_FIXNUM || arg1_type.type == ETYPE_UNKNOWN); | |
// Get stack operands without popping them | |
x86opnd_t arg1 = ctx_stack_opnd(ctx, 0); | |
x86opnd_t arg0 = ctx_stack_opnd(ctx, 1); | |
// If not fixnums, fall back | |
if (arg0_type.type != ETYPE_FIXNUM) { | |
ADD_COMMENT(cb, "guard arg0 fixnum"); | |
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG)); | |
jz_ptr(cb, side_exit); | |
} | |
if (arg1_type.type != ETYPE_FIXNUM) { | |
ADD_COMMENT(cb, "guard arg1 fixnum"); | |
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG)); | |
jz_ptr(cb, side_exit); | |
} | |
// Set stack types in context | |
ctx_upgrade_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM); | |
ctx_upgrade_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM); | |
} | |
// Conditional move operation used by comparison operators | |
typedef void (*cmov_fn)(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1); | |
static codegen_status_t | |
gen_fixnum_cmp(jitstate_t *jit, ctx_t *ctx, cmov_fn cmov_op) | |
{ | |
// Defer compilation so we can specialize base on a runtime receiver | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
// Create a size-exit to fall back to the interpreter | |
// Note: we generate the side-exit before popping operands from the stack | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that both operands are fixnums | |
guard_two_fixnums(ctx, side_exit); | |
// Get the operands from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Compare the arguments | |
xor(cb, REG0_32, REG0_32); // REG0 = Qfalse | |
mov(cb, REG1, arg0); | |
cmp(cb, REG1, arg1); | |
mov(cb, REG1, imm_opnd(Qtrue)); | |
cmov_op(cb, REG0, REG1); | |
// Push the output on the stack | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, dst, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_lt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_fixnum_cmp(jit, ctx, cmovl); | |
} | |
static codegen_status_t | |
gen_opt_le(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_fixnum_cmp(jit, ctx, cmovle); | |
} | |
static codegen_status_t | |
gen_opt_ge(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_fixnum_cmp(jit, ctx, cmovge); | |
} | |
static codegen_status_t | |
gen_opt_gt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_fixnum_cmp(jit, ctx, cmovg); | |
} | |
// Implements specialized equality for either two fixnum or two strings | |
// Returns true if code was generated, otherwise false | |
static bool | |
gen_equality_specialized(jitstate_t *jit, ctx_t *ctx, uint8_t *side_exit) | |
{ | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
x86opnd_t a_opnd = ctx_stack_opnd(ctx, 1); | |
x86opnd_t b_opnd = ctx_stack_opnd(ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_EQ)) { | |
// if overridden, emit the generic version | |
return false; | |
} | |
guard_two_fixnums(ctx, side_exit); | |
mov(cb, REG0, a_opnd); | |
cmp(cb, REG0, b_opnd); | |
mov(cb, REG0, imm_opnd(Qfalse)); | |
mov(cb, REG1, imm_opnd(Qtrue)); | |
cmove(cb, REG0, REG1); | |
// Push the output on the stack | |
ctx_stack_pop(ctx, 2); | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM); | |
mov(cb, dst, REG0); | |
return true; | |
} | |
else if (CLASS_OF(comptime_a) == rb_cString && | |
CLASS_OF(comptime_b) == rb_cString) { | |
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_EQ)) { | |
// if overridden, emit the generic version | |
return false; | |
} | |
// Load a and b in preparation for call later | |
mov(cb, C_ARG_REGS[0], a_opnd); | |
mov(cb, C_ARG_REGS[1], b_opnd); | |
// Guard that a is a String | |
mov(cb, REG0, C_ARG_REGS[0]); | |
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(1), comptime_a, SEND_MAX_DEPTH, side_exit); | |
uint32_t ret = cb_new_label(cb, "ret"); | |
// If they are equal by identity, return true | |
cmp(cb, C_ARG_REGS[0], C_ARG_REGS[1]); | |
mov(cb, RAX, imm_opnd(Qtrue)); | |
je_label(cb, ret); | |
// Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard) | |
if (ctx_get_opnd_type(ctx, OPND_STACK(0)).type != ETYPE_STRING) { | |
mov(cb, REG0, C_ARG_REGS[1]); | |
// Note: any T_STRING is valid here, but we check for a ::String for simplicity | |
jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(0), comptime_b, SEND_MAX_DEPTH, side_exit); | |
} | |
// Call rb_str_eql_internal(a, b) | |
call_ptr(cb, REG0, (void *)rb_str_eql_internal); | |
// Push the output on the stack | |
cb_write_label(cb, ret); | |
ctx_stack_pop(ctx, 2); | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM); | |
mov(cb, dst, RAX); | |
cb_link_labels(cb); | |
return true; | |
} | |
else { | |
return false; | |
} | |
} | |
static codegen_status_t | |
gen_opt_eq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize base on a runtime receiver | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (gen_equality_specialized(jit, ctx, side_exit)) { | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
else { | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block); | |
static codegen_status_t | |
gen_opt_neq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// opt_neq is passed two rb_call_data as arguments: | |
// first for ==, second for != | |
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1); | |
return gen_send_general(jit, ctx, cd, NULL); | |
} | |
static codegen_status_t | |
gen_opt_aref(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0); | |
int32_t argc = (int32_t)vm_ci_argc(cd->ci); | |
// Only JIT one arg calls like `ary[6]` | |
if (argc != 1) { | |
GEN_COUNTER_INC(cb, oaref_argc_not_one); | |
return YJIT_CANT_COMPILE; | |
} | |
// Defer compilation so we can specialize base on a runtime receiver | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
// Remember the context on entry for adding guard chains | |
const ctx_t starting_context = *ctx; | |
// Specialize base on compile time values | |
VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0); | |
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1); | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) { | |
if (!assume_bop_not_redefined(jit->block, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Pop the stack operands | |
x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1); | |
x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1); | |
mov(cb, REG0, recv_opnd); | |
// if (SPECIAL_CONST_P(recv)) { | |
// Bail if receiver is not a heap object | |
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); | |
jnz_ptr(cb, side_exit); | |
cmp(cb, REG0, imm_opnd(Qfalse)); | |
je_ptr(cb, side_exit); | |
cmp(cb, REG0, imm_opnd(Qnil)); | |
je_ptr(cb, side_exit); | |
// Bail if recv has a class other than ::Array. | |
// BOP_AREF check above is only good for ::Array. | |
mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass))); | |
mov(cb, REG0, const_ptr_opnd((void *)rb_cArray)); | |
cmp(cb, REG0, REG1); | |
jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit); | |
// Bail if idx is not a FIXNUM | |
mov(cb, REG1, idx_opnd); | |
test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG)); | |
jz_ptr(cb, COUNTED_EXIT(side_exit, oaref_arg_not_fixnum)); | |
// Call VALUE rb_ary_entry_internal(VALUE ary, long offset). | |
// It never raises or allocates, so we don't need to write to cfp->pc. | |
{ | |
mov(cb, RDI, recv_opnd); | |
sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int | |
mov(cb, RSI, REG1); | |
call_ptr(cb, REG0, (void *)rb_ary_entry_internal); | |
// Push the return value onto the stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
} | |
// Jump to next instruction. This allows guard chains to share the same successor. | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
else if (CLASS_OF(comptime_recv) == rb_cHash) { | |
if (!assume_bop_not_redefined(jit->block, HASH_REDEFINED_OP_FLAG, BOP_AREF)) { | |
return YJIT_CANT_COMPILE; | |
} | |
x86opnd_t key_opnd = ctx_stack_opnd(ctx, 0); | |
x86opnd_t recv_opnd = ctx_stack_opnd(ctx, 1); | |
// Guard that the receiver is a hash | |
mov(cb, REG0, recv_opnd); | |
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(1), comptime_recv, OPT_AREF_MAX_CHAIN_DEPTH, side_exit); | |
// Setup arguments for rb_hash_aref(). | |
mov(cb, C_ARG_REGS[0], REG0); | |
mov(cb, C_ARG_REGS[1], key_opnd); | |
// Prepare to call rb_hash_aref(). It might call #hash on the key. | |
jit_prepare_routine_call(jit, ctx, REG0); | |
call_ptr(cb, REG0, (void *)rb_hash_aref); | |
// Pop the key and the reciever | |
(void)ctx_stack_pop(ctx, 2); | |
// Push the return value onto the stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
// Jump to next instruction. This allows guard chains to share the same successor. | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
else { | |
// General case. Call the [] method. | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_aset(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 2); | |
VALUE comptime_key = jit_peek_at_stack(jit, ctx, 1); | |
// Get the operands from the stack | |
x86opnd_t recv = ctx_stack_opnd(ctx, 2); | |
x86opnd_t key = ctx_stack_opnd(ctx, 1); | |
x86opnd_t val = ctx_stack_opnd(ctx, 0); | |
if (CLASS_OF(comptime_recv) == rb_cArray && FIXNUM_P(comptime_key)) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Guard receiver is an Array | |
mov(cb, REG0, recv); | |
jit_guard_known_klass(jit, ctx, rb_cArray, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit); | |
// Guard key is a fixnum | |
mov(cb, REG0, key); | |
jit_guard_known_klass(jit, ctx, rb_cInteger, OPND_STACK(1), comptime_key, SEND_MAX_DEPTH, side_exit); | |
// Call rb_ary_store | |
mov(cb, C_ARG_REGS[0], recv); | |
mov(cb, C_ARG_REGS[1], key); | |
sar(cb, C_ARG_REGS[1], imm_opnd(1)); // FIX2LONG(key) | |
mov(cb, C_ARG_REGS[2], val); | |
// We might allocate or raise | |
jit_prepare_routine_call(jit, ctx, REG0); | |
call_ptr(cb, REG0, (void *)rb_ary_store); | |
// rb_ary_store returns void | |
// stored value should still be on stack | |
mov(cb, REG0, ctx_stack_opnd(ctx, 0)); | |
// Push the return value onto the stack | |
ctx_stack_pop(ctx, 3); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, REG0); | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
else if (CLASS_OF(comptime_recv) == rb_cHash) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Guard receiver is a Hash | |
mov(cb, REG0, recv); | |
jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit); | |
// Call rb_hash_aset | |
mov(cb, C_ARG_REGS[0], recv); | |
mov(cb, C_ARG_REGS[1], key); | |
mov(cb, C_ARG_REGS[2], val); | |
// We might allocate or raise | |
jit_prepare_routine_call(jit, ctx, REG0); | |
call_ptr(cb, REG0, (void *)rb_hash_aset); | |
// Push the return value onto the stack | |
ctx_stack_pop(ctx, 3); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
else { | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_and(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
// Create a size-exit to fall back to the interpreter | |
// Note: we generate the side-exit before popping operands from the stack | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that both operands are fixnums | |
guard_two_fixnums(ctx, side_exit); | |
// Get the operands and destination from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Do the bitwise and arg0 & arg1 | |
mov(cb, REG0, arg0); | |
