transformer
Here are 1,933 public repositories matching this topic...
-
Updated
Jul 25, 2021 - Jupyter Notebook
-
Updated
May 26, 2022 - Python
-
Updated
May 25, 2022 - Jupyter Notebook
-
Updated
May 24, 2022
Bidirectional RNN
Is there a way to train a bidirectional RNN (like LSTM or GRU) on trax nowadays?
-
Updated
Sep 10, 2021 - Python
-
Updated
Mar 17, 2022 - Python
-
Updated
May 26, 2022 - Python
chooses 15% of token
From paper, it mentioned
Instead, the training data generator chooses 15% of tokens at random, e.g., in the sentence my
dog is hairy it chooses hairy.
It means that 15% of token will be choose for sure.
From https://github.com/codertimo/BERT-pytorch/blob/master/bert_pytorch/dataset/dataset.py#L68,
for every single token, it has 15% of chance that go though the followup procedure.
PositionalEmbedding
文档增加tokenizer类别及样例建议
欢迎您反馈PaddleNLP使用问题,非常感谢您对PaddleNLP的贡献!
在留下您的问题时,辛苦您同步提供如下信息:
- 版本、环境信息
1)PaddleNLP和PaddlePaddle版本:请提供您的PaddleNLP和PaddlePaddle版本号,例如PaddleNLP 2.0.4,PaddlePaddle2.1.1
2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本 - 复现信息:如为报错,请给出复现环境、复现步骤
paddle版本2.0.8 paddlenlp版本2.1.0
建议,能否在paddlenlp文档中,整理列出各个模型的tokenizer是基于什么类别的based,如bert tokenizer是word piece的,xlnet tokenizer是sentence piece的,以及对应的输入输出样例
关于一些具体建议
-
Updated
May 16, 2022 - Python
目前的多音字使用 pypinyin 或者 g2pM,精度有限,想做一个基于 BERT (或者 ERNIE) 多音字预测模型,简单来说就是假设某语言有 100 个多音字,每个多音字最多有 3 个发音,那么可以在 BERT 后面接 100 个 3 分类器(简单的 fc 层即可),在预测时,找到对应的分类器进行分类即可。
参考论文:
tencent_polyphone.pdf
数据可以用 https://github.com/kakaobrain/g2pM 提供的数据
进阶:多任务的 BERT
 - Tell us that you wo
-
Updated
May 26, 2022 - Python
-
Updated
May 3, 2017 - Java
-
Updated
Mar 28, 2022 - JavaScript
-
Updated
Jul 20, 2021 - Python
-
Updated
May 16, 2022
-
Updated
May 27, 2022 - Cuda
-
Updated
May 29, 2022 - C++
-
Updated
May 27, 2022 - Jupyter Notebook
-
Updated
Mar 28, 2022 - Python
-
Updated
Feb 17, 2022 - Python
-
Updated
Oct 14, 2021 - Python
-
Updated
May 27, 2022 - Python
-
Updated
Jun 14, 2021 - Jupyter Notebook
-
Updated
Apr 27, 2022 - Python
-
Updated
May 9, 2022 - Jupyter Notebook
Improve this page
Add a description, image, and links to the transformer topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the transformer topic, visit your repo's landing page and select "manage topics."
Model description
I would like to add a new model:
Proposed in the paper: UNETR: Transformers for 3D Medical Image Segmentation
UNEt TRansformers (UNETR) utilize a transformer as the encoder to learn sequence representations of the input volume and effectively capture the global multi-scale information, while also following the successful "U-shaped"