Skip to content
#

transformer

Here are 1,933 public repositories matching this topic...

transformers
annotated_deep_learning_paper_implementations

🧑‍🏫 50! Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠

  • Updated May 25, 2022
  • Jupyter Notebook

Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc.

  • Updated May 26, 2022
  • Python
PaddleNLP
akari0216
akari0216 commented Sep 2, 2021

欢迎您反馈PaddleNLP使用问题,非常感谢您对PaddleNLP的贡献!
在留下您的问题时,辛苦您同步提供如下信息:

  • 版本、环境信息
    1)PaddleNLP和PaddlePaddle版本:请提供您的PaddleNLP和PaddlePaddle版本号,例如PaddleNLP 2.0.4,PaddlePaddle2.1.1
    2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本
  • 复现信息:如为报错,请给出复现环境、复现步骤
    paddle版本2.0.8 paddlenlp版本2.1.0
    建议,能否在paddlenlp文档中,整理列出各个模型的tokenizer是基于什么类别的based,如bert tokenizer是word piece的,xlnet tokenizer是sentence piece的,以及对应的输入输出样例
good first issue
yt605155624
yt605155624 commented Jan 6, 2022

目前的多音字使用 pypinyin 或者 g2pM,精度有限,想做一个基于 BERT (或者 ERNIE) 多音字预测模型,简单来说就是假设某语言有 100 个多音字,每个多音字最多有 3 个发音,那么可以在 BERT 后面接 100 个 3 分类器(简单的 fc 层即可),在预测时,找到对应的分类器进行分类即可。
参考论文:
tencent_polyphone.pdf

数据可以用 https://github.com/kakaobrain/g2pM 提供的数据

进阶:多任务的 BERT
![image](https://user-images.githubusercontent.com/24568452

hellock
hellock commented Jul 13, 2020

We keep this issue open to collect feature requests from users and hear your voice. Our monthly release plan is also available here.

You can either:

  1. Suggest a new feature by leaving a comment.
  2. Vote for a feature request with 👍 or be against with 👎. (Remember that developers are busy and cannot respond to all feature requests, so vote for your most favorable one!)
  3. Tell us that you wo
good first issue help wanted

Time series Timeseries Deep Learning Machine Learning Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai

  • Updated May 27, 2022
  • Jupyter Notebook

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT.

  • Updated Jun 14, 2021
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the transformer topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the transformer topic, visit your repo's landing page and select "manage topics."

Learn more