and(cb, REG0, arg1); | |
// Push the output on the stack | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, dst, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_or(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
// Create a size-exit to fall back to the interpreter | |
// Note: we generate the side-exit before popping operands from the stack | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that both operands are fixnums | |
guard_two_fixnums(ctx, side_exit); | |
// Get the operands and destination from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Do the bitwise or arg0 | arg1 | |
mov(cb, REG0, arg0); | |
or(cb, REG0, arg1); | |
// Push the output on the stack | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, dst, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_minus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
// Create a size-exit to fall back to the interpreter | |
// Note: we generate the side-exit before popping operands from the stack | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that both operands are fixnums | |
guard_two_fixnums(ctx, side_exit); | |
// Get the operands and destination from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Subtract arg0 - arg1 and test for overflow | |
mov(cb, REG0, arg0); | |
sub(cb, REG0, arg1); | |
jo_ptr(cb, side_exit); | |
add(cb, REG0, imm_opnd(1)); | |
// Push the output on the stack | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, dst, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_plus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Defer compilation so we can specialize on a runtime `self` | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); | |
VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); | |
if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { | |
// Create a size-exit to fall back to the interpreter | |
// Note: we generate the side-exit before popping operands from the stack | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (!assume_bop_not_redefined(jit->block, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that both operands are fixnums | |
guard_two_fixnums(ctx, side_exit); | |
// Get the operands and destination from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Add arg0 + arg1 and test for overflow | |
mov(cb, REG0, arg0); | |
sub(cb, REG0, imm_opnd(1)); | |
add(cb, REG0, arg1); | |
jo_ptr(cb, side_exit); | |
// Push the output on the stack | |
x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, dst, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
} | |
static codegen_status_t | |
gen_opt_mult(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_div(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
VALUE rb_vm_opt_mod(VALUE recv, VALUE obj); | |
static codegen_status_t | |
gen_opt_mod(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Save the PC and SP because the callee may allocate bignums | |
// Note that this modifies REG_SP, which is why we do it first | |
jit_prepare_routine_call(jit, ctx, REG0); | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Get the operands from the stack | |
x86opnd_t arg1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t arg0 = ctx_stack_pop(ctx, 1); | |
// Call rb_vm_opt_mod(VALUE recv, VALUE obj) | |
mov(cb, C_ARG_REGS[0], arg0); | |
mov(cb, C_ARG_REGS[1], arg1); | |
call_ptr(cb, REG0, (void *)rb_vm_opt_mod); | |
// If val == Qundef, bail to do a method call | |
cmp(cb, RAX, imm_opnd(Qundef)); | |
je_ptr(cb, side_exit); | |
// Push the return value onto the stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_opt_ltlt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_nil_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_empty_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Delegate to send, call the method on the recv | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_str_freeze(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) { | |
return YJIT_CANT_COMPILE; | |
} | |
VALUE str = jit_get_arg(jit, 0); | |
jit_mov_gc_ptr(jit, cb, REG0, str); | |
// Push the return value onto the stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); | |
mov(cb, stack_ret, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_opt_str_uminus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
if (!assume_bop_not_redefined(jit->block, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) { | |
return YJIT_CANT_COMPILE; | |
} | |
VALUE str = jit_get_arg(jit, 0); | |
jit_mov_gc_ptr(jit, cb, REG0, str); | |
// Push the return value onto the stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); | |
mov(cb, stack_ret, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_opt_not(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_size(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_length(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_regexpmatch2(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
return gen_opt_send_without_block(jit, ctx, cb); | |
} | |
static codegen_status_t | |
gen_opt_case_dispatch(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Normally this instruction would lookup the key in a hash and jump to an | |
// offset based on that. | |
// Instead we can take the fallback case and continue with the next | |
// instruciton. | |
// We'd hope that our jitted code will be sufficiently fast without the | |
// hash lookup, at least for small hashes, but it's worth revisiting this | |
// assumption in the future. | |
ctx_stack_pop(ctx, 1); | |
return YJIT_KEEP_COMPILING; // continue with the next instruction | |
} | |
static void | |
gen_branchif_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
jz_ptr(cb, target1); | |
break; | |
case SHAPE_NEXT1: | |
jnz_ptr(cb, target0); | |
break; | |
case SHAPE_DEFAULT: | |
jnz_ptr(cb, target0); | |
jmp_ptr(cb, target1); | |
break; | |
} | |
} | |
static codegen_status_t | |
gen_branchif(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); | |
// Check for interrupts, but only on backward branches that may create loops | |
if (jump_offset < 0) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
yjit_check_ints(cb, side_exit); | |
} | |
// Test if any bit (outside of the Qnil bit) is on | |
// RUBY_Qfalse /* ...0000 0000 */ | |
// RUBY_Qnil /* ...0000 1000 */ | |
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); | |
test(cb, val_opnd, imm_opnd(~Qnil)); | |
// Get the branch target instruction offsets | |
uint32_t next_idx = jit_next_insn_idx(jit); | |
uint32_t jump_idx = next_idx + jump_offset; | |
blockid_t next_block = { jit->iseq, next_idx }; | |
blockid_t jump_block = { jit->iseq, jump_idx }; | |
// Generate the branch instructions | |
gen_branch( | |
jit, | |
ctx, | |
jump_block, | |
ctx, | |
next_block, | |
ctx, | |
gen_branchif_branch | |
); | |
return YJIT_END_BLOCK; | |
} | |
static void | |
gen_branchunless_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
jnz_ptr(cb, target1); | |
break; | |
case SHAPE_NEXT1: | |
jz_ptr(cb, target0); | |
break; | |
case SHAPE_DEFAULT: | |
jz_ptr(cb, target0); | |
jmp_ptr(cb, target1); | |
break; | |
} | |
} | |
static codegen_status_t | |
gen_branchunless(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); | |
// Check for interrupts, but only on backward branches that may create loops | |
if (jump_offset < 0) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
yjit_check_ints(cb, side_exit); | |
} | |
// Test if any bit (outside of the Qnil bit) is on | |
// RUBY_Qfalse /* ...0000 0000 */ | |
// RUBY_Qnil /* ...0000 1000 */ | |
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); | |
test(cb, val_opnd, imm_opnd(~Qnil)); | |
// Get the branch target instruction offsets | |
uint32_t next_idx = jit_next_insn_idx(jit); | |
uint32_t jump_idx = next_idx + jump_offset; | |
blockid_t next_block = { jit->iseq, next_idx }; | |
blockid_t jump_block = { jit->iseq, jump_idx }; | |
// Generate the branch instructions | |
gen_branch( | |
jit, | |
ctx, | |
jump_block, | |
ctx, | |
next_block, | |
ctx, | |
gen_branchunless_branch | |
); | |
return YJIT_END_BLOCK; | |
} | |
static void | |
gen_branchnil_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
jne_ptr(cb, target1); | |
break; | |
case SHAPE_NEXT1: | |
je_ptr(cb, target0); | |
break; | |
case SHAPE_DEFAULT: | |
je_ptr(cb, target0); | |
jmp_ptr(cb, target1); | |
break; | |
} | |
} | |
static codegen_status_t | |
gen_branchnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); | |
// Check for interrupts, but only on backward branches that may create loops | |
if (jump_offset < 0) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
yjit_check_ints(cb, side_exit); | |
} | |
// Test if the value is Qnil | |
// RUBY_Qnil /* ...0000 1000 */ | |
x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); | |
cmp(cb, val_opnd, imm_opnd(Qnil)); | |
// Get the branch target instruction offsets | |
uint32_t next_idx = jit_next_insn_idx(jit); | |
uint32_t jump_idx = next_idx + jump_offset; | |
blockid_t next_block = { jit->iseq, next_idx }; | |
blockid_t jump_block = { jit->iseq, jump_idx }; | |
// Generate the branch instructions | |
gen_branch( | |
jit, | |
ctx, | |
jump_block, | |
ctx, | |
next_block, | |
ctx, | |
gen_branchnil_branch | |
); | |
return YJIT_END_BLOCK; | |
} | |
static codegen_status_t | |
gen_jump(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); | |
// Check for interrupts, but only on backward branches that may create loops | |
if (jump_offset < 0) { | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
yjit_check_ints(cb, side_exit); | |
} | |
// Get the branch target instruction offsets | |
uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset; | |
blockid_t jump_block = { jit->iseq, jump_idx }; | |
// Generate the jump instruction | |
gen_direct_jump( | |
jit, | |
ctx, | |
jump_block | |
); | |
return YJIT_END_BLOCK; | |
} | |
/* | |
Guard that a stack operand has the same class as known_klass. | |
Recompile as contingency if possible, or take side exit a last resort. | |
*/ | |
static bool | |
jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit) | |
{ | |
val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd); | |
if (known_klass == rb_cNilClass) { | |
RUBY_ASSERT(!val_type.is_heap); | |
if (val_type.type != ETYPE_NIL) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
ADD_COMMENT(cb, "guard object is nil"); | |
cmp(cb, REG0, imm_opnd(Qnil)); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_NIL); | |
} | |
} | |
else if (known_klass == rb_cTrueClass) { | |
RUBY_ASSERT(!val_type.is_heap); | |
if (val_type.type != ETYPE_TRUE) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
ADD_COMMENT(cb, "guard object is true"); | |
cmp(cb, REG0, imm_opnd(Qtrue)); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_TRUE); | |
} | |
} | |
else if (known_klass == rb_cFalseClass) { | |
RUBY_ASSERT(!val_type.is_heap); | |
if (val_type.type != ETYPE_FALSE) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
ADD_COMMENT(cb, "guard object is false"); | |
STATIC_ASSERT(qfalse_is_zero, Qfalse == 0); | |
test(cb, REG0, REG0); | |
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FALSE); | |
} | |
} | |
else if (known_klass == rb_cInteger && FIXNUM_P(sample_instance)) { | |
