Skip to content
#

hyperparameter-optimization

Here are 560 public repositories matching this topic...

nni
nzw0301
nzw0301 commented Jan 14, 2022

Motivation

As reported by optuna/optuna#2163, the current type of catch argument of study.optimize, tuple, might be inconvenient for users.

Description

I'd like to suggest changing the argument's type as follows

  • single Exception: catch=RuntimeWarning
  • sequence of Exception: catch=[RuntimeWarning] or `catch=(RuntimeWarning, InvalidArgum
mljar-supervised

Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models

  • Updated Feb 7, 2022
  • Jupyter Notebook
Gradient-Free-Optimizers

A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression, Quantization and Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.

  • Updated Jun 19, 2021
bcyphers
bcyphers commented Jan 31, 2018

If enter_data() is called with the same train_path twice in a row and the data itself hasn't changed, a new Dataset does not need to be created.

We should add a column which stores some kind of hash of the actual data. When a Dataset would be created, if the metadata and data hash are exactly the same as an existing Dataset, nothing should be added to the ModelHub database and the existing

Neuraxle

Improve this page

Add a description, image, and links to the hyperparameter-optimization topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the hyperparameter-optimization topic, visit your repo's landing page and select "manage topics."

Learn more