The Unified Model Serving Framework 🍱
kubernetes
machine-learning
ai
aws-lambda
tensorflow
ml
model-management
model-deployment
model-serving
ml-infrastructure
azure-ml
mlops
aws-sagemaker
machine-learning-operations
bentoml
ml-platform
bentoml-format
prediction-service
-
Updated
Apr 22, 2022 - Python
I have a simple regression task (using a LightGBMRegressor) where I want to penalize negative predictions more than positive ones. Is there a way to achieve this with the default regression LightGBM objectives (see https://lightgbm.readthedocs.io/en/latest/Parameters.html)? If not, is it somehow possible to define (many example for default LightGBM model) and pass a custom regression objective?