RUBY_ASSERT(!val_type.is_heap); | |
// We will guard fixnum and bignum as though they were separate classes | |
// BIGNUM can be handled by the general else case below | |
if (val_type.type != ETYPE_FIXNUM || !val_type.is_imm) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
ADD_COMMENT(cb, "guard object is fixnum"); | |
test(cb, REG0, imm_opnd(RUBY_FIXNUM_FLAG)); | |
jit_chain_guard(JCC_JZ, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FIXNUM); | |
} | |
} | |
else if (known_klass == rb_cSymbol && STATIC_SYM_P(sample_instance)) { | |
RUBY_ASSERT(!val_type.is_heap); | |
// We will guard STATIC vs DYNAMIC as though they were separate classes | |
// DYNAMIC symbols can be handled by the general else case below | |
if (val_type.type != ETYPE_SYMBOL || !val_type.is_imm) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
ADD_COMMENT(cb, "guard object is static symbol"); | |
STATIC_ASSERT(special_shift_is_8, RUBY_SPECIAL_SHIFT == 8); | |
cmp(cb, REG0_8, imm_opnd(RUBY_SYMBOL_FLAG)); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_STATIC_SYMBOL); | |
} | |
} | |
else if (known_klass == rb_cFloat && FLONUM_P(sample_instance)) { | |
RUBY_ASSERT(!val_type.is_heap); | |
if (val_type.type != ETYPE_FLONUM || !val_type.is_imm) { | |
RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); | |
// We will guard flonum vs heap float as though they were separate classes | |
ADD_COMMENT(cb, "guard object is flonum"); | |
mov(cb, REG1, REG0); | |
and(cb, REG1, imm_opnd(RUBY_FLONUM_MASK)); | |
cmp(cb, REG1, imm_opnd(RUBY_FLONUM_FLAG)); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FLONUM); | |
} | |
} | |
else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) { | |
// Singleton classes are attached to one specific object, so we can | |
// avoid one memory access (and potentially the is_heap check) by | |
// looking for the expected object directly. | |
// Note that in case the sample instance has a singleton class that | |
// doesn't attach to the sample instance, it means the sample instance | |
// has an empty singleton class that hasn't been materialized yet. In | |
// this case, comparing against the sample instance doesn't gurantee | |
// that its singleton class is empty, so we can't avoid the memory | |
// access. As an example, `Object.new.singleton_class` is an object in | |
// this situation. | |
ADD_COMMENT(cb, "guard known object with singleton class"); | |
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object. | |
jit_mov_gc_ptr(jit, cb, REG1, sample_instance); | |
cmp(cb, REG0, REG1); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
} | |
else { | |
RUBY_ASSERT(!val_type.is_imm); | |
// Check that the receiver is a heap object | |
// Note: if we get here, the class doesn't have immediate instances. | |
if (!val_type.is_heap) { | |
ADD_COMMENT(cb, "guard not immediate"); | |
RUBY_ASSERT(Qfalse < Qnil); | |
test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); | |
jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit); | |
cmp(cb, REG0, imm_opnd(Qnil)); | |
jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit); | |
ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_HEAP); | |
} | |
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass)); | |
// Bail if receiver class is different from known_klass | |
// TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class. | |
ADD_COMMENT(cb, "guard known class"); | |
jit_mov_gc_ptr(jit, cb, REG1, known_klass); | |
cmp(cb, klass_opnd, REG1); | |
jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); | |
} | |
return true; | |
} | |
// Generate ancestry guard for protected callee. | |
// Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee). | |
static void | |
jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit) | |
{ | |
// See vm_call_method(). | |
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self)); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class); | |
// Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise. | |
// VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass); | |
call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of); | |
test(cb, RAX, RAX); | |
jz_ptr(cb, COUNTED_EXIT(side_exit, send_se_protected_check_failed)); | |
} | |
// Return true when the codegen function generates code. | |
// known_recv_klass is non-NULL when the caller has used jit_guard_known_klass(). | |
// See yjit_reg_method(). | |
typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass); | |
// Register a specialized codegen function for a particular method. Note that | |
// the if the function returns true, the code it generates runs without a | |
// control frame and without interrupt checks. To avoid creating observable | |
// behavior changes, the codegen function should only target simple code paths | |
// that do not allocate and do not make method calls. | |
static void | |
yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn) | |
{ | |
ID mid = rb_intern(mid_str); | |
const rb_method_entry_t *me = rb_method_entry_at(klass, mid); | |
if (!me) { | |
rb_bug("undefined optimized method: %s", rb_id2name(mid)); | |
} | |
// For now, only cfuncs are supported | |
RUBY_ASSERT(me && me->def); | |
RUBY_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC); | |
st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn); | |
} | |
// Codegen for rb_obj_not(). | |
// Note, caller is responsible for generating all the right guards, including | |
// arity guards. | |
static bool | |
jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) | |
{ | |
const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0)); | |
if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) { | |
ADD_COMMENT(cb, "rb_obj_not(nil_or_false)"); | |
ctx_stack_pop(ctx, 1); | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_TRUE); | |
mov(cb, out_opnd, imm_opnd(Qtrue)); | |
} | |
else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) { | |
// Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE. | |
ADD_COMMENT(cb, "rb_obj_not(truthy)"); | |
ctx_stack_pop(ctx, 1); | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FALSE); | |
mov(cb, out_opnd, imm_opnd(Qfalse)); | |
} | |
else { | |
// jit_guard_known_klass() already ran on the receiver which should | |
// have deduced deduced the type of the receiver. This case should be | |
// rare if not unreachable. | |
return false; | |
} | |
return true; | |
} | |
// Codegen for rb_true() | |
static bool | |
jit_rb_true(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) | |
{ | |
ADD_COMMENT(cb, "nil? == true"); | |
ctx_stack_pop(ctx, 1); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_TRUE); | |
mov(cb, stack_ret, imm_opnd(Qtrue)); | |
return true; | |
} | |
// Codegen for rb_false() | |
static bool | |
jit_rb_false(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) | |
{ | |
ADD_COMMENT(cb, "nil? == false"); | |
ctx_stack_pop(ctx, 1); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_FALSE); | |
mov(cb, stack_ret, imm_opnd(Qfalse)); | |
return true; | |
} | |
// Codegen for rb_obj_equal() | |
// object identity comparison | |
static bool | |
jit_rb_obj_equal(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) | |
{ | |
ADD_COMMENT(cb, "equal?"); | |
x86opnd_t obj1 = ctx_stack_pop(ctx, 1); | |
x86opnd_t obj2 = ctx_stack_pop(ctx, 1); | |
mov(cb, REG0, obj1); | |
cmp(cb, REG0, obj2); | |
mov(cb, REG0, imm_opnd(Qtrue)); | |
mov(cb, REG1, imm_opnd(Qfalse)); | |
cmovne(cb, REG0, REG1); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM); | |
mov(cb, stack_ret, REG0); | |
return true; | |
} | |
static VALUE | |
yjit_str_bytesize(VALUE str) | |
{ | |
return LONG2NUM(RSTRING_LEN(str)); | |
} | |
static bool | |
jit_rb_str_bytesize(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) | |
{ | |
ADD_COMMENT(cb, "String#bytesize"); | |
x86opnd_t recv = ctx_stack_pop(ctx, 1); | |
mov(cb, C_ARG_REGS[0], recv); | |
call_ptr(cb, REG0, (void *)&yjit_str_bytesize); | |
x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FIXNUM); | |
mov(cb, out_opnd, RAX); | |
return true; | |
} | |
// Codegen for rb_str_to_s() | |
// When String#to_s is called on a String instance, the method returns self and | |
// most of the overhead comes from setting up the method call. We observed that | |
// this situation happens a lot in some workloads. | |
static bool | |
jit_rb_str_to_s(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) | |
{ | |
if (recv_known_klass && *recv_known_klass == rb_cString) { | |
ADD_COMMENT(cb, "to_s on plain string"); | |
// The method returns the receiver, which is already on the stack. | |
// No stack movement. | |
return true; | |
} | |
return false; | |
} | |
static bool | |
jit_thread_s_current(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) | |
{ | |
ADD_COMMENT(cb, "Thread.current"); | |
ctx_stack_pop(ctx, 1); | |
// ec->thread_ptr | |
mov(cb, REG0, member_opnd(REG_EC, rb_execution_context_t, thread_ptr)); | |
// thread->self | |
mov(cb, REG0, member_opnd(REG0, rb_thread_t, self)); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP); | |
mov(cb, stack_ret, REG0); | |
return true; | |
} | |
// Check if we know how to codegen for a particular cfunc method | |
static method_codegen_t | |
lookup_cfunc_codegen(const rb_method_definition_t *def) | |
{ | |
method_codegen_t gen_fn; | |
if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) { | |
return gen_fn; | |
} | |
return NULL; | |
} | |
// Is anyone listening for :c_call and :c_return event currently? | |
static bool | |
c_method_tracing_currently_enabled(const jitstate_t *jit) | |
{ | |
rb_event_flag_t tracing_events; | |
if (rb_multi_ractor_p()) { | |
tracing_events = ruby_vm_event_enabled_global_flags; | |
} | |
else { | |
// At the time of writing, events are never removed from | |
// ruby_vm_event_enabled_global_flags so always checking using it would | |
// mean we don't compile even after tracing is disabled. | |
tracing_events = rb_ec_ractor_hooks(jit->ec)->events; | |
} | |
return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN); | |
} | |
static codegen_status_t | |
gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) | |
{ | |
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc); | |
// If the function expects a Ruby array of arguments | |
if (cfunc->argc < 0 && cfunc->argc != -1) { | |
GEN_COUNTER_INC(cb, send_cfunc_ruby_array_varg); | |
return YJIT_CANT_COMPILE; | |
} | |
// If the argument count doesn't match | |
if (cfunc->argc >= 0 && cfunc->argc != argc) { | |
GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch); | |
return YJIT_CANT_COMPILE; | |
} | |
// Don't JIT functions that need C stack arguments for now | |
if (cfunc->argc >= 0 && argc + 1 > NUM_C_ARG_REGS) { | |
GEN_COUNTER_INC(cb, send_cfunc_toomany_args); | |
return YJIT_CANT_COMPILE; | |
} | |
if (c_method_tracing_currently_enabled(jit)) { | |
// Don't JIT if tracing c_call or c_return | |
GEN_COUNTER_INC(cb, send_cfunc_tracing); | |
return YJIT_CANT_COMPILE; | |
} | |
// Delegate to codegen for C methods if we have it. | |
{ | |
method_codegen_t known_cfunc_codegen; | |
if ((known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) { | |
if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc, recv_known_klass)) { | |
// cfunc codegen generated code. Terminate the block so | |
// there isn't multiple calls in the same block. | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
} | |
} | |
// Callee method ID | |
//ID mid = vm_ci_mid(ci); | |
//printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc); | |
//print_str(cb, ""); | |
//print_str(cb, "calling CFUNC:"); | |
//print_str(cb, rb_id2name(mid)); | |
//print_str(cb, "recv"); | |
//print_ptr(cb, recv); | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Check for interrupts | |
yjit_check_ints(cb, side_exit); | |
// Stack overflow check | |
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) | |
// REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t) | |
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + 2 * sizeof(rb_control_frame_t))); | |
cmp(cb, REG_CFP, REG0); | |
jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow)); | |
// Points to the receiver operand on the stack | |
x86opnd_t recv = ctx_stack_opnd(ctx, argc); | |
// Store incremented PC into current control frame in case callee raises. | |
jit_save_pc(jit, REG0); | |
if (block) { | |
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block(). | |
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases | |
// with cfp->block_code. | |
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0); | |
} | |
// Increment the stack pointer by 3 (in the callee) | |
// sp += 3 | |
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3)); | |
// Write method entry at sp[-3] | |
// sp[-3] = me; | |
// Put compile time cme into REG1. It's assumed to be valid because we are notified when | |
// any cme we depend on become outdated. See rb_yjit_method_lookup_change(). | |
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme); | |
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1); | |
// Write block handler at sp[-2] | |
// sp[-2] = block_handler; | |
if (block) { | |
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp)); | |
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self)); | |
or(cb, REG1, imm_opnd(1)); | |
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1); | |
} | |
else { | |
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE)); | |
} | |
// Write env flags at sp[-1] | |
// sp[-1] = frame_type; | |
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL; | |
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type)); | |
// Allocate a new CFP (ec->cfp--) | |
sub( | |
cb, | |
member_opnd(REG_EC, rb_execution_context_t, cfp), | |
imm_opnd(sizeof(rb_control_frame_t)) | |
); | |
// Setup the new frame | |
// *cfp = (const struct rb_control_frame_struct) { | |
// .pc = 0, | |
// .sp = sp, | |
// .iseq = 0, | |
// .self = recv, | |
// .ep = sp - 1, | |
// .block_code = 0, | |
// .__bp__ = sp, | |
// }; | |
mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp)); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0)); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0)); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0)); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0); | |
sub(cb, REG0, imm_opnd(sizeof(VALUE))); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0); | |
mov(cb, REG0, recv); | |
mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0); | |
// Verify that we are calling the right function | |
if (YJIT_CHECK_MODE > 0) { | |
// Call check_cfunc_dispatch | |
mov(cb, C_ARG_REGS[0], recv); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci); | |
mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func)); | |
jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme); | |
call_ptr(cb, REG0, (void *)&check_cfunc_dispatch); | |
} | |
// Copy SP into RAX because REG_SP will get overwritten | |
lea(cb, RAX, ctx_sp_opnd(ctx, 0)); | |
// Pop the C function arguments from the stack (in the caller) | |
ctx_stack_pop(ctx, argc + 1); | |
// Write interpreter SP into CFP. | |
// Needed in case the callee yields to the block. | |
jit_save_sp(jit, ctx); | |
// Non-variadic method | |
if (cfunc->argc >= 0) { | |
// Copy the arguments from the stack to the C argument registers | |
// self is the 0th argument and is at index argc from the stack top | |
for (int32_t i = 0; i < argc + 1; ++i) | |
{ | |
x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * SIZEOF_VALUE); | |
x86opnd_t c_arg_reg = C_ARG_REGS[i]; | |
mov(cb, c_arg_reg, stack_opnd); | |
} | |
} | |
// Variadic method | |
if (cfunc->argc == -1) { | |
// The method gets a pointer to the first argument | |
// rb_f_puts(int argc, VALUE *argv, VALUE recv) | |
mov(cb, C_ARG_REGS[0], imm_opnd(argc)); | |
lea(cb, C_ARG_REGS[1], mem_opnd(64, RAX, -(argc) * SIZEOF_VALUE)); | |
mov(cb, C_ARG_REGS[2], mem_opnd(64, RAX, -(argc + 1) * SIZEOF_VALUE)); | |
} | |
// Call the C function | |
// VALUE ret = (cfunc->func)(recv, argv[0], argv[1]); | |
// cfunc comes from compile-time cme->def, which we assume to be stable. | |
// Invalidation logic is in rb_yjit_method_lookup_change() | |
call_ptr(cb, REG0, (void*)cfunc->func); | |
// Record code position for TracePoint patching. See full_cfunc_return(). | |
record_global_inval_patch(cb, outline_full_cfunc_return_pos); | |
// Push the return value on the Ruby stack | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
// Pop the stack frame (ec->cfp++) | |
add( | |
cb, | |
member_opnd(REG_EC, rb_execution_context_t, cfp), | |
imm_opnd(sizeof(rb_control_frame_t)) | |
); | |
// cfunc calls may corrupt types | |
ctx_clear_local_types(ctx); | |
// Note: the return block of gen_send_iseq() has ctx->sp_offset == 1 | |
// which allows for sharing the same successor. | |
// Jump (fall through) to the call continuation block | |
// We do this to end the current block after the call | |
jit_jump_to_next_insn(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
static void | |
gen_return_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) | |
{ | |
switch (shape) { | |
case SHAPE_NEXT0: | |
case SHAPE_NEXT1: | |
RUBY_ASSERT(false); | |
break; | |
case SHAPE_DEFAULT: | |
mov(cb, REG0, const_ptr_opnd(target0)); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0); | |
break; | |
} | |
} | |
// Returns whether the iseq only needs positional (lead) argument setup. | |
static bool | |
iseq_lead_only_arg_setup_p(const rb_iseq_t *iseq) | |
{ | |
// When iseq->body->local_iseq == iseq, setup_parameters_complex() | |
// doesn't do anything to setup the block parameter. | |
bool takes_block = iseq->body->param.flags.has_block; | |
return (!takes_block || iseq->body->local_iseq == iseq) && | |
iseq->body->param.flags.has_opt == false && | |
iseq->body->param.flags.has_rest == false && | |
iseq->body->param.flags.has_post == false && | |
iseq->body->param.flags.has_kw == false && | |
iseq->body->param.flags.has_kwrest == false && | |
iseq->body->param.flags.accepts_no_kwarg == false; | |
} | |
bool rb_iseq_only_optparam_p(const rb_iseq_t *iseq); | |
bool rb_iseq_only_kwparam_p(const rb_iseq_t *iseq); | |
// If true, the iseq is leaf and it can be replaced by a single C call. | |
static bool | |
rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq) | |
{ | |
unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave)); | |
unsigned int leave_len = insn_len(BIN(leave)); | |
return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) && | |
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) && | |
rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) && | |
iseq->body->builtin_inline_p | |
); | |
} | |
// Return an rb_builtin_function if the iseq contains only that leaf builtin function. | |
static const struct rb_builtin_function* | |
rb_leaf_builtin_function(const rb_iseq_t *iseq) | |
{ | |
if (!rb_leaf_invokebuiltin_iseq_p(iseq)) | |
return NULL; | |
return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1]; | |
} | |
static codegen_status_t | |
gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc) | |
{ | |
const rb_iseq_t *iseq = def_iseq_ptr(cme->def); | |
// When you have keyword arguments, there is an extra object that gets | |
// placed on the stack the represents a bitmap of the keywords that were not | |
// specified at the call site. We need to keep track of the fact that this | |
// value is present on the stack in order to properly set up the callee's | |
// stack pointer. | |
bool doing_kw_call = false; | |
if (vm_ci_flag(ci) & VM_CALL_TAILCALL) { | |
// We can't handle tailcalls | |
GEN_COUNTER_INC(cb, send_iseq_tailcall); | |
return YJIT_CANT_COMPILE; | |
} | |
// Arity handling and optional parameter setup | |
int num_params = iseq->body->param.size; | |
uint32_t start_pc_offset = 0; | |
if (iseq_lead_only_arg_setup_p(iseq)) { | |
// If we have keyword arguments being passed to a callee that only takes | |
// positionals, then we need to allocate a hash. For now we're going to | |
// call that too complex and bail. | |
if (vm_ci_flag(ci) & VM_CALL_KWARG) { | |
GEN_COUNTER_INC(cb, send_iseq_complex_callee); | |
return YJIT_CANT_COMPILE; | |
} | |
num_params = iseq->body->param.lead_num; | |
if (num_params != argc) { | |
GEN_COUNTER_INC(cb, send_iseq_arity_error); | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
else if (rb_iseq_only_optparam_p(iseq)) { | |
// If we have keyword arguments being passed to a callee that only takes | |
// positionals and optionals, then we need to allocate a hash. For now | |
// we're going to call that too complex and bail. | |
if (vm_ci_flag(ci) & VM_CALL_KWARG) { | |
GEN_COUNTER_INC(cb, send_iseq_complex_callee); | |
return YJIT_CANT_COMPILE; | |
} | |
// These are iseqs with 0 or more required parameters followed by 1 | |
// or more optional parameters. | |
// We follow the logic of vm_call_iseq_setup_normal_opt_start() | |
// and these are the preconditions required for using that fast path. | |
RUBY_ASSERT(vm_ci_markable(ci) && ((vm_ci_flag(ci) & | |
(VM_CALL_KW_SPLAT | VM_CALL_KWARG | VM_CALL_ARGS_SPLAT)) == 0)); | |
const int required_num = iseq->body->param.lead_num; | |
const int opts_filled = argc - required_num; | |
const int opt_num = iseq->body->param.opt_num; | |
if (opts_filled < 0 || opts_filled > opt_num) { | |
GEN_COUNTER_INC(cb, send_iseq_arity_error); | |
return YJIT_CANT_COMPILE; | |
} | |
num_params -= opt_num - opts_filled; | |
start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled]; | |
} | |
else if (rb_iseq_only_kwparam_p(iseq)) { | |
const int lead_num = iseq->body->param.lead_num; | |
if (vm_ci_flag(ci) & VM_CALL_KWARG) { | |
// Here we're calling a method with keyword arguments and specifying | |
// keyword arguments at this call site. | |
// This struct represents the metadata about the caller-specified | |
// keyword arguments. | |
const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci); | |
// This struct represents the metadata about the callee-specified | |
// keyword parameters. | |
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword; | |
if ((kw_arg->keyword_len != keyword->num) || (lead_num != argc - kw_arg->keyword_len)) { | |
// Here the method being called specifies optional and required | |
// keyword arguments and the callee is not specifying every one | |
// of them. | |
GEN_COUNTER_INC(cb, send_iseq_kwargs_req_and_opt_missing); | |
return YJIT_CANT_COMPILE; | |
} | |
// This is the list of keyword arguments that the callee specified | |
// in its initial declaration. | |
const ID *callee_kwargs = keyword->table; | |
// Here we're going to build up a list of the IDs that correspond to | |
// the caller-specified keyword arguments. If they're not in the | |
// same order as the order specified in the callee declaration, then | |
// we're going to need to generate some code to swap values around | |
// on the stack. | |
ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len); | |
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++) | |
caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]); | |
// First, we're going to be sure that the names of every | |
// caller-specified keyword argument correspond to a name in the | |
// list of callee-specified keyword parameters. | |
for (int caller_idx = 0; caller_idx < kw_arg->keyword_len; caller_idx++) { | |
int callee_idx; | |
for (callee_idx = 0; callee_idx < keyword->num; callee_idx++) { | |
if (caller_kwargs[caller_idx] == callee_kwargs[callee_idx]) { | |
break; | |
} | |
} | |
// If the keyword was never found, then we know we have a | |
// mismatch in the names of the keyword arguments, so we need to | |
// bail. | |
if (callee_idx == keyword->num) { | |
GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch); | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
doing_kw_call = true; | |
} | |
else if (argc == lead_num) { | |
// Here we are calling a method that accepts keyword arguments | |
// (optional or required) but we're not passing any keyword | |
// arguments at this call site | |
GEN_COUNTER_INC(cb, send_iseq_kwargs_none_passed); | |
return YJIT_CANT_COMPILE; | |
} | |
else { | |
GEN_COUNTER_INC(cb, send_iseq_complex_callee); | |
return YJIT_CANT_COMPILE; | |
} | |
} | |
else { | |
// Only handle iseqs that have simple parameter setup. | |
// See vm_callee_setup_arg(). | |
GEN_COUNTER_INC(cb, send_iseq_complex_callee); | |
return YJIT_CANT_COMPILE; | |
} | |
// Number of locals that are not parameters | |
const int num_locals = iseq->body->local_table_size - num_params; | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Check for interrupts | |
yjit_check_ints(cb, side_exit); | |
const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq); | |
if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) { | |
ADD_COMMENT(cb, "inlined leaf builtin"); | |
// Call the builtin func (ec, recv, arg1, arg2, ...) | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
// Copy self and arguments | |
for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) { | |
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, leaf_builtin->argc - i); | |
x86opnd_t c_arg_reg = C_ARG_REGS[i + 1]; | |
mov(cb, c_arg_reg, stack_opnd); | |
} | |
ctx_stack_pop(ctx, leaf_builtin->argc + 1); | |
call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr); | |
// Push the return value | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
// Note: assuming that the leaf builtin doesn't change local variables here. | |
// Seems like a safe assumption. | |
return YJIT_KEEP_COMPILING; | |
} | |
// Stack overflow check | |
// Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2. | |
// #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) | |
ADD_COMMENT(cb, "stack overflow check"); | |
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + 2 * sizeof(rb_control_frame_t))); | |
cmp(cb, REG_CFP, REG0); | |
jle_ptr(cb, COUNTED_EXIT(side_exit, send_se_cf_overflow)); | |
if (doing_kw_call) { | |
// Here we're calling a method with keyword arguments and specifying | |
// keyword arguments at this call site. | |
const int lead_num = iseq->body->param.lead_num; | |
// This struct represents the metadata about the caller-specified | |
// keyword arguments. | |
const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci); | |
// This struct represents the metadata about the callee-specified | |
// keyword parameters. | |
const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword; | |
// Note: we are about to do argument shuffling for a keyword argument | |
// call. The various checks for whether we can do it happened earlier | |
// in this function. | |
RUBY_ASSERT((kw_arg->keyword_len == keyword->num) && (lead_num == argc - kw_arg->keyword_len)); | |
// This is the list of keyword arguments that the callee specified | |
// in its initial declaration. | |
const ID *callee_kwargs = keyword->table; | |
// Here we're going to build up a list of the IDs that correspond to | |
// the caller-specified keyword arguments. If they're not in the | |
// same order as the order specified in the callee declaration, then | |
// we're going to need to generate some code to swap values around | |
// on the stack. | |
ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len); | |
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++) | |
caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]); | |
// Next, we're going to loop through every keyword that was | |
// specified by the caller and make sure that it's in the correct | |
// place. If it's not we're going to swap it around with another one. | |
for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++) { | |
ID callee_kwarg = callee_kwargs[kwarg_idx]; | |
// If the argument is already in the right order, then we don't | |
// need to generate any code since the expected value is already | |
// in the right place on the stack. | |
if (callee_kwarg == caller_kwargs[kwarg_idx]) continue; | |
// In this case the argument is not in the right place, so we | |
// need to find its position where it _should_ be and swap with | |
// that location. | |
for (int swap_idx = kwarg_idx + 1; swap_idx < kw_arg->keyword_len; swap_idx++) { | |
if (callee_kwarg == caller_kwargs[swap_idx]) { | |
// First we're going to generate the code that is going | |
// to perform the actual swapping at runtime. | |
stack_swap(ctx, cb, argc - 1 - swap_idx - lead_num, argc - 1 - kwarg_idx - lead_num, REG1, REG0); | |
// Next we're going to do some bookkeeping on our end so | |
// that we know the order that the arguments are | |
// actually in now. | |
ID tmp = caller_kwargs[kwarg_idx]; | |
caller_kwargs[kwarg_idx] = caller_kwargs[swap_idx]; | |
caller_kwargs[swap_idx] = tmp; | |
break; | |
} | |
} | |
} | |
// Keyword arguments cause a special extra local variable to be | |
// pushed onto the stack that represents the parameters that weren't | |
// explicitly given a value. Its value is a bitmap that corresponds | |
// to the indices of the missing parameters. In this case since we | |
// know every value was specified, we can just write the value 0. | |
mov(cb, ctx_stack_opnd(ctx, -1), imm_opnd(INT2FIX(0))); | |
} | |
// Points to the receiver operand on the stack | |
x86opnd_t recv = ctx_stack_opnd(ctx, argc); | |
// Store the updated SP on the current frame (pop arguments and receiver) | |
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1))); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0); | |
// Store the next PC in the current frame | |
jit_save_pc(jit, REG0); | |
if (block) { | |
// Change cfp->block_code in the current frame. See vm_caller_setup_arg_block(). | |
// VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases | |
// with cfp->block_code. | |
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0); | |
} | |
// Adjust the callee's stack pointer | |
lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals + doing_kw_call))); | |
// Initialize local variables to Qnil | |
for (int i = 0; i < num_locals; i++) { | |
mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil)); | |
} | |
// Put compile time cme into REG1. It's assumed to be valid because we are notified when | |
// any cme we depend on become outdated. See rb_yjit_method_lookup_change(). | |
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme); | |
// Write method entry at sp[-3] | |
// sp[-3] = me; | |
mov(cb, mem_opnd(64, REG0, 8 * -3), REG1); | |
// Write block handler at sp[-2] | |
// sp[-2] = block_handler; | |
if (block) { | |
// reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp)); | |
lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self)); | |
or(cb, REG1, imm_opnd(1)); | |
mov(cb, mem_opnd(64, REG0, 8 * -2), REG1); | |
} | |
else { | |
mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE)); | |
} | |
// Write env flags at sp[-1] | |
// sp[-1] = frame_type; | |
uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL; | |
mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type)); | |
// Allocate a new CFP (ec->cfp--) | |
sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t))); | |
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP); | |
// Setup the new frame | |
// *cfp = (const struct rb_control_frame_struct) { | |
// .pc = pc, | |
// .sp = sp, | |
// .iseq = iseq, | |
// .self = recv, | |
// .ep = sp - 1, | |
// .block_code = 0, | |
// .__bp__ = sp, | |
// }; | |
mov(cb, REG1, recv); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG1); | |
mov(cb, REG_SP, REG0); // Switch to the callee's REG_SP | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0); | |
sub(cb, REG0, imm_opnd(sizeof(VALUE))); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0); | |
jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0); | |
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0)); | |
// No need to set cfp->pc since the callee sets it whenever calling into routines | |
// that could look at it through jit_save_pc(). | |
// mov(cb, REG0, const_ptr_opnd(start_pc)); | |
// mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0); | |
// Stub so we can return to JITted code | |
blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) }; | |
// Create a context for the callee | |
ctx_t callee_ctx = DEFAULT_CTX; | |
// Set the argument types in the callee's context | |
for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) { | |
val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1)); | |
ctx_set_local_type(&callee_ctx, arg_idx, arg_type); | |
} | |
val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc)); | |
ctx_upgrade_opnd_type(&callee_ctx, OPND_SELF, recv_type); | |
// The callee might change locals through Kernel#binding and other means. | |
ctx_clear_local_types(ctx); | |
// Pop arguments and receiver in return context, push the return value | |
// After the return, sp_offset will be 1. The codegen for leave writes | |
// the return value in case of JIT-to-JIT return. | |
ctx_t return_ctx = *ctx; | |
ctx_stack_pop(&return_ctx, argc + 1); | |
ctx_stack_push(&return_ctx, TYPE_UNKNOWN); | |
return_ctx.sp_offset = 1; | |
return_ctx.chain_depth = 0; | |
// Write the JIT return address on the callee frame | |
gen_branch( | |
jit, | |
ctx, | |
return_block, | |
&return_ctx, | |
return_block, | |
&return_ctx, | |
gen_return_branch | |
); | |
//print_str(cb, "calling Ruby func:"); | |
//print_str(cb, rb_id2name(vm_ci_mid(ci))); | |
// Directly jump to the entry point of the callee | |
gen_direct_jump( | |
jit, | |
&callee_ctx, | |
(blockid_t){ iseq, start_pc_offset } | |
); | |
return YJIT_END_BLOCK; | |
} | |
const rb_callable_method_entry_t * | |
rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me); | |
static codegen_status_t | |
gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block) | |
{ | |
// Relevant definitions: | |
// rb_execution_context_t : vm_core.h | |
// invoker, cfunc logic : method.h, vm_method.c | |
// rb_callinfo : vm_callinfo.h | |
// rb_callable_method_entry_t : method.h | |
// vm_call_cfunc_with_frame : vm_insnhelper.c | |
// | |
// For a general overview for how the interpreter calls methods, | |
// see vm_call_method(). | |
const struct rb_callinfo *ci = cd->ci; // info about the call site | |
int32_t argc = (int32_t)vm_ci_argc(ci); | |
ID mid = vm_ci_mid(ci); | |
// Don't JIT calls with keyword splat | |
if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) { | |
GEN_COUNTER_INC(cb, send_kw_splat); | |
return YJIT_CANT_COMPILE; | |
} | |
// Don't JIT calls that aren't simple | |
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. | |
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) { | |
GEN_COUNTER_INC(cb, send_args_splat); | |
return YJIT_CANT_COMPILE; | |
} | |
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) { | |
GEN_COUNTER_INC(cb, send_block_arg); | |
return YJIT_CANT_COMPILE; | |
} | |
// Defer compilation so we can specialize on class of receiver | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc); | |
VALUE comptime_recv_klass = CLASS_OF(comptime_recv); | |
// Guard that the receiver has the same class as the one from compile time | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Points to the receiver operand on the stack | |
x86opnd_t recv = ctx_stack_opnd(ctx, argc); | |
insn_opnd_t recv_opnd = OPND_STACK(argc); | |
mov(cb, REG0, recv); | |
if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Do method lookup | |
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid); | |
if (!cme) { | |
// TODO: counter | |
return YJIT_CANT_COMPILE; | |
} | |
switch (METHOD_ENTRY_VISI(cme)) { | |
case METHOD_VISI_PUBLIC: | |
// Can always call public methods | |
break; | |
case METHOD_VISI_PRIVATE: | |
if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) { | |
// Can only call private methods with FCALL callsites. | |
// (at the moment they are callsites without a receiver or an explicit `self` receiver) | |
return YJIT_CANT_COMPILE; | |
} | |
break; | |
case METHOD_VISI_PROTECTED: | |
jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit); | |
break; | |
case METHOD_VISI_UNDEF: | |
RUBY_ASSERT(false && "cmes should always have a visibility"); | |
break; | |
} | |
// Register block for invalidation | |
RUBY_ASSERT(cme->called_id == mid); | |
assume_method_lookup_stable(comptime_recv_klass, cme, jit->block); | |
// To handle the aliased method case (VM_METHOD_TYPE_ALIAS) | |
while (true) { | |
// switch on the method type | |
switch (cme->def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
return gen_send_iseq(jit, ctx, ci, cme, block, argc); | |
case VM_METHOD_TYPE_CFUNC: | |
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) { | |
GEN_COUNTER_INC(cb, send_cfunc_kwargs); | |
return YJIT_CANT_COMPILE; | |
} | |
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, &comptime_recv_klass); | |
case VM_METHOD_TYPE_IVAR: | |
if (argc != 0) { | |
// Argument count mismatch. Getters take no arguments. | |
GEN_COUNTER_INC(cb, send_getter_arity); | |
return YJIT_CANT_COMPILE; | |
} | |
if (c_method_tracing_currently_enabled(jit)) { | |
// Can't generate code for firing c_call and c_return events | |
// :attr-tracing: | |
// Handling the C method tracing events for attr_accessor | |
// methods is easier than regular C methods as we know the | |
// "method" we are calling into never enables those tracing | |
// events. Once global invalidation runs, the code for the | |
// attr_accessor is invalidated and we exit at the closest | |
// instruction boundary which is always outside of the body of | |
// the attr_accessor code. | |
GEN_COUNTER_INC(cb, send_cfunc_tracing); | |
return YJIT_CANT_COMPILE; | |
} | |
mov(cb, REG0, recv); | |
ID ivar_name = cme->def->body.attr.id; | |
return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit); | |
case VM_METHOD_TYPE_ATTRSET: | |
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) { | |
GEN_COUNTER_INC(cb, send_attrset_kwargs); | |
return YJIT_CANT_COMPILE; | |
} | |
else if (argc != 1 || !RB_TYPE_P(comptime_recv, T_OBJECT)) { | |
GEN_COUNTER_INC(cb, send_ivar_set_method); | |
return YJIT_CANT_COMPILE; | |
} | |
else if (c_method_tracing_currently_enabled(jit)) { | |
// Can't generate code for firing c_call and c_return events | |
// See :attr-tracing: | |
GEN_COUNTER_INC(cb, send_cfunc_tracing); | |
return YJIT_CANT_COMPILE; | |
} | |
else { | |
ID ivar_name = cme->def->body.attr.id; | |
return gen_set_ivar(jit, ctx, comptime_recv, comptime_recv_klass, ivar_name); | |
} | |
case VM_METHOD_TYPE_BMETHOD: | |
GEN_COUNTER_INC(cb, send_bmethod); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_ZSUPER: | |
GEN_COUNTER_INC(cb, send_zsuper_method); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_ALIAS: { | |
// Retrieve the alised method and re-enter the switch | |
cme = rb_aliased_callable_method_entry(cme); | |
continue; | |
} | |
case VM_METHOD_TYPE_UNDEF: | |
GEN_COUNTER_INC(cb, send_undef_method); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_NOTIMPLEMENTED: | |
GEN_COUNTER_INC(cb, send_not_implemented_method); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_OPTIMIZED: | |
GEN_COUNTER_INC(cb, send_optimized_method); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_MISSING: | |
GEN_COUNTER_INC(cb, send_missing_method); | |
return YJIT_CANT_COMPILE; | |
case VM_METHOD_TYPE_REFINED: | |
GEN_COUNTER_INC(cb, send_refined_method); | |
return YJIT_CANT_COMPILE; | |
// no default case so compiler issues a warning if this is not exhaustive | |
} | |
// Unreachable | |
RUBY_ASSERT(false); | |
} | |
} | |
static codegen_status_t | |
gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); | |
return gen_send_general(jit, ctx, cd, NULL); | |
} | |
static codegen_status_t | |
gen_send(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); | |
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1); | |
return gen_send_general(jit, ctx, cd, block); | |
} | |
static codegen_status_t | |
gen_invokesuper(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); | |
rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1); | |
// Defer compilation so we can specialize on class of receiver | |
if (!jit_at_current_insn(jit)) { | |
defer_compilation(jit, ctx); | |
return YJIT_END_BLOCK; | |
} | |
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp); | |
if (!me) { | |
return YJIT_CANT_COMPILE; | |
} | |
// FIXME: We should track and invalidate this block when this cme is invalidated | |
VALUE current_defined_class = me->defined_class; | |
ID mid = me->def->original_id; | |
if (me != rb_callable_method_entry(current_defined_class, me->called_id)) { | |
// Though we likely could generate this call, as we are only concerned | |
// with the method entry remaining valid, assume_method_lookup_stable | |
// below requires that the method lookup matches as well | |
return YJIT_CANT_COMPILE; | |
} | |
// vm_search_normal_superclass | |
if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) { | |
return YJIT_CANT_COMPILE; | |
} | |
VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class)); | |
const struct rb_callinfo *ci = cd->ci; | |
int32_t argc = (int32_t)vm_ci_argc(ci); | |
// Don't JIT calls that aren't simple | |
// Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. | |
if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) { | |
GEN_COUNTER_INC(cb, send_args_splat); | |
return YJIT_CANT_COMPILE; | |
} | |
if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) { | |
GEN_COUNTER_INC(cb, send_keywords); | |
return YJIT_CANT_COMPILE; | |
} | |
if ((vm_ci_flag(ci) & VM_CALL_KW_SPLAT) != 0) { | |
GEN_COUNTER_INC(cb, send_kw_splat); | |
return YJIT_CANT_COMPILE; | |
} | |
if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) { | |
GEN_COUNTER_INC(cb, send_block_arg); | |
return YJIT_CANT_COMPILE; | |
} | |
// Ensure we haven't rebound this method onto an incompatible class. | |
// In the interpreter we try to avoid making this check by performing some | |
// cheaper calculations first, but since we specialize on the method entry | |
// and so only have to do this once at compile time this is fine to always | |
// check and side exit. | |
VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc); | |
if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Do method lookup | |
const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid); | |
if (!cme) { | |
return YJIT_CANT_COMPILE; | |
} | |
// Check that we'll be able to write this method dispatch before generating checks | |
switch (cme->def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
case VM_METHOD_TYPE_CFUNC: | |
break; | |
default: | |
// others unimplemented | |
return YJIT_CANT_COMPILE; | |
} | |
// Guard that the receiver has the same class as the one from compile time | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
if (jit->ec->cfp->ep[VM_ENV_DATA_INDEX_ME_CREF] != (VALUE)me) { | |
// This will be the case for super within a block | |
return YJIT_CANT_COMPILE; | |
} | |
ADD_COMMENT(cb, "guard known me"); | |
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
x86opnd_t ep_me_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_ME_CREF); | |
jit_mov_gc_ptr(jit, cb, REG1, (VALUE)me); | |
cmp(cb, ep_me_opnd, REG1); | |
jne_ptr(cb, COUNTED_EXIT(side_exit, invokesuper_me_changed)); | |
if (!block) { | |
// Guard no block passed | |
// rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE | |
// note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep)) | |
// | |
// TODO: this could properly forward the current block handler, but | |
// would require changes to gen_send_* | |
ADD_COMMENT(cb, "guard no block given"); | |
// EP is in REG0 from above | |
x86opnd_t ep_specval_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL); | |
cmp(cb, ep_specval_opnd, imm_opnd(VM_BLOCK_HANDLER_NONE)); | |
jne_ptr(cb, COUNTED_EXIT(side_exit, invokesuper_block)); | |
} | |
// Points to the receiver operand on the stack | |
x86opnd_t recv = ctx_stack_opnd(ctx, argc); | |
mov(cb, REG0, recv); | |
// We need to assume that both our current method entry and the super | |
// method entry we invoke remain stable | |
assume_method_lookup_stable(current_defined_class, me, jit->block); | |
assume_method_lookup_stable(comptime_superclass, cme, jit->block); | |
// Method calls may corrupt types | |
ctx_clear_local_types(ctx); | |
switch (cme->def->type) { | |
case VM_METHOD_TYPE_ISEQ: | |
return gen_send_iseq(jit, ctx, ci, cme, block, argc); | |
case VM_METHOD_TYPE_CFUNC: | |
return gen_send_cfunc(jit, ctx, ci, cme, block, argc, NULL); | |
default: | |
break; | |
} | |
RUBY_ASSERT_ALWAYS(false); | |
} | |
static codegen_status_t | |
gen_leave(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Only the return value should be on the stack | |
RUBY_ASSERT(ctx->stack_size == 1); | |
// Create a size-exit to fall back to the interpreter | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Load environment pointer EP from CFP | |
mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
// Check for interrupts | |
ADD_COMMENT(cb, "check for interrupts"); | |
yjit_check_ints(cb, COUNTED_EXIT(side_exit, leave_se_interrupt)); | |
// Load the return value | |
mov(cb, REG0, ctx_stack_pop(ctx, 1)); | |
// Pop the current frame (ec->cfp++) | |
// Note: the return PC is already in the previous CFP | |
add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t))); | |
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP); | |
// Reload REG_SP for the caller and write the return value. | |
// Top of the stack is REG_SP[0] since the caller has sp_offset=1. | |
mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp)); | |
mov(cb, mem_opnd(64, REG_SP, 0), REG0); | |
// Jump to the JIT return address on the frame that was just popped | |
const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return); | |
jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return)); | |
return YJIT_END_BLOCK; | |
} | |
RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state; | |
static codegen_status_t | |
gen_getglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
ID gid = jit_get_arg(jit, 0); | |
// Save the PC and SP because we might make a Ruby call for warning | |
jit_prepare_routine_call(jit, ctx, REG0); | |
mov(cb, C_ARG_REGS[0], imm_opnd(gid)); | |
call_ptr(cb, REG0, (void *)&rb_gvar_get); | |
x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, top, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_setglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
ID gid = jit_get_arg(jit, 0); | |
// Save the PC and SP because we might make a Ruby call for | |
// Kernel#set_trace_var | |
jit_prepare_routine_call(jit, ctx, REG0); | |
mov(cb, C_ARG_REGS[0], imm_opnd(gid)); | |
x86opnd_t val = ctx_stack_pop(ctx, 1); | |
mov(cb, C_ARG_REGS[1], val); | |
call_ptr(cb, REG0, (void *)&rb_gvar_set); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_tostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// Save the PC and SP because we might make a Ruby call for | |
// Kernel#set_trace_var | |
jit_prepare_routine_call(jit, ctx, REG0); | |
x86opnd_t str = ctx_stack_pop(ctx, 1); | |
x86opnd_t val = ctx_stack_pop(ctx, 1); | |
mov(cb, C_ARG_REGS[0], str); | |
mov(cb, C_ARG_REGS[1], val); | |
call_ptr(cb, REG0, (void *)&rb_obj_as_string_result); | |
// Push the return value | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_toregexp(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
rb_num_t opt = jit_get_arg(jit, 0); | |
rb_num_t cnt = jit_get_arg(jit, 1); | |
// Save the PC and SP because this allocates an object and could | |
// raise an exception. | |
jit_prepare_routine_call(jit, ctx, REG0); | |
x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)cnt)); | |
ctx_stack_pop(ctx, cnt); | |
mov(cb, C_ARG_REGS[0], imm_opnd(0)); | |
mov(cb, C_ARG_REGS[1], imm_opnd(cnt)); | |
lea(cb, C_ARG_REGS[2], values_ptr); | |
call_ptr(cb, REG0, (void *)&rb_ary_tmp_new_from_values); | |
// Save the array so we can clear it later | |
push(cb, RAX); | |
push(cb, RAX); // Alignment | |
mov(cb, C_ARG_REGS[0], RAX); | |
mov(cb, C_ARG_REGS[1], imm_opnd(opt)); | |
call_ptr(cb, REG0, (void *)&rb_reg_new_ary); | |
// The actual regex is in RAX now. Pop the temp array from | |
// rb_ary_tmp_new_from_values into C arg regs so we can clear it | |
pop(cb, REG1); // Alignment | |
pop(cb, C_ARG_REGS[0]); | |
// The value we want to push on the stack is in RAX right now | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
// Clear the temp array. | |
call_ptr(cb, REG0, (void *)&rb_ary_clear); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_getspecial(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// This takes two arguments, key and type | |
// key is only used when type == 0 | |
// A non-zero type determines which type of backref to fetch | |
//rb_num_t key = jit_get_arg(jit, 0); | |
rb_num_t type = jit_get_arg(jit, 1); | |
if (type == 0) { | |
// not yet implemented | |
return YJIT_CANT_COMPILE; | |
} | |
else if (type & 0x01) { | |
// Fetch a "special" backref based on a char encoded by shifting by 1 | |
// Can raise if matchdata uninitialized | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// call rb_backref_get() | |
ADD_COMMENT(cb, "rb_backref_get"); | |
call_ptr(cb, REG0, (void *)rb_backref_get); | |
mov(cb, C_ARG_REGS[0], RAX); | |
switch (type >> 1) { | |
case '&': | |
ADD_COMMENT(cb, "rb_reg_last_match"); | |
call_ptr(cb, REG0, (void *)rb_reg_last_match); | |
break; | |
case '`': | |
ADD_COMMENT(cb, "rb_reg_match_pre"); | |
call_ptr(cb, REG0, (void *)rb_reg_match_pre); | |
break; | |
case '\'': | |
ADD_COMMENT(cb, "rb_reg_match_post"); | |
call_ptr(cb, REG0, (void *)rb_reg_match_post); | |
break; | |
case '+': | |
ADD_COMMENT(cb, "rb_reg_match_last"); | |
call_ptr(cb, REG0, (void *)rb_reg_match_last); | |
break; | |
default: | |
rb_bug("invalid back-ref"); | |
} | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
else { | |
// Fetch the N-th match from the last backref based on type shifted by 1 | |
// Can raise if matchdata uninitialized | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// call rb_backref_get() | |
ADD_COMMENT(cb, "rb_backref_get"); | |
call_ptr(cb, REG0, (void *)rb_backref_get); | |
// rb_reg_nth_match((int)(type >> 1), backref); | |
ADD_COMMENT(cb, "rb_reg_nth_match"); | |
mov(cb, C_ARG_REGS[0], imm_opnd(type >> 1)); | |
mov(cb, C_ARG_REGS[1], RAX); | |
call_ptr(cb, REG0, (void *)rb_reg_nth_match); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
} | |
VALUE | |
rb_vm_getclassvariable(const rb_iseq_t *iseq, const rb_cref_t *cref, const rb_control_frame_t *cfp, ID id, ICVARC ic); | |
rb_cref_t * | |
rb_vm_get_cref(const VALUE *ep); | |
static codegen_status_t | |
gen_getclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb) | |
{ | |
// rb_vm_getclassvariable can raise exceptions. | |
jit_prepare_routine_call(jit, ctx, REG0); | |
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
call_ptr(cb, REG0, (void *)rb_vm_get_cref); | |
mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq)); | |
mov(cb, C_ARG_REGS[1], RAX); | |
mov(cb, C_ARG_REGS[2], REG_CFP); | |
mov(cb, C_ARG_REGS[3], imm_opnd(jit_get_arg(jit, 0))); | |
mov(cb, C_ARG_REGS[4], imm_opnd(jit_get_arg(jit, 1))); | |
call_ptr(cb, REG0, (void *)rb_vm_getclassvariable); | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_top, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
VALUE jump_offset = jit_get_arg(jit, 0); | |
VALUE const_cache_as_value = jit_get_arg(jit, 1); | |
IC ic = (IC)const_cache_as_value; | |
// See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update(). | |
struct iseq_inline_constant_cache_entry *ice = ic->entry; | |
if (!ice || // cache not filled | |
ice->ic_serial != ruby_vm_global_constant_state /* cache out of date */) { | |
// In these cases, leave a block that unconditionally side exits | |
// for the interpreter to invalidate. | |
return YJIT_CANT_COMPILE; | |
} | |
if (ice->ic_cref) { | |
// Cache is keyed on a certain lexical scope. Use the interpreter's cache. | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// Call function to verify the cache. It doesn't allocate or call methods. | |
bool rb_vm_ic_hit_p(IC ic, const VALUE *reg_ep); | |
mov(cb, C_ARG_REGS[0], const_ptr_opnd((void *)ic)); | |
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
call_ptr(cb, REG0, (void *)rb_vm_ic_hit_p); | |
// Check the result. _Bool is one byte in SysV. | |
test(cb, AL, AL); | |
jz_ptr(cb, COUNTED_EXIT(side_exit, opt_getinlinecache_miss)); | |
// Push ic->entry->value | |
mov(cb, REG0, const_ptr_opnd((void *)ic)); | |
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache, entry)); | |
x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache_entry, value)); | |
mov(cb, stack_top, REG0); | |
} | |
else { | |
// Optimize for single ractor mode. | |
// FIXME: This leaks when st_insert raises NoMemoryError | |
if (!assume_single_ractor_mode(jit->block)) return YJIT_CANT_COMPILE; | |
// Invalidate output code on any and all constant writes | |
// FIXME: This leaks when st_insert raises NoMemoryError | |
assume_stable_global_constant_state(jit->block); | |
val_type_t type = yjit_type_of_value(ice->value); | |
x86opnd_t stack_top = ctx_stack_push(ctx, type); | |
jit_mov_gc_ptr(jit, cb, REG0, ice->value); | |
mov(cb, stack_top, REG0); | |
} | |
// Jump over the code for filling the cache | |
uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset; | |
gen_direct_jump( | |
jit, | |
ctx, | |
(blockid_t){ .iseq = jit->iseq, .idx = jump_idx } | |
); | |
return YJIT_END_BLOCK; | |
} | |
// Push the explict block parameter onto the temporary stack. Part of the | |
// interpreter's scheme for avoiding Proc allocations when delegating | |
// explict block parameters. | |
static codegen_status_t | |
gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
// A mirror of the interpreter code. Checking for the case | |
// where it's pushing rb_block_param_proxy. | |
uint8_t *side_exit = yjit_side_exit(jit, ctx); | |
// EP level | |
uint32_t level = (uint32_t)jit_get_arg(jit, 1); | |
// Load environment pointer EP from CFP | |
gen_get_ep(cb, REG0, level); | |
// Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero | |
test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)); | |
jnz_ptr(cb, COUNTED_EXIT(side_exit, gbpp_block_param_modified)); | |
// Load the block handler for the current frame | |
// note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) | |
mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL)); | |
// Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P(). | |
and(cb, REG0_8, imm_opnd(0x3)); | |
// Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null. | |
cmp(cb, REG0_8, imm_opnd(0x1)); | |
jnz_ptr(cb, COUNTED_EXIT(side_exit, gbpp_block_handler_not_iseq)); | |
// Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr. | |
mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy)); | |
RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy)); | |
x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP); | |
mov(cb, top, REG0); | |
return YJIT_KEEP_COMPILING; | |
} | |
static codegen_status_t | |
gen_invokebuiltin(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0); | |
// ec, self, and arguments | |
if (bf->argc + 2 > NUM_C_ARG_REGS) { | |
return YJIT_CANT_COMPILE; | |
} | |
// If the calls don't allocate, do they need up to date PC, SP? | |
jit_prepare_routine_call(jit, ctx, REG0); | |
// Call the builtin func (ec, recv, arg1, arg2, ...) | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); | |
// Copy arguments from locals | |
for (int32_t i = 0; i < bf->argc; i++) { | |
x86opnd_t stack_opnd = ctx_stack_opnd(ctx, bf->argc - i - 1); | |
x86opnd_t c_arg_reg = C_ARG_REGS[2 + i]; | |
mov(cb, c_arg_reg, stack_opnd); | |
} | |
call_ptr(cb, REG0, (void *)bf->func_ptr); | |
// Push the return value | |
ctx_stack_pop(ctx, bf->argc); | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
// opt_invokebuiltin_delegate calls a builtin function, like | |
// invokebuiltin does, but instead of taking arguments from the top of the | |
// stack uses the argument locals (and self) from the current method. | |
static codegen_status_t | |
gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) | |
{ | |
const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0); | |
int32_t start_index = (int32_t)jit_get_arg(jit, 1); | |
// ec, self, and arguments | |
if (bf->argc + 2 > NUM_C_ARG_REGS) { | |
return YJIT_CANT_COMPILE; | |
} | |
// If the calls don't allocate, do they need up to date PC, SP? | |
jit_prepare_routine_call(jit, ctx, REG0); | |
if (bf->argc > 0) { | |
// Load environment pointer EP from CFP | |
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep)); | |
} | |
// Call the builtin func (ec, recv, arg1, arg2, ...) | |
mov(cb, C_ARG_REGS[0], REG_EC); | |
mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); | |
// Copy arguments from locals | |
for (int32_t i = 0; i < bf->argc; i++) { | |
const int32_t offs = -jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1 + start_index + i; | |
x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE); | |
x86opnd_t c_arg_reg = C_ARG_REGS[i + 2]; | |
mov(cb, c_arg_reg, local_opnd); | |
} | |
call_ptr(cb, REG0, (void *)bf->func_ptr); | |
// Push the return value | |
x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); | |
mov(cb, stack_ret, RAX); | |
return YJIT_KEEP_COMPILING; | |
} | |
static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data); | |
static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq); | |
// Invalidate all generated code and patch C method return code to contain | |
// logic for firing the c_return TracePoint event. Once rb_vm_barrier() | |
// returns, all other ractors are pausing inside RB_VM_LOCK_ENTER(), which | |
// means they are inside a C routine. If there are any generated code on-stack, | |
// they are waiting for a return from a C routine. For every routine call, we | |
// patch in an exit after the body of the containing VM instruction. This makes | |
// it so all the invalidated code exit as soon as execution logically reaches | |
// the next VM instruction. The interpreter takes care of firing the tracing | |
// event if it so happens that the next VM instruction has one attached. | |
// | |
// The c_return event needs special handling as our codegen never outputs code | |
// that contains tracing logic. If we let the normal output code run until the | |
// start of the next VM instruction by relying on the patching scheme above, we | |
// would fail to fire the c_return event. The interpreter doesn't fire the | |
// event at an instruction boundary, so simply exiting to the interpreter isn't | |
// enough. To handle it, we patch in the full logic at the return address. See | |
// full_cfunc_return(). | |
// | |
// In addition to patching, we prevent future entries into invalidated code by | |
// removing all live blocks from their iseq. | |
void | |
rb_yjit_tracing_invalidate_all(void) | |
{ | |
if (!rb_yjit_enabled_p()) return; | |
// Stop other ractors since we are going to patch machine code. | |
RB_VM_LOCK_ENTER(); | |
rb_vm_barrier(); | |
// Make it so all live block versions are no longer valid branch targets | |
rb_objspace_each_objects(tracing_invalidate_all_i, NULL); | |
// Apply patches | |
const uint32_t old_pos = cb->write_pos; | |
rb_darray_for(global_inval_patches, patch_idx) { | |
struct codepage_patch patch = rb_darray_get(global_inval_patches, patch_idx); | |
cb_set_pos(cb, patch.inline_patch_pos); | |
uint8_t *jump_target = cb_get_ptr(ocb, patch.outlined_target_pos); | |
jmp_ptr(cb, jump_target); | |
} | |
cb_set_pos(cb, old_pos); | |
// Freeze invalidated part of the codepage. We only want to wait for | |
// running instances of the code to exit from now on, so we shouldn't | |
// change the code. There could be other ractors sleeping in | |
// branch_stub_hit(), for example. We could harden this by changing memory | |
// protection on the frozen range. | |
RUBY_ASSERT_ALWAYS(yjit_codepage_frozen_bytes <= old_pos && "frozen bytes should increase monotonically"); | |
yjit_codepage_frozen_bytes = old_pos; | |
RB_VM_LOCK_LEAVE(); | |
} | |
static int | |
tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data) | |
{ | |
VALUE v = (VALUE)vstart; | |
for (; v != (VALUE)vend; v += stride) { | |
void *ptr = asan_poisoned_object_p(v); | |
asan_unpoison_object(v, false); | |
if (rb_obj_is_iseq(v)) { | |
rb_iseq_t *iseq = (rb_iseq_t *)v; | |
invalidate_all_blocks_for_tracing(iseq); | |
} | |
asan_poison_object_if(ptr, v); | |
} | |
return 0; | |
} | |
static void | |
invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq) | |
{ | |
struct rb_iseq_constant_body *body = iseq->body; | |
if (!body) return; // iseq yet to be initialized | |
ASSERT_vm_locking(); | |
// Empty all blocks on the iseq so we don't compile new blocks that jump to the | |
// invalidted region. | |
// TODO Leaking the blocks for now since we might have situations where | |
// a different ractor is waiting in branch_stub_hit(). If we free the block | |
// that ractor can wake up with a dangling block. | |
rb_darray_for(body->yjit_blocks, version_array_idx) { | |
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); | |
rb_darray_for(version_array, version_idx) { | |
// Stop listening for invalidation events like basic operation redefinition. | |
block_t *block = rb_darray_get(version_array, version_idx); | |
yjit_unlink_method_lookup_dependency(block); | |
yjit_block_assumptions_free(block); | |
} | |
rb_darray_free(version_array); | |
} | |
rb_darray_free(body->yjit_blocks); | |
body->yjit_blocks = NULL; | |
#if USE_MJIT | |
// Reset output code entry point | |
body->jit_func = NULL; | |
#endif | |
} | |
static void | |
yjit_reg_op(int opcode, codegen_fn gen_fn) | |
{ | |
RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE); | |
// Check that the op wasn't previously registered | |
RUBY_ASSERT(gen_fns[opcode] == NULL); | |
gen_fns[opcode] = gen_fn; | |
} | |
void | |
yjit_init_codegen(void) | |
{ | |
// Initialize the code blocks | |
uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024; | |
uint8_t *mem_block = alloc_exec_mem(mem_size); | |
cb = █ | |
cb_init(cb, mem_block, mem_size/2); | |
ocb = &outline_block; | |
cb_init(ocb, mem_block + mem_size/2, mem_size/2); | |
// Generate the interpreter exit code for leave | |
leave_exit_code = yjit_gen_leave_exit(cb); | |
// Generate full exit code for C func | |
gen_full_cfunc_return(); | |
// Map YARV opcodes to the corresponding codegen functions | |
yjit_reg_op(BIN(nop), gen_nop); | |
yjit_reg_op(BIN(dup), gen_dup); | |
yjit_reg_op(BIN(dupn), gen_dupn); | |
yjit_reg_op(BIN(swap), gen_swap); | |
yjit_reg_op(BIN(setn), gen_setn); | |
yjit_reg_op(BIN(topn), gen_topn); | |
yjit_reg_op(BIN(pop), gen_pop); | |
yjit_reg_op(BIN(adjuststack), gen_adjuststack); | |
yjit_reg_op(BIN(newarray), gen_newarray); | |
yjit_reg_op(BIN(duparray), gen_duparray); | |
yjit_reg_op(BIN(splatarray), gen_splatarray); | |
yjit_reg_op(BIN(expandarray), gen_expandarray); | |
yjit_reg_op(BIN(newhash), gen_newhash); | |
yjit_reg_op(BIN(newrange), gen_newrange); | |
yjit_reg_op(BIN(concatstrings), gen_concatstrings); | |
yjit_reg_op(BIN(putnil), gen_putnil); | |
yjit_reg_op(BIN(putobject), gen_putobject); | |
yjit_reg_op(BIN(putstring), gen_putstring); | |
yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix); | |
yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix); | |
yjit_reg_op(BIN(putself), gen_putself); | |
yjit_reg_op(BIN(putspecialobject), gen_putspecialobject); | |
yjit_reg_op(BIN(getlocal), gen_getlocal); | |
yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0); | |
yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1); | |
yjit_reg_op(BIN(setlocal), gen_setlocal); | |
yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0); | |
yjit_reg_op(BIN(setlocal_WC_1), gen_setlocal_wc1); | |
yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable); | |
yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable); | |
yjit_reg_op(BIN(defined), gen_defined); | |
yjit_reg_op(BIN(checktype), gen_checktype); | |
yjit_reg_op(BIN(opt_lt), gen_opt_lt); | |
yjit_reg_op(BIN(opt_le), gen_opt_le); | |
yjit_reg_op(BIN(opt_ge), gen_opt_ge); | |
yjit_reg_op(BIN(opt_gt), gen_opt_gt); | |
yjit_reg_op(BIN(opt_eq), gen_opt_eq); | |
yjit_reg_op(BIN(opt_neq), gen_opt_neq); | |
yjit_reg_op(BIN(opt_aref), gen_opt_aref); | |
yjit_reg_op(BIN(opt_aset), gen_opt_aset); | |
yjit_reg_op(BIN(opt_and), gen_opt_and); | |
yjit_reg_op(BIN(opt_or), gen_opt_or); | |
yjit_reg_op(BIN(opt_minus), gen_opt_minus); | |
yjit_reg_op(BIN(opt_plus), gen_opt_plus); | |
yjit_reg_op(BIN(opt_mult), gen_opt_mult); | |
yjit_reg_op(BIN(opt_div), gen_opt_div); | |
yjit_reg_op(BIN(opt_mod), gen_opt_mod); | |
yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt); | |
yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p); | |
yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p); | |
yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze); | |
yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus); | |
yjit_reg_op(BIN(opt_not), gen_opt_not); | |
yjit_reg_op(BIN(opt_size), gen_opt_size); | |
yjit_reg_op(BIN(opt_length), gen_opt_length); | |
yjit_reg_op(BIN(opt_regexpmatch2), gen_opt_regexpmatch2); | |
yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache); | |
yjit_reg_op(BIN(invokebuiltin), gen_invokebuiltin); | |
yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate); | |
yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate); | |
yjit_reg_op(BIN(opt_case_dispatch), gen_opt_case_dispatch); | |
yjit_reg_op(BIN(branchif), gen_branchif); | |
yjit_reg_op(BIN(branchunless), gen_branchunless); | |
yjit_reg_op(BIN(branchnil), gen_branchnil); | |
yjit_reg_op(BIN(jump), gen_jump); | |
yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy); | |
yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block); | |
yjit_reg_op(BIN(send), gen_send); | |
yjit_reg_op(BIN(invokesuper), gen_invokesuper); | |
yjit_reg_op(BIN(leave), gen_leave); | |
yjit_reg_op(BIN(getglobal), gen_getglobal); | |
yjit_reg_op(BIN(setglobal), gen_setglobal); | |
yjit_reg_op(BIN(tostring), gen_tostring); | |
yjit_reg_op(BIN(toregexp), gen_toregexp); | |
yjit_reg_op(BIN(getspecial), gen_getspecial); | |
yjit_reg_op(BIN(getclassvariable), gen_getclassvariable); | |
yjit_method_codegen_table = st_init_numtable(); | |
// Specialization for C methods. See yjit_reg_method() for details. | |
yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not); | |
yjit_reg_method(rb_cNilClass, "nil?", jit_rb_true); | |
yjit_reg_method(rb_mKernel, "nil?", jit_rb_false); | |
yjit_reg_method(rb_cBasicObject, "==", jit_rb_obj_equal); | |
yjit_reg_method(rb_cBasicObject, "equal?", jit_rb_obj_equal); | |
yjit_reg_method(rb_mKernel, "eql?", jit_rb_obj_equal); | |
yjit_reg_method(rb_cModule, "==", jit_rb_obj_equal); | |
yjit_reg_method(rb_cSymbol, "==", jit_rb_obj_equal); | |
yjit_reg_method(rb_cSymbol, "===", jit_rb_obj_equal); | |
// rb_str_to_s() methods in string.c | |
yjit_reg_method(rb_cString, "to_s", jit_rb_str_to_s); | |
yjit_reg_method(rb_cString, "to_str", jit_rb_str_to_s); | |
yjit_reg_method(rb_cString, "bytesize", jit_rb_str_bytesize); | |
// Thread.current | |
yjit_reg_method(rb_singleton_class(rb_cThread), "current", jit_thread_s_current); | |
} |